Effects of External Abdominal Pressure Support on Dynamic Balance: A Randomized Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics
2.3. Study Design and Procedures
2.4. Measurement Methods
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef]
- Vleeming, A.; Schuenke, M.D.; Danneels, L.; Willard, F.H. The functional coupling of the deep abdominal and paraspinal muscles: The effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J. Anat. 2014, 225, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Willson, J.D.; Dougherty, C.P.; Ireland, M.L.; Davis, I.M. Core stability and its relationship to lower extremity function and injury. J. Am. Acad. Orthop. Surg. 2005, 13, 316–325. [Google Scholar] [CrossRef]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core stability exercise principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Hicks, G.E.; Simonsick, E.M.; Harris, T.B.; Newman, A.B.; Weiner, D.K.; Nevitt, M.A.; Tylavsky, F.A. Cross-sectional associations between trunk muscle composition, back pain, and physical function in the health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 882–887. [Google Scholar] [CrossRef]
- Foster, N. Therapeutic exercise for spinal segmental stabilization in low back pain: Scientific basis and clinical approach. Phys. Ther. Rev. 2012, 5, 247–248. [Google Scholar] [CrossRef]
- Monfort-Pañego, M.; Vera-García, F.J.; Sánchez-Zuriaga, D.; Sarti-Martínez, M.A. Electromyographic studies in abdominal exercises: A literature synthesis. J. Manip. Physiol. Ther. 2009, 32, 232–244. [Google Scholar] [CrossRef]
- Essendrop, M.; Schibye, B. Intra-abdominal pressure and activation of abdominal muscles in highly trained participants during sudden heavy trunk loadings. Spine 2004, 29, 2445–2451. [Google Scholar] [CrossRef]
- Essendrop, M.; Andersen, T.B.; Schibye, B. Increase in spinal stability obtained at levels of intra-abdominal pressure and back muscle activity realistic to work situations. Appl. Ergon. 2002, 33, 471–476. [Google Scholar] [CrossRef]
- Kawabata, M.; Shima, N.; Hamada, H.; Nakamura, I.; Nishizono, H. Changes in intra-abdominal pressure and spontaneous breath volume by magnitude of lifting effort: Highly trained athletes versus healthy men. Eur. J. Appl. Physiol. 2010, 109, 279–286. [Google Scholar] [CrossRef]
- Grillner, S.; Nilsson, J.; Thorstensson, A. Intra-abdominal pressure changes during natural movements in man. Acta Physiol. Scand. 1978, 103, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Harman, E.A.; Frykman, P.N.; Clagett, E.R.; Kraemer, W.J. Intra-abdominal and intra-thoracic pressures during lifting and jumping. Med. Sci. Sports Exerc. 1988, 20, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Harman, E.A.; Rosenstein, R.M.; Frykman, P.N.; Nigro, G.A. Effects of a belt on intra-abdominal pressure during weght lifting. Med. Sci. Sports Exerc. 1989, 21, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Azadinia, F.; Ebrahimi, E.; Kamyab, M.; Parnianpour, M.; Cholewicki, J.; Maroufi, N. Can lumbosacral orthoses cause trunk muscle weakness? A systematic review of literature. Spine J. 2017, 17, 589–602. [Google Scholar] [CrossRef]
- Takasaki, H.; Miki, T. The impact of continuous use of lumbosacral orthoses on trunk motor performance: A systematic review with meta-analysis. Spine J. 2017, 17, 889–900. [Google Scholar] [CrossRef]
- Van Duijvenbode, I.C.D.; Jellema, P.; van Poppel, M.N.M.; van Tulder, M.W. Lumbar supports for prevention and treatment of low back pain. Cochrane Database Syst. Rev. 2008, 2008, CD001823. [Google Scholar] [CrossRef]
- Cerillo, J.L.; Becsey, A.N.; Sanghadia, C.P.; Root, K.T.; Lucke-Wold, B. Spine bracing: When to utilize-a narrative review. Biomechanics 2023, 3, 136–154. [Google Scholar] [CrossRef]
- Ozmen, T. Relationship between core stability, dynamic balance and jumping performance in soccer players. Turk. J. Sport Exe. 2016, 18, 110. [Google Scholar] [CrossRef]
