Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature
Abstract
:1. Introduction
2. Methods
2.1. Procedures
2.2. Literature Search: Administration and Update
2.3. Inclusion and Exclusion Criteria
3. Data Extraction
3.1. Data Collection Process
3.2. Data Items
3.3. Data Management and Synthesis Methods
3.4. Registration and Protocol
4. Results
4.1. Participants’ Characteristics and General Critical Elements of Plyometric Jump Training
4.2. The Type of PJT Exercise as an Independent Prescription Variable
4.3. Comparisons of Plyometric Jump Training Exercises on Selected Outcomes of Human Physical Capabilities
5. Discussion
5.1. General Characteristics
5.2. Characteristics of Participants and General Critical Elements of Plyometric Jump Training
5.3. The Type of PJT Exercise as an Independent Prescription Variable
5.4. Comparisons of Plyometric Jump Training Exercises on Selected Outcomes of Human Physical Capabilities
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
BM | body mass. |
BMD | bone mass density. |
CMJ | countermovement jump. |
COD | change of direction. |
CODS | change of direction speed. |
DJ | drop jump. |
Dur | duration of plyometric jump training (weeks) |
EGM | evidence-gap map. |
EMG | electromyography. |
FCPL | foot contacts per leg. |
Freq | frequency of plyometric jump training (sessions per week). |
GCT | ground contact time. |
HPC | human physical capabilities. |
MIF | maximal isometric force. |
NA | not applicable. |
NCR | not clearly reported. |
NR | not reported. |
PE | physical education. |
PICOS | participants, intervention, comparators, outcomes, and study design. |
PJT | plyometric jump training. |
PRISMA | preferred reporting items for systematic reviews and meta-analyses. |
RFD | rate force development. |
RM | maximum repetition. |
RSA | repeated sprint ability. |
RSI | reactive strength index. |
RT | resistance training. |
SEBT | star excursion balance test. |
SJ | squat jump. |
SLJ | standing long jump. |
SSC | stretch-shortening cycle. |
SSP | sport-specific performance. |
References
- Krzysztofik, M.; Wilk, M.; Wojdała, G.; Gołaś, A. Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. Int. J. Environ. Res. Public Health 2019, 16, 4897. [Google Scholar]
- Foran, B. High-Performance Sports Conditioning; Human Kinetics: Champain, IL, USA, 2001. [Google Scholar]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-De-Alcaraz, A.; et al. Methodological Characteristics and Future Directions for Plyometric Jump Training Research: A Scoping Review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [PubMed]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [PubMed]
- Suchomel, T.J.; Taber, C.B.; Sole, C.J.; Stone, M.H. Force-time differences between ballistic and non-ballistic half-squats. Sports 2018, 6, 79. [Google Scholar]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [PubMed]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Gentil, P.; Moran, J.; Pereira, L.A.; Loturco, I. Effects of plyometric training on physical performance of young Male soccer players: Potential effects of different drop jump heights. Pediatr. Exerc. Sci. 2019, 31, 306–313. [Google Scholar]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Zanetti, V.; Kitamura, K.; Abad, C.C.C.; Nakamura, F.Y. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J. Sports Sci. 2015, 33, 2182–2191. [Google Scholar]
- Loturco, I.; Tricoli, V.; Roschel, H.; Nakamura, F.Y.; Abad, C.C.C.; Kobal, R.; Gil, S.; González-Badillo, J.J. Transference of traditional versus complex strength and power training to sprint performance. J. Hum. Kinet. 2014, 41, 265. [Google Scholar]
- Chu, D.; Myer, G. Anatomy and Physiology of Plyometrics; Human Kinetics: Champaign, IL, USA, 2013; pp. 13–14. [Google Scholar]
- Gentil, P.; Ramirez-Campillo, R.; Souza, D. Resistance training in face of the coronavirus outbreak: Time to think outside the box. Front. Physiol. 2020, 11, 859. [Google Scholar]
- Ward, P.; Hodges, N.J.; Starkes, J.L.; Williams, M.A. The road to excellence: Deliberate practice and the development of expertise. High Abil. Stud. 2007, 18, 119–153. [Google Scholar]
