Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Instruments
2.4. Procedures
2.5. Statistics
3. Results
4. Discussion
4.1. Skin Temperature
4.2. Dynamic Force Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aasa, U.; Svartholm, I.; Andersson, F.; Berglund, L. Injuries among Weightlifters and Powerlifters: A Systematic Review. Br. J. Sports Med. 2017, 51, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidar, F.J.; Fraga, G.S.; Getirana-Mota, M.; Marçal, A.C.; Santos, J.L.; de Souza, R.F.; Ferreira, A.R.P.; Neves, E.B.; de Zanona, A.F.; Bulhões-Correia, A.; et al. Effects of Ibuprofen Use on Lymphocyte Count and Oxidative Stress in Elite Paralympic Powerlifting. Biology 2021, 10, 986. [Google Scholar] [CrossRef]
- Spence, A.-J.; Helms, E.R.; Sousa, C.A.; McGuigan, M.R. Range of Motion Predicts Performance in National-Level New Zealand Male Powerlifters. J. Strength Cond. Res. 2023, 37, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Aidar, F.J.; Brito, C.J.; de Matos, D.G.; de Oliveira, L.A.S.; de Souza, R.F.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Neiva, H.P.; Neto, F.R.; Reis, V.M.; et al. Force–Velocity Relationship in Paralympic Powerlifting: Two or Multiple-Point Methods to Determine a Maximum Repetition. BMC Sports Sci. Med. Rehabil. 2022, 14, 159. [Google Scholar] [CrossRef]
- IPC Para Powerlifting Rules and Regulations. Available online: https://www.paralympic.org/powerlifting/rules (accessed on 24 March 2023).
- Einfeldt, A.-K.; Brinck, A.-K.; Schiller, S.; Borgetto, B.M. Gait Training for Lower Limb Amputees—A Systematic Review Based on the Research Pyramid. Die Rehabil. 2022, 61, 373–382. [Google Scholar] [CrossRef]
- Kobayashi, T.; Koh, M.W.P.; Hu, M.; Murata, H.; Hisano, G.; Ichimura, D.; Hobara, H. Effects of Step Frequency during Running on the Magnitude and Symmetry of Ground Reaction Forces in Individuals with a Transfemoral Amputation. J. Neuroeng. Rehabil. 2022, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Ramos Dalla Bernardina, G.; Danillo Matos Dos Santos, M.; Alves Resende, R.; Túlio de Mello, M.; Rodrigues Albuquerque, M.; Augusto Paolucci, L.; Carpes, F.P.; Silva, A.; Gustavo Pereira de Andrade, A. Asymmetric Velocity Profiles in Paralympic Powerlifters Performing at Different Exercise Intensities Are Detected by Functional Data Analysis. J. Biomech. 2021, 123, 110523. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Franchini, E.; Kons, R. Performance of Paralympic Powerlifting Records Holders: An Analysis Considering Origin of Impairment, Sex and Competitive Level. Am. J. Phys. Med. Rehabil. 2022. [Google Scholar] [CrossRef]
- Neves, E.B.; Vilaca-Alves, J.; Antunes, N.; Felisberto, I.M.V.; Rosa, C.; Reis, V.M. Different responses of the skin temperature to physical exercise: Systematic review. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1307–1310. [Google Scholar]
- Viegas, F.; Mello, M.T.D.; Rodrigues, S.A.; Costa, C.M.A.; Freitas, L.D.S.N.; Rodrigues, E.L.; Silva, A. The Use of Thermography and Its Control Variables: A Systematic Review. Rev. Bras. Med. Esporte 2020, 26, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Zemkova, E. Reliability of a Novel Method Assessing Muscle Power and Velocity during Seated Trunk Rotations. Phys. Act. Rev. 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Studencki, M.; Ignatjeva, A.; Nitychoruk, M.; Gołaś, A.; Smółka, W.; Maszczyk, A. Effect of Bench Press at a Specified Movement Tempo on Post-Exercise Testosterone and Cortisol Levels. Phys. Act. Rev. 2021, 9, 111–119. [Google Scholar] [CrossRef]