- de Bruin, M.; Coetzee, D.; Schall, R. The relationship between core stability and athletic performance in female university athletes. S. Afr. J. Sports Med. 2021, 33, v33i1a10825. [Google Scholar] [CrossRef]
- Nesser, T.W.; Huxel, K.C.; Tincher, J.L.; Okada, T. The relationship between core stability and performance in division I football players. J. Strength Cond. Res. 2008, 22, 1750–1754. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the star excursion balance test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Tucker, W.S.; White, P.A. Time-of-day influences on static and dynamic postural control. J. Athl. Train. 2007, 42, 35–41. [Google Scholar]
- Plisky, P.J.; Rauh, M.J.; Kaminski, T.W.; Underwood, F.B. Star excursion balance test as a predictor of lower extremity injury in high school basketball players. J. Orthop. Sports Phys. Ther. 2006, 36, 911–919. [Google Scholar] [CrossRef]
- Stiffler, M.R.; Bell, D.R.; Sanfilippo, J.L.; Hetzel, S.J.; Pickett, K.A.; Heiderscheit, B.C. Star excursion balance test anterior asymmetry is associated with injury status in division I collegiate athletes. J. Orthop. Sports Phys. Ther. 2017, 47, 339–346. [Google Scholar] [CrossRef]
- Hertel, J.; Braham, R.A.; Hale, S.A.; Olmsted-Kramer, L.C. Simplifying the Star Excursion Balance Test: Analyses of subjects with and without chronic ankle instability. J. Orthop. Sports Phys. Ther. 2006, 36, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, L.C.; Carcia, C.R.; Hertel, J.; Shultz, S.J. Efficacy of the star excursion balance tests in detecting reach deficits in subjects with chronic ankle instability. J. Athl. Train. 2002, 37, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Munro, A.G.; Herrington, L.C. Between-session reliability of the star excursion balance test. Phys. Ther. Sport 2010, 11, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.J.; Nagai, T.; Sell, T.C.; Abt, J.P.; Rowe, R.S.; McGrail, M.A.; Lephart, S.M. Prediction of dynamic postural stability during single-leg jump landings by ankle and knee flexibility and strength. J. Sport Rehabil. 2016, 25, 266–272. [Google Scholar] [CrossRef]
- Aruin, A.S.; Latash, M.L. Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements. Exp. Brain Res. 1995, 103, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.; Cresswell, A.; Thorstensson, A. Preparatory trunk motion accompanies rapid upper limb movement. Exp. Brain Res. 1999, 124, 69–79. [Google Scholar] [CrossRef]
- Nakai, Y.; Kawada, M.; Miyazaki, T.; Kiyama, R. Trunk muscle activity during trunk stabilizing exercise with isometric hip rotation using electromyography and ultrasound. J. Electromyogr. Kinesiol. 2019, 49, 102357. [Google Scholar] [CrossRef]
- Crommert, M.E.; Ekblom, M.M.; Thorstensson, A. Activation of transversus abdominis varies with postural demand in standing. Gait Posture 2011, 33, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Vera-Garcia, F.J.; Elvira, J.L.L.; Brown, S.H.M.; McGill, S.M. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J. Electromyogr. Kinesiol. 2007, 17, 556–567. [Google Scholar] [CrossRef]
- McGill, S.M.; Grenier, S.; Kavcic, N.; Cholewicki, J. Coordination of muscle activity to assure stability of the lumbar spine. J. Electromyogr. Kinesiol. 2003, 13, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, M.; Oh, S.; Yoon, B. The effectiveness of hollowing and bracing strategies with lumbar stabilization exercise in older adult women with nonspecific low back pain: A quasi-experimental study on a community-based rehabilitation. J. Manip. Physiol. Ther. 2018, 41, 1–9. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef]
- Cornell, D.J.; Ebersole, K.T. Influence of an acute bout of self-myofascial release on knee extension force output and electro-mechanical activation of the quadriceps. Int. J. Sports Phys. Ther. 2020, 15, 732–743. [Google Scholar] [CrossRef]
- Fonta, M.; Tsepis, E.; Fousekis, K.; Mandalidis, D. Acute effects of static self-stretching exercises and foam roller self-massaging on the trunk range of motions and strength of the trunk extensors. Sports 2021, 9, 159. [Google Scholar] [CrossRef]