- Hewett, T.E.; Myer, G.D. Reducing knee and anterior cruciate ligament injuries among female athletes—A systematic review of neuromuscular training interventions. J. Knee Surg. 2005, 18, 82–88. [Google Scholar] [PubMed]
- Yuill, E.A.; Pajaczkowski, J.A.; Howitt, S.D. Conservative care of sports hernias within soccer players: A case series. J. Bodyw. Mov. Ther. 2012, 16, 540–548. [Google Scholar] [PubMed]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar]
- Michailidis, Y.; Venegas, P.; Metaxas, T. Effects of Combined Horizontal Plyometric and Change of Direction Training on Anaerobic Parameters in Youth Soccer Players. Sports 2023, 11, 27. [Google Scholar] [PubMed]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J. Strength Cond. Res. 2012, 26, 2812–2819. [Google Scholar] [PubMed]
- Cappa, D.F.; Behm, D.G. Neuromuscular characteristics of drop and hurdle jumps with different types of landings. J. Strength Cond. Res. 2013, 27, 3011–3020. [Google Scholar]
- Ebben, W.P.; Fauth, M.L.; Garceau, L.R.; Petushek, E.J. Kinetic quantification of plyometric exercise intensity. J. Strength Cond. Res. 2011, 25, 3288–3298. [Google Scholar]
- Pedley, J.S.; Lloyd, R.S.; Read, P.; Moore, I.S.; Oliver, J.L. Drop jump: A technical model for scientific application. Strength Cond. J. 2017, 39, 36–44. [Google Scholar]
- Dos’ Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical determinants of the modified and traditional 505 change of direction speed test. J. Strength Cond. Res. 2020, 34, 1285–1296. [Google Scholar]
- Komi, P.V. Stretch-shortening cycle. Strength Power Sport 2003, 3, 184–202. [Google Scholar]
- Radnor, J.M.; Oliver, J.L.; Waugh, C.M.; Myer, G.D.; Moore, I.S.; Lloyd, R.S. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018, 48, 57–71. [Google Scholar]
- Taube, W.; Leukel, C.; Gollhofer, A. How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc. Sport Sci. Rev. 2012, 40, 106–115. [Google Scholar]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.-B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [PubMed] [Green Version]
- Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C.M.; Martínez, C.; Álvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [PubMed] [Green Version]
- Bouguezzi, R.; Chaabene, H.; Negra, Y.; Moran, J.; Sammoud, S.; Ramirez-Campillo, R.; Granacher, U.; Hachana, Y. Effects of jump exercises with and without stretch-shortening cycle actions on components of physical fitness in prepubertal male soccer players. Sport Sci. Health 2020, 16, 297–304. [Google Scholar]
- Bobbert, M.F. Drop jumping as a training method for jumping ability. Sports Med. 1990, 9, 7–22. [Google Scholar]
- Bobbert, M.F.; Huijing, P.A.; Schenau, G.J.V.I. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med. Sci. Sports Exerc. 1987, 19, 332–338. [Google Scholar]
- Bobbert, M.F.; Huijing, P.A.; Van Ingen Schenau, G.J. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med. Sci. Sports Exerc. 1987, 19, 339–346. [Google Scholar] [PubMed]
- Chu, D.A. Jumping into Plyometrics; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Kraemer, W.; Comstock, B.; Clark, J.; Dunn-Lewis, C.; Hoffman, J. NSCA’s Guide to Program Design; Human Kinetics: Champain, IL, USA, 2012; pp. 10–26. [Google Scholar]
- Barrio, E.D.; Alvarez, C.; Thapa, R.K.; Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R. Jump Rope Training for Health and Fitness in School-age Participants: Secondary Analyses from a Systematic Review. Int. J. Kinesiol. Sports Sci. 2023, 11, 27–41. [Google Scholar]
- Ebben, W.P. Practical guidelines for plyometric intensity. NSCA’s Perform. Train. J. 2007, 6, 12–16. [Google Scholar]
- Abt, G.; Boreham, C.; Davison, G.; Jackson, R.; Nevill, A.; Wallace, E.; Williams, M. Power, precision, and sample size estimation in sport and exercise science research. J. Sports Sci. 2020, 38, 1933–1935. [Google Scholar]
- Meylan, C.M.; Cronin, J.B.; Oliver, J.L.; Hughes, M.G.; Manson, S. An evidence-based model of power development in youth soccer. Int. J. Sports Sci. Coach. 2014, 9, 1241–1264. [Google Scholar]
- Tack, C. Evidence-based guidelines for strength and conditioning in mixed martial arts. Strength Cond. J. 2013, 35, 79–92. [Google Scholar]