- Fraga, G.S.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Santos, J.L.; Souza, R.F.; Carneiro, A.L.; Vasconcelos, A.B.; Da Silva-Grigoletto, M.E.; van den Tillaar, R.; et al. Effects of Ibuprofen Intake in Muscle Damage, Body Temperature and Muscle Power in Paralympic Powerlifting Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5157. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.B.; Moreira, T.R.; Lemos, R.; Vilaça-Alves, J.; Rosa, C.; Reis, V.M. Using Skin Temperature and Muscle Thickness to Assess Muscle Response to Strength Training. Rev. Bras. Med. Esporte 2015, 21, 350–354. [Google Scholar] [CrossRef]
- Marins, J.C.B.; Fernández-Cuevas, I.; Arnaiz-Lastras, J.; Fernandes, A.A.; Sillero-Quintana, M. Aplicaciones de la termografía infrarroja en el deporte. Una revisión/Applications of Infrared Thermography in Sports. A Review. Rev. Int. Med. Cienc. Act. Física Deporte 2015, 15, 805–824. [Google Scholar]
- Fernández-Cuevas, I.; Bouzas Marins, J.C.; Arnáiz Lastras, J.; Gómez Carmona, P.M.; Piñonosa Cano, S.; García-Concepción, M.Á.; Sillero-Quintana, M. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review. Infrared Phys. Technol. 2015, 71, 28–55. [Google Scholar] [CrossRef]
- Sillero-Quintana, M.; Jones-Rando, J.; Refoyo, I.; Marins, J.C.B.; Seixas, A. Effects of Resistance Training on Skin Temperature and Its Relationship with Central Nervous System (CNS) Activation. Healthcare 2022, 10, 207. [Google Scholar] [CrossRef]
- Vieira, S.G.; Sillero-Quintana, M.; da Silva, A.G.; Marins, K.O.; Marins, J.C.B. Thermographic Response Resulting from Strength Training: A Preliminary Study. Apunts Sports Med. 2020, 55, 120–127. [Google Scholar] [CrossRef]
- Roso-Moliner, A.; Lozano, D.; Nobari, H.; Bishop, C.; Carton-Llorente, A.; Mainer-Pardos, E. Horizontal Jump Asymmetries Are Associated with Reduced Range of Motion and Vertical Jump Performance in Female Soccer Players. BMC Sports Sci. Med. Rehabil. 2023, 15, 80. [Google Scholar] [CrossRef]
- Helme, M.; Tee, J.; Emmonds, S.; Low, C. The Associations between Unilateral Leg Strength, Asymmetry and Injury in Sub-Elite Rugby League Players. Phys. Ther. Sport Off. J. Assoc. Chart. Physiother. Sports Med. 2023, 62, 58–64. [Google Scholar] [CrossRef]
- Fox, K.T.; Pearson, L.T.; Hicks, K.M. The Effect of Lower Inter-Limb Asymmetries on Athletic Performance: A Systematic Review and Meta-Analysis. PLoS ONE 2023, 18, e0286942. [Google Scholar] [CrossRef]
- Mesquita Souza, R.L.; Aidar, F.J.; Villar, R.; Greco, G.; Santos, L.D.; Poli, L.; Lima de Santana, J.; Carvutto, R.; Gama de Matos, D.; Badicu, G.; et al. Assessment of Asymmetry at Different Intensities between Conventional and Paralympic Powerlifting Athletes. Heliyon 2023, 9, e16211. [Google Scholar] [CrossRef]
- Brown, S.R.; Feldman, E.R.; Cross, M.R.; Helms, E.R.; Marrier, B.; Samozino, P.; Morin, J.-B. The Potential for a Targeted Strength-Training Program to Decrease Asymmetry and Increase Performance: A Proof of Concept in Sprinting. Int. J. Sports Physiol. Perform. 2017, 12, 1392–1395. [Google Scholar] [CrossRef]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enoka, R.M.; Duchateau, J. Muscle Fatigue: What, Why and How It Influences Muscle Function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef]
