Intensity Distribution of Collegiate Cross-Country Competitions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection Methods
Incremental Treadmill Test
3. MT
3.1. Exercise Intensity Zone Determination
3.2. Performance Modeling
3.3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, M.A. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance. Integr. Comp. Biol. 2017, 57, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, R.W.; Clark, I.E.; Ebner, S.M.; Sedgeman, D.T.; Murray, S.R. Gas Exchange Threshold and V[Combining Dot Above]O2max Testing for Athletes: An Update. J. Strength Cond. Res. 2013, 27, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, P.; Arnold, B.; Minahan, C. Quantifying the Training-Intensity Distribution in Middle-Distance Runners: The Influence of Different Methods of Training-Intensity Quantification. Int. J. Sports Physiol. Perform. 2020, 15, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, M.A.; Perrotta, A.S.; Vicenzino, B. Polarized vs. Threshold Training Intensity Distribution on Endurance Sport Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Strength Cond. Res. 2019, 33, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Bourgois, J.G.; Bourgois, G.; Boone, J. Perspectives and Determinants for Training-Intensity Distribution in Elite Endurance Athletes. Int. J. Sports Physiol. Perform. 2019, 14, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.W.; Dunn, A.; Cantrell, G.S.; Lantis, D.J.; Larson, D.J.; Larson, R.D. Effects of Group Running on the Training Intensity Distribution of Collegiate Cross-Country Runners. J. Strength Cond. Res. 2021, 35, 2862–2869. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S. What Is Best Practice for Training Intensity and Duration Distribution in Endurance Athletes? Int. J. Sports Physiol. Perform. 2010, 5, 276–291. [Google Scholar] [CrossRef]
- Gures, A.; Colakoglu, M.; Ozkaya, O.; As, H.; Balci, G. Cardiovascular Responses of Exercises Performed within the Extreme Exercise Domain. Physiol. Res. 2023, 72, 319–327. [Google Scholar] [CrossRef]
- Seiler, K.S.; Kjerland, G.O. Quantifying Training Intensity Distribution in Elite Endurance Athletes: Is There Evidence for an “Optimal” Distribution? Scand. J. Med. Sci. Sports 2006, 16, 49–56. [Google Scholar] [CrossRef]
- Galán-Rioja, M.Á.; González-Mohíno, F.; Poole, D.C.; González-Ravé, J.M. Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1771–1783. [Google Scholar] [CrossRef]
- Campos, Y.; Casado, A.; Vieira, J.G.; Guimarães, M.; Sant’Ana, L.; Leitão, L.; Da Silva, S.F.; Silva Marques De Azevedo, P.H.; Vianna, J.; Domínguez, R. Training-Intensity Distribution on Middle- and Long-Distance Runners: A Systematic Review. Int. J. Sports Med. 2022, 43, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Monod, H.; Scherrer, J. The Work Capacity of a Synergic Muscular Group. Ergonomics 1965, 8, 329–338. [Google Scholar] [CrossRef]
- Pettitt, R.W. Applying the Critical Speed Concept to Racing Strategy and Interval Training Prescription. Int. J. Sports Physiol. Perform. 2016, 11, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Næss, S.; Sollie, O.; Gløersen, Ø.N.; Losnegard, T. Exercise Intensity and Pacing Pattern During a Cross-Country Olympic Mountain Bike Race. Front. Physiol. 2021, 12, 702415. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A New Method for Detecting Anaerobic Threshold by Gas Exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, R.; Jamnick, N.; Clark, I. 3-Min All-out Exercise Test for Running. Int. J. Sports Med. 2012, 33, 426–431. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Cohan, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Burnley, M.; Jones, A.M. Power–Duration Relationship: Physiology, Fatigue, and the Limits of Human Performance. Eur. J. Sport Sci. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Carter, H.; Pringle, J.S.; Jones, A.M.; Doust, J.H. Oxygen Uptake Kinetics during Treadmill Running across Exercise Intensity Domains. Eur. J. Appl. Physiol. 2002, 86, 347–354. [Google Scholar] [CrossRef]
- Hurd, K.A.; Surges, M.P.; Farrell, J.W. Use of Exercise Training to Enhance the Power-Duration Curve: A Systematic Review. J. Strength Cond. Res. 2023, 37, 733–744. [Google Scholar] [CrossRef]