- Murad, M.H.; Asi, N.; Alsawas, M.; Alahdab, F. New evidence pyramid. BMJ Evid.-Based Med. 2016, 21, 125–127. [Google Scholar]
- Ramirez-Campillo, R.R.; Castillo, D.; Raya, J.; Jason, G. Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 2125–2143. [Google Scholar] [PubMed]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Romero-Moraleda, B.; Yanci, J.; García-Hermoso, A.; Manuel Clemente, F. Effects of plyometric jump training in female soccer player’s vertical jump height: A systematic review with meta-analysis. J. Sports Sci. 2020, 38, 1475–1487. [Google Scholar] [PubMed]
- Rao, G.; Lopez-Jimenez, F.; Boyd, J.; D’Amico, F.; Durant, N.H.; Hlatky, M.A.; Howard, G.; Kirley, K.; Masi, C.; Powell-Wiley, T.M.; et al. Methodological standards for meta-analyses and qualitative systematic reviews of cardiac prevention and treatment studies: A scientific statement from the American Heart Association. Circulation 2017, 136, e172–e194. [Google Scholar] [PubMed]
- Gentil, P.; Arruda, A.; Souza, D.; Giessing, J.; Paoli, A.; Fisher, J.; Steele, J. Is there any practical application of meta-analytical results in strength training? Front. Physiol. 2017, 8, 1. [Google Scholar]
- Doleman, B.; Williams, J.P.; Lund, J. Why most published meta-analysis findings are false. Tech. Coloproctol. 2019, 23, 925–928. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [PubMed] [Green Version]
- Peters, M.D.; Godfrey, C.; McInerney, P.; Khalil, H.; Larsen, P.; Marnie, C.; Pollock, D.; Tricco, A.C.; Munn, Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid. Synth. 2022, 20, 953–968. [Google Scholar]
- Schuller-Martínez, B.; Meza, N.; Pérez-Bracchiglione, J.; Franco, J.V.A.; Loezar, C.; Madrid, E. Graphical representation of the body of the evidence: The essentials for understanding the evidence gap map approach. Medwave 2021, 21, e8164. [Google Scholar] [CrossRef] [PubMed]
- Snilstveit, B.; Vojtkova, M.; Bhavsar, A.; Stevenson, J.; Gaarder, M. Evidence & Gap Maps: A tool for promoting evidence informed policy and strategic research agendas. J. Clin. Epidemiol. 2016, 79, 120–129. [Google Scholar]
- Miake-Lye, I.M.; Hempel, S.; Shanman, R.; Shekelle, P.G. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst. Rev. 2016, 5, 28. [Google Scholar]
- Tayfur, A.; Haque, A.; Salles, J.I.; Malliaras, P.; Screen, H.; Morrissey, D. Are landing patterns in jumping athletes associated with patellar tendinopathy? A systematic review with evidence gap map and meta-analysis. Sports Med. 2022, 52, 123–137. [Google Scholar]
- Budarick, A.R.; Moyer, R.F. Linking physical activity with clinical, functional, and structural outcomes: An evidence map using the Osteoarthritis Initiative. Clin. Rheumatol. 2022, 41, 965–975. [Google Scholar] [PubMed]
- Alsaleh, S.; Murphy, N.; Miller, S.; Morrissey, D.; Lack, S. Local neuromuscular characteristics associated with patellofemoral pain: A systematic review and meta-analysis. Clin. Biomech. 2021, 90, 105509. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Moran, J.; Oliver, J.L.; Pedley, J.S.; Lloyd, R.S.; Granacher, U. Programming plyometric-jump training in soccer: A review. Sports 2022, 10, 94. [Google Scholar]
- Van Der Vlist, A.C.; Winters, M.; Weir, A.; Ardern, C.L.; Welton, N.J.; Caldwell, D.M.; Verhaar, J.A.N.; de Vos, R.-J. Which treatment is most effective for patients with Achilles tendinopathy? A living systematic review with network meta-analysis of 29 randomised controlled trials. Br. J. Sports Med. 2021, 55, 249–256. [Google Scholar]
- Winters, M.; de Vos, R.-J.; Van Middelkoop, M.; Rathleff, M.S.; Weir, A. Stay alive! What are living systematic reviews and what are their advantages and challenges? Br. J. Sports Med. 2021, 55, 519–520. [Google Scholar]
- Elliott, J.H.; Synnot, A.; Turner, T.; Simmonds, M.; Akl, E.A.; McDonald, S.; Salanti, G.; Meerpohl, J.; MacLehose, H.; Hilton, J.; et al. Living systematic review: 1. Introduction—The why, what, when, and how. J. Clin. Epidemiol. 2017, 91, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1-34. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Rev. Española Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Brooker, J.; Synnot, A.; McDonald, S.; Elliott, J.; Turner, T.; Hodder, R. Guidance for the Production and Publication of Cochrane Living Systematic Reviews: Cochrane Reviews in Living Mode; Cochrane Collaboration: London, UK, 2019. [Google Scholar]