- Michaud, F.; Frey-Law, L.A.; Lugrís, U.; Cuadrado, L.; Figueroa-Rodríguez, J.; Cuadrado, J. Applying a Muscle Fatigue Model When Optimizing Load-Sharing between Muscles for Short-Duration High-Intensity Exercise: A Preliminary Study. Front. Physiol. 2023, 14, 1167748. [Google Scholar] [CrossRef]
- Chuckravanen, D.; Bulut, S.; Kürklü, G.B.; Yapali, G. Review of Exercise-Induced Physiological Control Models to Explain the Development of Fatigue to Improve Sports Performance and Future Trend. Sci. Sports 2019, 34, 131–140. [Google Scholar] [CrossRef]
- Fernández-Cuevas, I.; Arnáiz Lastras, J.; Escamilla Galindo, V.; Gómez Carmona, P. Infrared Thermography for the Detection of Injury in Sports Medicine. In Application of Infrared Thermography in Sports Science; Priego Quesada, J.I., Ed.; Biological and Medical Physics, Biomedical Engineering; Springer International Publishing: Cham, Switzerland, 2017; pp. 81–109. ISBN 978-3-319-47410-6. [Google Scholar]
- dos Santos, M.D.M.; Aidar, F.J.; Alejo, A.A.; de Matos, D.G.; de Souza, R.F.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Nikolaidis, P.T.; Knechtle, B.; Clemente, F.M.; et al. Analysis of Grip Amplitude on Velocity in Paralympic Powerlifting. J. Funct. Morphol. Kinesiol. 2021, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Taber, C.B.; Vigotsky, A.; Nuckols, G.; Haun, C.T. Exercise-Induced Myofibrillar Hypertrophy Is a Contributory Cause of Gains in Muscle Strength. Sports Med. 2019, 49, 993–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidar, F.J.; Cataldi, S.; Badicu, G.; Silva, A.F.; Clemente, F.M.; Bonavolontà, V.; Greco, G.; Getirana-Mota, M.; Fischetti, F. Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes? Sustainability 2022, 14, 5049. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities during the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity Loss as an Indicator of Neuromuscular Fatigue during Resistance Training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- de Aquino Resende, M.; Aidar, F.J.; Vasconcelos Resende, R.B.; Reis, G.C.; de Oliveira Barros, L.; de Matos, D.G.; Marçal, A.C.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; Merino-Fernández, M.; et al. Are Strength Indicators and Skin Temperature Affected by the Type of Warm-Up in Paralympic Powerlifting Athletes? Healthcare 2021, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- van den Tillaar, R.; Ball, N. Validity and Reliability of Kinematics Measured with PUSH Band vs. Linear Encoder in Bench Press and Push-Ups. Sports 2019, 7, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teles, L.J.L.; Aidar, F.J.; de Matos, D.G.; Marçal, A.C.; de Almeida-Neto, P.F.; Neves, E.B.; Moreira, O.C.; Ribeiro Neto, F.; Garrido, N.D.; Vilaça-Alves, J.; et al. Static and Dynamic Strength Indicators in Paralympic Power-Lifters with and without Spinal Cord Injury. Int. J. Environ. Res. Public Health 2021, 18, 5907. [Google Scholar] [CrossRef]
- Resende, M.D.A.; Vasconcelos Resende, R.B.; Reis, G.C.; Barros, L.D.O.; Bezerra, M.R.S.; de Matos, D.G.; Marçal, A.C.; Almeida- de Neto, P.F.; Cabral, B.G.D.A.T.; Neiva, H.P.; et al. The Influence of Warm-Up on Body Temperature and Strength Performance in Brazilian National-Level Paralympic Powerlifting Athletes. Medicina 2020, 56, 538. [Google Scholar] [CrossRef]