- Wong, K.-K.; Chai, H.-M.; Chen, Y.-J.; Wang, C.-L.; Shau, Y.-W.; Wang, S.-F. Mechanical deformation of posterior thoracolumbar fascia after myofascial release in healthy men: A study of dynamic ultrasound imaging. Musculoskelet. Sci. Pract. 2017, 27, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Schrader, J.; Applegate, T.; Koceja, D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J. Athl. Train. 1998, 33, 319–322. [Google Scholar]
- Hertel, J.; Miller, S.J.; Denegar, C.R. Intratester and intertester reliability during the star excursion balance tests. J. Sport Rehabil. 2000, 9, 104–116. [Google Scholar] [CrossRef]
- Robinson, R.H.; Gribble, P.A. Support for a reduction in the number of trials needed for the star excursion balance test. Arch. Phys. Med. Rehabil. 2008, 89, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Hertel, J. Considerations for normalizing measures of the star excursion balance test. Meas. Phys. Educ. Exerc. Sci. 2003, 7, 89–100. [Google Scholar] [CrossRef]
- Nakai, Y.; Oe, K.; Matsuno, R.; Kiyama, R.; Kawada, M.; Takeshita, Y.; Miyazaki, T.; Araki, S. Effect of self-myofascial release of the lower back on myofascial gliding, lumbar flexibility, and abdominal trunk muscle strength: A crossover study. Sports 2023, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Stokes, I.A.F.; Gardner-Morse, M.G.; Henry, S.M. Intra-abdominal pressure and abdominal wall muscular function: Spinal unloading mechanism. Clin. Biomech. 2010, 25, 859–866. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: London, UK, 1988; ISBN 9781134742707. [Google Scholar]
- Cholewicki, J.; Juluru, K.; Radebold, A.; Panjabi, M.M.; McGill, S.M. Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure. Eur. Spine J. 1999, 8, 388–395. [Google Scholar] [CrossRef]
- Anders, C.; Hübner, A. Influence of elastic lumbar support belts on trunk muscle function in patients with non-specific acute lumbar back pain. PLoS ONE 2019, 14, e0211042. [Google Scholar] [CrossRef]
- Cholewicki, J.; Ivancic, P.C.; Radebold, A. Can increased intra-abdominal pressure in humans be decoupled from trunk muscle co-contraction during steady state isometric exertions? Eur. J. Appl. Physiol. 2002, 87, 127–133. [Google Scholar] [CrossRef]
- Maeo, S.; Takahashi, T.; Takai, Y.; Kanehisa, H. Trunk muscle activities during abdominal bracing: Comparison among muscles and exercises. J. Sports Sci. Med. 2013, 12, 467–474. [Google Scholar]
- Hodges, P.W.; Richardson, C.A. Feedforward contraction of transversus abdominis is not influenced by the direction of arm movement. Exp. Brain Res. 1997, 114, 362–370. [Google Scholar] [CrossRef]
- Jamison, S.T.; McNeilan, R.J.; Young, G.S.; Givens, D.L.; Best, T.M.; Chaudhari, A.M.W. Randomized controlled trial of the effects of a trunk stabilization program on trunk control and knee loading. Med. Sci. Sports Exerc. 2012, 44, 1924–1934. [Google Scholar] [CrossRef] [PubMed]
- Butcher, S.J.; Craven, B.R.; Chilibeck, P.D.; Spink, K.S.; Grona, S.L.; Sprigings, E.J. The effect of trunk stability training on vertical takeoff velocity. J. Orthop. Sports Phys. Ther. 2007, 37, 223–231. [Google Scholar] [CrossRef]
- El Bojairami, I.; Driscoll, M. Coordination between trunk muscles, thoracolumbar fascia, and intra-abdominal pressure toward static spine stability. Spine 2022, 47, E423–E431. [Google Scholar] [CrossRef]
- van Dieën, J.H.; Selen, L.P.J.; Cholewicki, J. Trunk muscle activation in low-back pain patients, an analysis of the literature. J. Electromyogr. Kinesiol. 2003, 13, 333–351. [Google Scholar] [CrossRef]
- Brumagne, S.; Janssens, L.; Knapen, S.; Claeys, K.; Suuden-Johanson, E. Persons with recurrent low back pain exhibit a rigid postural control strategy. Eur. Spine J. 2008, 17, 1177–1184. [Google Scholar] [CrossRef]