- Vergara-Merino, L.; Verdejo, C.; Carrasco, C.; Vargas-Peirano, M. Living systematic review: New inputs and challenges. Medwave 2020, 20, e8092. [Google Scholar] [CrossRef]
- Waffenschmidt, S.; Knelangen, M.; Sieben, W.; Bühn, S.; Pieper, D. Single screening versus conventional double screening for study selection in systematic reviews: A methodological systematic review. BMC Med. Res. Methodol. 2019, 19, 132. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Grudniewicz, A.; Moher, D.; Cobey, K.D.; Bryson, G.L.; Cukier, S.; Allen, K.; Ardern, C.; Balcom, L.; Barros, T.; Berger, M.; et al. Predatory journals: No definition, no defence. Nature 2019, 576, 210–212. [Google Scholar] [PubMed] [Green Version]
- Rambaud, A.J.; Ardern, C.L.; Thoreux, P.; Regnaux, J.-P.; Edouard, P. Criteria for return to running after anterior cruciate ligament reconstruction: A scoping review. Br. J. Sports Med. 2018, 52, 1437–1444. [Google Scholar] [CrossRef] [Green Version]
- Abass, A.O. Comparative effect of three modes of plyometric training on leg muscle strength of university male students. Eur. J. Sci. Res. 2009, 31, 577–582. [Google Scholar]
- Andrew, D.P.; Kovaleski, J.E.; Heitman, R.J.; Robinson, T.L. Effects of Three Modified Plyometric Depth Jumps and Periodized Weight Training on Lower Extremity Power. Sport J. 2010, 13. Available online: https://thesportjournal.org/article/tag/2001/page/2/ (accessed on 4 August 2023).
- Asadi, A. Effects of six weeks depth jump and countermovement jump training on agility performance. Sport Sci. 2012, 5, 67–70. [Google Scholar]
- Berger, R.A. Effects of dynamic and static training on vertical jumping ability. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1963, 34, 419–424. [Google Scholar] [CrossRef]
- Blakey, J.B.; Southard, D. The combined effects of weight training and plyometrics on dynamic leg strength and leg power. J. Appl. Sports Sci. Res. 1987, 1, 14–16. [Google Scholar]
- Bogdanis, G.C.; Tsoukos, A.; Kaloheri, O.; Terzis, G.; Veligekas, P.; Brown, L.E. Comparison between unilateral and bilateral plyometric training on single-and double-leg jumping performance and strength. J. Strength Cond. Res. 2019, 33, 633–640. [Google Scholar] [CrossRef]
- Byrne, P.J.; Moran, K.; Rankin, P.; Kinsella, S. A comparison of methods used to identify ‘optimal’drop height for early phase adaptations in depth jump training. J. Strength Cond. Res. 2010, 24, 2050–2055. [Google Scholar] [CrossRef]
- Chottidao, M.; Kuo, C.H.; Tsai, S.C.; Hwang, S.; Lin, J.J.; Tsai, Y.S. A Comparison of Plyometric and Jump Rope Training Programs for Improving Punching Performance in Junior Amateur Boxers. Front. Bioeng. Biotechnol. 2022, 10, 878527. [Google Scholar] [CrossRef]
- Clutch, D.; Wilton, M.; McGown, C.; Bryce, G.R. The effect of depth jumps and weight training on leg strength and vertical jump. Res. Q. Exerc. Sport 1983, 54, 5–10. [Google Scholar] [CrossRef]
- Cronin, J.; McNAIR, P.E.; Marshall, R. The effects of bungy weight training on muscle function and functional performance. J. Sports Sci. 2003, 21, 59–71. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Martone, D.; Milic, M.; Padulo, J. Vertical-vs. horizontal-oriented drop jump training: Chronic effects on explosive performances of elite handball players. J. Strength Cond. Res. 2017, 31, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Earp, J.E.; Newton, R.U.; Cormie, P.; Blazevich, A.J. Inhomogeneous quadriceps femoris hypertrophy in response to strength and power training. Med. Sci. Sports Exerc. 2015, 47, 2389–2397. [Google Scholar] [CrossRef]
- Emamian, A.; Oskouei, A.H.; Azreh, R.; Carroll, K. Effects of Task Constraints on Countermovement Jump Kinematics Following a Short-Term Training. J. Mot. Learn. Dev. 2022, 1, 257–272. [Google Scholar] [CrossRef]