- Soares Freitas Sampaio, C.R.; Aidar, F.J.; Ferreira, A.R.P.; Santos, J.L.D.; Marçal, A.C.; de Matos, D.G.; de Souza, R.F.; Moreira, O.C.; Guerra, I.; Fernandes Filho, J.; et al. Can Creatine Supplementation Interfere with Muscle Strength and Fatigue in Brazilian National Level Paralympic Powerlifting? Nutrients 2020, 12, 2492. [Google Scholar] [CrossRef]
- Guerra, I.; Aidar, F.J.; Greco, G.; de Almeida-Neto, P.F.; De Candia, M.; de Araújo Tinoco Cabral, B.G.; Poli, L.; Filho, M.M.; Carvutto, R.; Silva, A.F.; et al. Are SEMG, Velocity and Power Influenced by Athletes’ Fixation in Paralympic Powerlifting? Int. J. Environ. Res. Public Health 2022, 19, 4127. [Google Scholar] [CrossRef]
- Austin, D.; Mann, B. Powerlifting; Human Kinetics: Champaign, IL, USA, 2012; ISBN 978-1-4925-8292-2. [Google Scholar]
- Mendonça, T.P.; Aidar, F.J.; Matos, D.G.; Souza, R.F.; Marçal, A.C.; Almeida-Neto, P.F.; Cabral, B.G.; Garrido, N.D.; Neiva, H.P.; Marinho, D.A.; et al. Force Production and Muscle Activation during Partial vs. Full Range of Motion in Paralympic Powerlifting. PLoS ONE 2021, 16, e0257810. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Chalmers, S.; Debenedictis, T.A.; Zacharia, A.; Townsley, S.; Gleeson, C.; Lynagh, M.; Townsley, A.; Fuller, J.T. Asymmetry during Functional Movement Screening and Injury Risk in Junior Football Players: A Replication Study. Scand. J. Med. Sci. Sports 2018, 28, 1281–1287. [Google Scholar] [CrossRef]
- Neves, E.B.; Alves, J.V.; Krueger, E.; Reis, V.M. Changes in Skin Temperature During Muscular Work: A Pilot Study. Pan Am. J. Med. Thermol. 2014, 1, 11–15. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Jarvis, P.; Chavda, S.; Read, P. Considerations for Selecting Field-Based Strength and Power Fitness Tests to Measure Asymmetries. J. Strength Cond. Res. 2017, 31, 2635–2644. [Google Scholar] [CrossRef] [Green Version]
- Maszczyk, A.; Dobrakowski, P.; Żak, M.; Gozdowski, P.; Krawczyk, M.; Małecki, A.; Stastny, P.; Zajac, T. Differences in Motivation during the Bench Press Movement with Progressive Loads Using EEG Analysis. Biol. Sport 2019, 36, 351–356. [Google Scholar] [CrossRef]
- Aidar, F.J.; Clemente, F.M.; de Lima, L.F.; de Matos, D.G.; Ferreira, A.R.P.; Marçal, A.C.; Moreira, O.C.; Bulhões-Correia, A.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; et al. Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports 2021, 9, 142. [Google Scholar] [CrossRef]
- Ribeiro Neto, F.; Dorneles, J.R.; Luna, R.M.; Spina, M.A.; Gonçalves, C.W.; Gomes Costa, R.R. Performance Differences Between the Arched and Flat Bench Press in Beginner and Experienced Paralympic Powerlifters. J. Strength Cond. Res. 2022, 36, 1936–1943. [Google Scholar] [CrossRef]
- Ribeiro Neto, F.; Dorneles, J.R.; Costa, R.R.G. Are the Flat and Arched Bench Press Really Similar? Sports Biomech. 2020, 22, 784–785. [Google Scholar] [CrossRef]
- Giroux, C.; Maciejewski, H.; Ben-Abdessamie, A.; Chorin, F.; Lardy, J.; Ratel, S.; Rahmani, A. Relationship between Force-Velocity Profiles and 1500-m Ergometer Performance in Young Rowers. Int. J. Sports Med. 2017, 38, 992–1000. [Google Scholar] [CrossRef]