- O’Sullivan, P.B.; Burnett, A.; Floyd, A.N.; Gadsdon, K.; Logiudice, J.; Miller, D.; Quirke, H. Lumbar repositioning deficit in a specific low back pain population. Spine 2003, 28, 1074–1079. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, K.; Laskowski, E.R.; Yu, B.; Johnson, J.C.; An, K.N. The effects of a lumbar support on repositioning error in subjects with low back pain. Arch. Phys. Med. Rehabil. 2001, 82, 906–910. [Google Scholar] [CrossRef] [PubMed]
- Eriksson Crommert, A.E.M.; Thorstensson, A. Trunk muscle reactions to sudden unexpected and expected perturbations in the absence of upright postural demand. Exp. Brain Res. 2009, 196, 385–392. [Google Scholar] [CrossRef]
- Marras, W.S.; Jorgensen, M.J.; Davis, K.G. Effect of foot movement and an elastic lumbar back support on spinal loading during free-dynamic symmetric and asymmetric lifting exertions. Ergonomics 2000, 43, 653–668. [Google Scholar] [CrossRef]
- Granata, K.P.; Marras, W.S.; Davis, K.G. Biomechanical assessment of lifting dynamics, muscle activity and spinal loads while using three different styles of lifting belt. Clin. Biomech. 1997, 12, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Iinuma, N.; Maeda, M.; Wada, E.; Shimizu, K. Effects of abdominal belts on intra-abdominal pressure, intra-muscular pressure in the erector spinae muscles and myoelectrical activities of trunk muscles. Clin. Biomech. 1999, 14, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Tayashiki, K.; Mizuno, F.; Kanehisa, H.; Miyamoto, N. Causal effect of intra-abdominal pressure on maximal voluntary isometric hip extension torque. Eur. J. Appl. Physiol. 2018, 118, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Potvin, J.R.; McGill, S.M.; Norman, R.W. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine 1991, 16, 1099–1107. [Google Scholar] [CrossRef]
- Park, J.-H.; Stegall, P.R.; Roye, D.P.; Agrawal, S.K. Robotic Spine Exoskeleton (RoSE): Characterizing the 3-D stiffness of the human torso in the treatment of spine deformity. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Fontanari, V.; Fontana, M.; Schmölz, W. Spinal deformities and advancement in corrective orthoses. Bioengineering 2020, 8, 2. [Google Scholar] [CrossRef]
- Hoch, M.C.; Staton, G.S.; McKeon, P.O. Dorsiflexion range of motion significantly influences dynamic balance. J. Sci. Med. Sport 2011, 14, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.J.; Kramer, L.C.; Denegar, C.R.; Hertel, J. Correlations among multiple measures of functional and mechanical instability in subjects with chronic ankle instability. J. Athl. Train. 2007, 42, 361–366. [Google Scholar]
Variable | Total | Male | Female |
---|---|---|---|
Participants (number) | 31 | 19 | 12 |
Age (years) | 20.0 ± 0.9 | 20.4 ± 0.9 | 19.4 ± 0.6 |
Height (cm) | 166.5 ± 8.5 | 172.0 ± 4.9 | 157.7 ± 4.7 |
Body mass (kg) | 57.9 ± 8.0 | 62.0 ± 6.4 | 51.5 ± 5.6 |
Competition history (years) | 5.1 ± 1.3 | 5.1 ± 1.3 | 5.1 ± 1.3 |
Maximal abdominal pressure (kPa) | 15.1 ± 4.5 | 17.3 ± 4.1 | 11.7 ± 2.5 |
Spinal malleolar distance (cm) | 83.0 ± 4.5 | 84.8 ± 4.0 | 80.2 ± 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakai, Y.; Kijimuta, T.; Takeshita, Y.; Kiyama, R.; Araki, S.; Miyazaki, T.; Kawada, M. Effects of External Abdominal Pressure Support on Dynamic Balance: A Randomized Crossover Study. Sports 2023, 11, 217. https://doi.org/10.3390/sports11110217
Nakai Y, Kijimuta T, Takeshita Y, Kiyama R, Araki S, Miyazaki T, Kawada M. Effects of External Abdominal Pressure Support on Dynamic Balance: A Randomized Crossover Study. Sports. 2023; 11(11):217. https://doi.org/10.3390/sports11110217
Chicago/Turabian StyleNakai, Yuki, Takara Kijimuta, Yasufumi Takeshita, Ryoji Kiyama, Sota Araki, Takasuke Miyazaki, and Masayuki Kawada. 2023. "Effects of External Abdominal Pressure Support on Dynamic Balance: A Randomized Crossover Study" Sports 11, no. 11: 217. https://doi.org/10.3390/sports11110217
APA StyleNakai, Y., Kijimuta, T., Takeshita, Y., Kiyama, R., Araki, S., Miyazaki, T., & Kawada, M. (2023). Effects of External Abdominal Pressure Support on Dynamic Balance: A Randomized Crossover Study. Sports, 11(11), 217. https://doi.org/10.3390/sports11110217