- Gehri, D.J.; Ricard, M.D.; Kleiner, D.M.; Kirkendall, D.T. A comparison of plyometric training techniques for improving vertical jump ability and energy production. J. Strength Cond. Res. 1998, 12, 85–89. [Google Scholar]
- Gonzalo-Skok, O.; Sánchez-Sabaté, J.; Izquierdo-Lupón, L.; Sáez de Villarreal, E. Influence of force-vector and force application plyometric training in young elite basketball players. Eur. J. Sport Sci. 2019, 19, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, F.J.A. The Comparative Effects on Vertical Jump of Three Different Depth Jump Programs. Ph.D. Dissertation, University of British Columbia, Vancouver, BC, Canada, 1978. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Cooper, J.J.; Kang, J.; Chilakos, A.; Faigenbaum, A.D. Comparison of loaded and unloaded jump squat training on strength/power performance in college football players. J. Strength Cond. Res. 2005, 19, 810–815. [Google Scholar] [PubMed]
- Holcomb, W.R.; Lander, J.E.; Rutland, R.M.; Wilson, G.D. The effectiveness of a modified plyometric program on power and the vertical jump. J. Strength Cond. Res. 1996, 10, 89–92. [Google Scholar]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Andrews, W.A.; Chapman, D.W.; Nosaka, K. Comparison of weighted jump squat training with and without eccentric braking. J. Strength Cond. Res. 2008, 22, 54–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortobagyi, T.; Havasi, J.; Varga, Z. Comparison of 2 stretch-shorten exercise programs in 13-year-old boys-nonspecific training effects. J. Hum. Mov. Stud. 1990, 18, 177–188. [Google Scholar]
- Khodaei, K.; Mohammadi, A.; Badri, N. A comparison of assisted, resisted, and common plyometric training modes to enhance sprint and agility performance. J. Sports Med. Phys. Fit. 2017, 57, 1237–1244. [Google Scholar] [CrossRef]
- King, J.A.; Cipriani, D.J. Comparing preseason frontal and sagittal plane plyometric programs on vertical jump height in high-school basketball players. J. Strength Cond. Res. 2010, 24, 2109–2114. [Google Scholar] [CrossRef]
- Kusuma, A.I.; Setijono, H.; Mintarto, E.; Indra, A.; Setijono, H. Effects of Jump Rope and High Jump Training with 1:1 Intervals on Increasing Vo2 Max and Anaerobic Threshold. Int. J. Innov. 2020, 12, 14. [Google Scholar]
- Laurent, C.; Baudry, S.; Duchateau, J. Comparison of plyometric training with two different jumping techniques on achilles tendon properties and jump performances. J. Strength Cond. Res. 2020, 34, 1503–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loturco, I.; Pereira, L.A.; Reis, V.P.; Zanetti, V.; Bishop, C.; McGuigan, M. Traditional free-weight vs. variable resistance training applied to elite young soccer players during a short preseason: Effects on strength, speed, and power performance. J. Strength Cond. Res. 2020, 36, 3432–3439. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.F.; De Castro, J.B.P.; Bocalini, D.S.; Junior, A.J.F.; Nunes, R.D.A.M.; Vale, R.G.D.S. Effects of plyometric training on the performance of 5-km road runners. J. Phys. Educ. Sport 2019, 19, 691–695. [Google Scholar]
- Makaruk, H.; Czaplicki, A.; Sacewicz, T.; Sadowski, J. The effects of single versus repeated plyometrics on landing biomechanics and jumping performance in men. Biol. Sport 2014, 31, 9–14. [Google Scholar]
- Makaruk, H.; Winchester, J.B.; Sadowski, J.; Czaplicki, A.; Sacewicz, T. Effects of unilateral and bilateral plyometric training on power and jumping ability in women. J. Strength Cond. Res. 2011, 25, 3311–3318. [Google Scholar] [CrossRef] [PubMed]
- Manouras, N.; Papanikolaou, Z.; Karatrantou, K.; Kouvarakis, P.; Gerodimos, V. The efficacy of vertical vs. horizontal plyometric training on speed, jumping performance and agility in soccer players. Int. J. Sports Sci. Coach. 2016, 11, 702–709. [Google Scholar]
- Markovic, S.; Mirkov, D.M.; Knezevic, O.M.; Jaric, S. Jump training with different loads: Effects on jumping performance and power output. Eur. J. Appl. Physiol. 2013, 113, 2511–2521. [Google Scholar] [CrossRef]
- Markovic, G.; Vuk, S.; Jaric, S. Effects of jump training with negative versus positive loading on jumping mechanics. Int. J. Sports Med. 2011, 32, 365–372. [Google Scholar] [CrossRef]