- Hill, A.V. The Fundamental Mechanical Change in Muscle. J. Physiol. 1949, 108, 43. [Google Scholar]
- Huxley, A.F. Muscle Structure and Theories of Contraction. Prog. Biophys. Biophys. Chem. 1957, 7, 255–318. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.-B. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. Front. Physiol. 2016, 7, 677. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.-B.; Samozino, P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rejc, E.; Di Prampero, P.E.; Belli, A.; Morin, J.-B. Optimal Force-Velocity Profile in Ballistic Movements—Altius: Citius or Fortius? Med. Sci. Sports Exerc. 2012, 44, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A. Changes in the Force-Velocity Relationship of Fatigued Muscle: Implications for Power Production and Possible Causes. J. Physiol. 2010, 588, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre-Fernández, C.; Marchante, D.; Baz-Valle, E.; Alonso-Molero, I.; Jiménez, S.L.; Muñóz-López, M. Analysis of Wearable and Smartphone-Based Technologies for the Measurement of Barbell Velocity in Different Resistance Training Exercises. Front. Physiol. 2017, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Włodarczyk, M.; Adamus, P.; Zieliński, J.; Kantanista, A. Effects of Velocity-Based Training on Strength and Power in Elite Athletes-A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 5257. [Google Scholar] [CrossRef]
- Abreu, J.; Crowder, D.C.; Kirsch, R.F. The Impact of Hill-Type Actuator Components on the Performance of Reinforcement Learning Controllers to Reverse Upper-Limb Paralysis. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2023, 31, 2883–2892. [Google Scholar] [CrossRef]
- Janicijevic, D.; Gu, Y.; Sarabon, N.; Smajla, D.; Kozinc, Ž.; García-Ramos, A. Influence of Unilateral and Bilateral Knee Extension Fatigue Protocols on Inter-Limb Asymmetries Assessed through Countermovement Jumps. J. Sports Sci. 2023, 41, 686–694. [Google Scholar] [CrossRef]
- Janicijevic, D.; Pérez-Castilla, A.; Miras-Moreno, S.; Ortega-Becerra, M.; Morenas-Aguilar, M.D.; Smajla, D.; Sarabon, N.; García-Ramos, A. Effect of a High-Intensity Handball-Specific Fatigue Protocol Focused on the Leg Contralateral to the Throwing Arm on Interlimb Asymmetries. J. Strength Cond. Res. 2023, 37, 1382–1389. [Google Scholar] [CrossRef]
- Janicijevic, D.; Sarabon, N.; Pérez-Castilla, A.; Smajla, D.; Fernández-Revelles, A.; García-Ramos, A. Single-Leg Mechanical Performance and Inter-Leg Asymmetries during Bilateral Countermovement Jumps: A Comparison of Different Calculation Methods. Gait Posture 2022, 96, 47–52. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Z.; Ling, X.; Dai, J.; Long, L.; Lu, Y.; Zhou, S. Investigating the Impact of Inter-Limb Asymmetry in Hamstring Strength on Jump, Sprint, and Strength Performance in Young Athletes: Comparing the Role of Gross Force. Front. Physiol. 2023, 14, 1185397. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
Variables | (Mean ± SD) |
---|---|
Sample | 12 |
Age (years) | 29.08 ± 6.37 |
Body mass (kg) | 79.17 ± 19.01 |
Experience (years) | 4.42 ± 1.29 |
1 RM bench press (kg) | 146.25 ± 43.80 * |
1 RM/body mass | 1.87 ± 0.42 ** |
Before | After | ||||||
---|---|---|---|---|---|---|---|
Dominant (a) | Non- Dominant (b) | Dominant (c) | Non- Dominant (d) | p-Value | F | η2p | |