- Jacobs, I. Blood Lactate: Implications for Training and Sports Performance. Sports Med. 1986, 3, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.; Wyatt, F.; Winchester, J.; Williamson, K.; Welter, A.; Brown, S. Physiological Breakpoints and Maximal Steady-State of Cycling. J. Exerc. Physiol. Online 2015, 18, 33–45. [Google Scholar]
- Burnley, M.; Jones, A.M. Oxygen Uptake Kinetics as a Determinant of Sports Performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Jones, A.M.; Vanhatalo, A. The ‘Critical Power’ Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise. Sports Med. 2017, 47, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Ward, S.A.; Gardner, G.W.; Whipp, B.J. Metabolic and Respiratory Profile of the Upper Limit for Prolonged Exercise in Man. Ergonomics 1988, 31, 1265–1279. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Barstow, T.J.; Mcdonough, P.; Jones, A.M. Control of Oxygen Uptake during Exercise. Med. Sci. Sports Exerc. 2008, 40, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Billat, L.V. Use of Blood Lactate Measurements for Prediction of Exercise Performance and for Control of Training: Recommendations for Long-Distance Running. Sports Med. 1996, 22, 157–175. [Google Scholar] [CrossRef]
- Turnes, T.; De Aguiar, R.A.; Cruz, R.S.D.O.; Caputo, F. Interval Training in the Boundaries of Severe Domain: Effects on Aerobic Parameters. Eur. J. Appl. Physiol. 2016, 116, 161–169. [Google Scholar] [CrossRef]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The Impact of High-Intensity Interval Training versus Moderate-Intensity Continuous Training on Vascular Function: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef]
- Azevedo, R.D.A.; Silva-Cavalcante, M.D.; Lima-Silva, A.E.; Bertuzzi, R. Fatigue Development and Perceived Response during Self-Paced Endurance Exercise: State-of-the-Art Review. Eur. J. Appl. Physiol. 2021, 121, 687–696. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Heart Rate Monitoring: Applications and Limitations. Sports Med. 2003, 33, 517–538. [Google Scholar] [CrossRef] [PubMed]
- McLaren, S.J.; Macpherson, T.W.; Coutts, A.J.; Hurst, C.; Spears, I.R.; Weston, M. The Relationships between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis. Sports Med. 2018, 48, 641–658. [Google Scholar] [CrossRef] [PubMed]
Males (n = 7) | Females (n = 3) | |||
---|---|---|---|---|
Variable | Mean ± SD | Range | Mean ± SD | Range |
Age (y) | 19 ± 2 | 18–23 | 20 ± 1 | 19–21 |
Height (cm) | 180 ± 5 | 174–188 | 165 ± 3 | 162–167 |
Body Mass (kg) | 70 ± 6 | 60–80 | 57 ± 2 | 56–60 |
VO2max (mL/kg/min) | 64.5 ± 6.9 | 53.6–75.0 | 50.4 ± 0.8 | 49.7–51.4 |
CV (m/s) | 5.3 ± 0.3 | 4.7–5.8 | 4.6 ± 0.3 | 4.3–4.8 |
D′ (m) | 108.6 ± 48.0 | 55.5–206.3 | 77.4 ± 59.7 | 26.0–142.9 |
HR at CV (bpm) | 187 ± 6 | 176–194 | 189 ± 14 | 173–199 |
GET (m/s) | 4.2 ± 0.2 | 3.9–4.6 | 3.7 ± 0.2 | 3.5–3.9 |
HR at GET (bpm) | 165 ± 7 | 158–177 | 171 ± 8 | 163–179 |
Race time (s) | 1657 ± 126 | 1483–1942 | 1223 ± 137 | 1079–1460 |
Course | Sex | Number of Race Files | Distance (km) | Elevation Gain (m) | Elevation Loss (m) |
---|---|---|---|---|---|
1 | Male | 6 | 7.9 | 46.0 | 42.1 |
Female | 2 | 5.9 | 35.1 | 36.0 | |
2 | Male | 3 | 8.0 | 14.0 | 14.0 |
Female | 3 | 5.0 | 26.0 | 25.0 | |
3 | Male | 5 | 8.0 | 43.9 | 46.0 |
Female | 2 | 6.0 | 29.9 | 31.1 | |
4 | Male | 2 | 7.8 | 49.1 | 45.1 |
Female | 1 | 5.1 | 32.9 | 32.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, N.; Miller, P.; Farrell, J.W., III. Intensity Distribution of Collegiate Cross-Country Competitions. Sports 2024, 12, 18. https://doi.org/10.3390/sports12010018
Perez N, Miller P, Farrell JW III. Intensity Distribution of Collegiate Cross-Country Competitions. Sports. 2024; 12(1):18. https://doi.org/10.3390/sports12010018
Chicago/Turabian StylePerez, Noah, Payton Miller, and John W. Farrell, III. 2024. "Intensity Distribution of Collegiate Cross-Country Competitions" Sports 12, no. 1: 18. https://doi.org/10.3390/sports12010018
APA StylePerez, N., Miller, P., & Farrell, J. W., III. (2024). Intensity Distribution of Collegiate Cross-Country Competitions. Sports, 12(1), 18. https://doi.org/10.3390/sports12010018