- Marshall, B.M.; Moran, K.A. Which drop jump technique is most effective at enhancing countermovement jump ability,“countermovement” drop jump or “bounce” drop jump? J. Sports Sci. 2013, 31, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Mastalerz, A.; Lutosławska, G.; Urbanik, C. Power training efficiency after single joint and multiple joint exercises. HUMAN 2009, 10, 153–157. [Google Scholar] [CrossRef]
- Masterson, G.L.; Brown, S.P. Effects of weighted rope jump training on power performance tests in collegians. J. Strength Cond. Res. 1993, 7, 108–114. [Google Scholar]
- Matavulj, D.; Kukolj, M.; Ugarkovic, D.; Tihanyi, J.; Jaric, S. Effects of pylometric training on jumping performance in junior basketball players. J. Sports Med. Phys. Fit. 2001, 41, 159–164. [Google Scholar]
- Mazurek, K.; Zmijewski, P.; Makaruk, H.; Mróz, A.; Czajkowska, A.; Witek, K.; Bodasiński, S.; Lipińska, P. Effects of short-term plyometric training on physical performance in male handball players. J. Hum. Kinet. 2018, 63, 137–148. [Google Scholar] [CrossRef] [Green Version]
- McBride, J.M.; Triplett-McBride, T.; Davie, A.; Newton, R.U. The effect of heavy-vs. light-load jump squats on the development of strength, power, and speed. J. Strength Cond. Res. 2002, 16, 75–82. [Google Scholar] [PubMed]
- McClenton, L.S.; Brown, L.E.; Coburn, J.W.; Kersey, R.D. The effect of short-term VertiMax vs. depth jump training on vertical jump performance. J. Strength Cond. Res. 2008, 22, 321–325. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B.T.; Hannon, J.C.; Newton, M.; Shultz, B.; Detling, N.; Young, W.B. The effects of frontal-and sagittal-plane plyometrics on change-of-direction speed and power in adolescent female basketball players. Int. J. Sports Physiol. Perform. 2016, 11, 102–107. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, K.W.; Langford, G.A.; Doscher, M.W.; Wiley, L.P.; Mallard, K.G. The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J. Strength Cond. Res. 2005, 19, 9–15. [Google Scholar]
- McGuigan, M.R.; Sharman, M.J.; Newton, R.U.; Davie, A.J.; Murphy, A.J.; McBride, J.M. Effect of explosive resistance training on titin and myosin heavy chain isoforms in trained subjects. J. Strength Cond. Res. 2003, 17, 645–651. [Google Scholar]
- Mirzaei, B.; Asghar Norasteh, A.; Saez de Villarreal, E.; Asadi, A. Effects of six weeks of depth jump vs. countermovement jump training on sand on muscle soreness and performance. Kinesiology 2014, 46, 97–108. [Google Scholar]
- Mirzaei, B.; Norasteh, A.A.; Asadi, A. Neuromuscular adaptations to plyometric training: Depth jump vs. countermovement jump on sand. Sport Sci. Health 2013, 9, 145–149. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Campillo, R.; Burgos, C.H.; Henríquez-Olguín, C.; Andrade, D.C.; Martínez, C.; Álvarez, C.; Castro-Sepúlveda, M.; Marques, M.C.; Izquierdo, M. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1317–1328. [Google Scholar] [CrossRef]
- Rosas, F.; Ramirez-Campillo, R.; Diaz, D.; Abad-Colil, F.; Martinez-Salazar, C.; Caniuqueo, A.; Cañas-Jamet, R.; Loturco, I.; Nakamura, F.Y.; McKenzie, C.; et al. Jump training in youth soccer players: Effects of haltere type handheld loading. Int. J. Sports Med. 2016, 37, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Ruffieux, J.; Wälchli, M.; Kim, K.-M.; Taube, W. Countermovement jump training is more effective than drop jump training in enhancing jump height in non-professional female volleyball players. Front. Physiol. 2020, 11, 231. [Google Scholar] [CrossRef]
- Sheppard, J.; Hobson, S.; Barker, M.; Taylor, K.; Chapman, D.; McGuigan, M.; Newton, R. The effect of training with accentuated eccentric load counter-movement jumps on strength and power characteristics of high-performance volleyball players. Int. J. Sports Sci. Coach. 2008, 3, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Appleby, B.B.; Lavender, A.P. Effect of plyometric training on speed and change of direction ability in elite field hockey players. Sports 2018, 6, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Singh, S. Effects of vertical and horizontal plyometric exercises on running speed. Hum. Mov. 2013, 14, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Singh, S. Iinfluence of Exercise Specifity on Depth Jump Performance. Braz. J. Biomotricity 2012, 6, 261–268. [Google Scholar]