Pectoralis Major (°C) | 33.08 ± 1.44 (32.17–34.00) | 32.92 ± 1.00 (32.28–33.55) | 35.08 ± 1.73 a (33.98–36.18) | 34.58 ± 1.73 b (33.78–35.68) | “a” p = 0.002 “b” p = 0.003 | F(1,11) = 18.359 | 0.625 |
Triceps Brachii (°C) | 31.92 ± 1.08) (31.23–32.61) | 31.92 ± 1.31 (31.08–32.75) | 34.17 ± 1.47 a (33.23–35.10) | 34.50 ± 1.17 b (33.76–35.24) | “a” p = 0.001 “b” p < 0.001 | F(1,11) = 28.641 | 0.723 |
Before | After | ||||||
---|---|---|---|---|---|---|---|
Dominant (a) | Non-Dominant (b) | Dominant (c) | Non-Dominant (d) | p-Value | F | η2p | |
MPV 45% 1 RM | 0.91 ± 0.17 b (0.80–1.02) | 1.00 ± 0.22 0.86–1.15) | 0.82 ± 0.17 a (0.71–0.92) | 0.96 ± 0.24 c (0.81–1.11) | “a” p = 0.005 “b” p = 0.006 “c” p = 0.002 | F(1,11) = 8.933 F(1,11) = 16.318 | “a” = 0.448 “b,c” = 0.597 |
Vmax 45% 1 RM | 1.24 ± 0.20 b (1.12–1.37) | 1.45 ± 0.26 d (1.29–1.62) | 1.13 ± 0.19 a (1.01–1.25) | 1.36 ± 0.29 c (1.17–1.54) | “a” p = 0.011 “b” p = 0.001 “c” p = 0.001 “d” p = 0.009 | F(1,11) = 14.987 F(1,11) = 26.214 | “a,d” = 0.577 “b,c” = 0.704 |
Power 45% 1 RM | 538.78 ± 142.90 b (447.99–629.57) | 591.53 ± 165.62 d (486.30–696.76) | 495.55 ± 140.98 a (405.98–585.13) | 544.86 ± 133.63 c (459.96–629.77) | “a” p = 0.018 “b” p = 0.012 “c” p = 0.010 “d” p = 0.033 | F(1,11) = 8.650 F(1,11) = 12.543 | “a,d” = 0.440 “b,c” = 0.533 |
MPV 80% 1 RM | 0.27 ± 0.08 (0.22–0.32) | 0.42 ± 0.09 a (0.36–0.48) | 0.34 ± 0.08 (0.29–0.39) | 0.43 ± 0.12 c (0.35–0.51) | “a” p = 0.001 “c” p = 0.009 | F(1,11) = 21.850 | “a,c” = 0.665 |
Vmax 80% 1 RM | 0.40 ± 0.11 (0.33–0.47) | 0.64 ± 0.15 a (0.54–0.73) | 0.48 ± 0.12 (0.41–0.56) | 0.62 ± 0.17 c (0.51–0.73) | “a” p = 0.001 “c” p = 0.004 | F(1,11) = 24.150 | “a,c” = 0.687 |
Power 80% 1 RM | 284.46 ± 101.10 (220.22–348.69) | 438.42 ± 96.26 a (377.25–499.69) | 355.42 ± 97.65 (293.37–417.46) | 452.71 ± 127.34 c (371.80–533.62) | “a” p < 0.001 “c” p = 0.006 | F(1,11) = 29.590 | “a,c” = 0.729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.C.V.; Aidar, F.J.; Villar, R.; Greco, G.; de Santana, J.L.; Marçal, A.C.; de Almeida-Neto, P.F.; de Araújo Tinoco Cabral, B.G.; Badicu, G.; Nobari, H.; et al. Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators. Sports 2023, 11, 151. https://doi.org/10.3390/sports11080151
Santos LCV, Aidar FJ, Villar R, Greco G, de Santana JL, Marçal AC, de Almeida-Neto PF, de Araújo Tinoco Cabral BG, Badicu G, Nobari H, et al. Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators. Sports. 2023; 11(8):151. https://doi.org/10.3390/sports11080151
Chicago/Turabian StyleSantos, Larissa Christine Vieira, Felipe J. Aidar, Rodrigo Villar, Gianpiero Greco, Jefferson Lima de Santana, Anderson Carlos Marçal, Paulo Francisco de Almeida-Neto, Breno Guilherme de Araújo Tinoco Cabral, Georgian Badicu, Hadi Nobari, and et al. 2023. "Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators" Sports 11, no. 8: 151. https://doi.org/10.3390/sports11080151
APA StyleSantos, L. C. V., Aidar, F. J., Villar, R., Greco, G., de Santana, J. L., Marçal, A. C., de Almeida-Neto, P. F., de Araújo Tinoco Cabral, B. G., Badicu, G., Nobari, H., de Souza, R. F., & da Silva Júnior, W. M. (2023). Evaluation of the Training Session in Elite Paralympic Powerlifting Athletes Based on Biomechanical and Thermal Indicators. Sports, 11(8), 151. https://doi.org/10.3390/sports11080151