- Singh, D.; Singh, S. Effects of vertical, horizontal, and combination depth jump training on long jump performance. Biomed. Hum. Kinet. 2012, 4, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Sotiropoulos, K.; Smilios, I.; Barzouka, K.; Christou, M.; Bogdanis, G.; Douda, H.; Tokmakidis, S.P. Effects of Drop Jump Training from Different Heights and Weight Training on Vertical Jump and Maximum Strength Performance in Female Volleyball Players. J. Strength Cond. Res. 2022, 37, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, M.; Hammoud, N.; Zybko, P.; Witek, K.; Tkaczyk, J.; Urbanik, C. Effect of concentric vs. eccentric variant of lower limbs plyometric training on biomechanical and biochemical parameters. Eur. J. Sport Sci. 2021, 21, 351–358. [Google Scholar]
- Stern, D.; Gonzalo-Skok, O.; Loturco, I.; Turner, A.; Bishop, C. A comparison of bilateral vs. unilateral-biased strength and power training interventions on measures of physical performance in elite youth soccer players. J. Strength Cond. Res. 2020, 34, 2105–2111. [Google Scholar] [CrossRef]
- Stien, N.; Strate, M.; Andersen, V.; Saeterbakken, A.H. Effects of overspeed or overload plyometric training on jump height and lifting velocity. Sports Med. Int. Open 2020, 4, E32–E38. [Google Scholar] [CrossRef] [Green Version]
- Strate, M.; Stien, N.; Saeterbakken, A.H.; Andersen, V. The effects of assisted and resisted plyometric training on jump height and sprint performance among physically active females. Eur. J. Sport Sci. 2022, 22, 1569–1576. [Google Scholar]
- Taube, W.; Leukel, C.; Lauber, B.; Gollhofer, A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand. J. Med. Sci. Sports 2012, 22, 671–683. [Google Scholar]
- Thomas, K.; French, D.; Hayes, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trzaskoma, L.; Tihanyi, J.; Trzaskoma, Z. The effect of a short-term combined conditioning training for the development of leg strength and power. J. Strength Cond. Res. 2010, 24, 2498–2505. [Google Scholar] [CrossRef]
- Watkins, C.M.; Gill, N.D.; Maunder, E.; Downes, P.; Young, J.D.; McGuigan, M.R.; Storey, A.G. The Effect of Low-Volume Preseason Plyometric Training on Force-Velocity Profiles in Semiprofessional Rugby Union Players. J. Strength Cond. Res. 2021, 35, 604–615. [Google Scholar] [CrossRef]
- Weakley, J.J.; Till, K.; Read, D.B.; Leduc, C.; Roe, G.A.; Phibbs, P.J.; Darrall-Jones, J.; Jones, B. Jump training in rugby union players: Barbell or hexagonal bar? J. Strength Cond. Res. 2021, 35, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Weltin, E.; Gollhofer, A.; Mornieux, G. Effects of perturbation or plyometric training on core control and knee joint loading in women during lateral movements. Scand. J. Med. Sci. Sports 2017, 27, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.J.; Newton, R.U.; Murphy, A.J.; Humphries, B.J. The optimal training load for the development of dynamic athletic performance. Med. Sci. Sports Exerc. 1993, 25, 1279–1286. [Google Scholar] [PubMed]
- Yang, X.; Lee, J.; Gu, X.; Zhang, X.; Zhang, T. Physical fitness promotion among adolescents: Effects of a jump rope-based physical activity afterschool program. Children 2020, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- Young, W.; Wilson, C.; Byrne, C. A comparison of drop jump training methods: Effects on leg extensor strength qualities and jumping performance. Int. J. Sports Med. 1999, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumming, S.P.; Lloyd, R.S.; Oliver, J.L.; Eisenmann, J.C.; Malina, R.M. Bio-banding in sport: Applications to competition, talent identification, and strength and conditioning of youth athletes. Strength Cond. J. 2017, 39, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar]
- Moran, J.J.; Sandercock, G.R.; Ramírez-Campillo, R.; Meylan, C.M.; Collison, J.A.; Parry, D.A. Age-related variation in male youth athletes’ countermovement jump after plyometric training: A meta-analysis of controlled trials. J. Strength Cond. Res. 2017, 31, 552–565. [Google Scholar]
- Nobre, G.G.; de Almeida, M.B.; Nobre, I.G.; Dos Santos, F.K.; Brinco, R.A.; Arruda-Lima, T.R.; De-Vasconcelos, K.L.; De-Lima, J.G.; Borba-Neto, M.E.; Damasceno-Rodrigues, E.M.; et al. Twelve weeks of plyometric training improves motor performance of 7-to 9-year-old boys who were overweight/obese: A randomized controlled intervention. J. Strength Cond. Res. 2017, 31, 2091–2099. [Google Scholar] [CrossRef]
- Racil, G.; Zouhal, H.; Elmontassar, W.; Abderrahmane, A.B.; De Sousa, M.V.; Chamari, K.; Amri, M.; Coquart, J.B. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl. Physiol. Nutr. Metab. 2016, 41, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Rössler, R.; Donath, L.; Verhagen, E.; Junge, A.; Schweizer, T.; Faude, O. Exercise-based injury prevention in child and adolescent sport: A systematic review and meta-analysis. Sports Med. 2014, 44, 1733–1748. [Google Scholar] [CrossRef]
- Meylan, C.; Malatesta, D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J. Strength Cond. Res. 2009, 23, 2605–2613. [Google Scholar] [CrossRef]
- Ahmadi, M.; Nobari, H.; Ramirez-Campillo, R.; Pérez-Gómez, J.; Ribeiro, A.L.d.A.; Martínez-Rodríguez, A. Effects of plyometric jump training in sand or rigid surface on jump-related biomechanical variables and physical fitness in female volleyball players. Int. J. Environ. Res. Public Health 2021, 18, 13093. [Google Scholar] [CrossRef] [PubMed]
- Ducrocq, G.P.; Hureau, T.J.; Meste, O.; Blain, G.M. Similar cardioventilatory but greater neuromuscular stimuli with interval drop jump than with interval running. Int. J. Sports Physiol. Perform. 2020, 15, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The effect of plyometric training in volleyball players: A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Randomization | Sample Size | Gender | Age | Freq | Dur | Box Height | Total Jumps | Type of Jump Training | Combined | Tests |
---|---|---|---|---|---|---|---|---|---|---|---|
Abass (2009) [64] | Yes | 10 | Male | 24.9 | 3 | 12 | 35, 40, 45 | NR | Depth jump | No |
|
10 | 24.9 | NA | Rebound jump | ||||||||
10 | 27.5 | NA | Horizontal unilateral | ||||||||
Andrew et al. (2010) [65] | Yes | 12 | Mix | 22.3 | 2 | 12 | 15–60 | 2016 | Hip depth jump | No |
|
13 | 20.8 | Knee depth jump | |||||||||
13 | 20.8 | Ankle depth jump | |||||||||
Asadi (2012) [66] | Yes | 8 | Male | 20.2 | 2 | 6 | 45 | 1200 | DJ | No |
|
8 | 20.3 | NA | CMJ | ||||||||
Berger (1963) [67] | No | 20 | Male | NR | 3 | 7 | NA | 210 | SJ (50–60% of 10RM) | No |
|
19 | CMJ | ||||||||||
Blakey and Southard (1987) [68] | Yes | 11 | Male | 18–21 | 2 | 8 | 110 | 500 | DJ | RT |
|
10 | 40 | DJ | |||||||||
10 | NA | Vertical jumps | |||||||||
Bogdanis et al. (2019) [69] | Yes | 7 | Mix | 18.2–25.8 | 2 | 6 | NR | 1800 FCPL | Mix bilateral | RT |
|
8 | 900 FCPL | Mix unilateral | |||||||||
Bouguezzi et al. (2020) [27] | Yes | 7 | Male | 11.2 | 2 | 8 | NA | 1360 | Mix SSC | No |
|
8 | 11.3 | Mix non-SSC | |||||||||
Byrne et al. (2010) [70] | Yes | 6 | Male | 23.8 | 2 | 8 | 40 (height) | 660 | DJ (counter) | No |
|
6 | 20.8 | 30 (RSI) | DJ (bounce) | ||||||||
Chottidao et al. (2022) [71] | Yes | 12 | Male | 15.5 | 3 | 8 | 20 | 2220 | Mix | No |
|
12 | 15.6 | NA | Mimic rope jump | ||||||||
Clutch et al. (1983) [72] | Yes | 12 | Male | 20.9 | 2 | 4 | NA | 320 | CMJ | RT |
|
30 | DJ | ||||||||||
75–110 | DJ | ||||||||||
Cronin et al. (2003) [73] | Yes | 14 | Mix | 23.1 | 2 | 10 | NA | 804 | Bungy squat jump | No |
|
14 | Non-bungy squat jump | ||||||||||
Dello Iacono et al. (2017) [74] | Yes | 9 | Male | 23.4 | 2 | 10 | 25 | 1028 | DJ unilateral/vertical | No |
|
9 | DJ unilateral/horizontal. | ||||||||||
Earp et al. (2015) [75] | Yes | 9 | Male | 18–35 | 3 | 8 | NA | 872 | Jump squat parallel | No |
|
9 | Jump squat volitional | ||||||||||
Emamian et al. (2022) [76] | Yes | 15 | Male | 27.6 | 3 | 6 | 60 | 756 | CMJ + box jumps | NR |
|
15 | 26.2 | CMJ + box jumps (no arms) | |||||||||
15 | 27.1 | CMJ + box jumps (no knee) | |||||||||
Gehri et al. (1998) [77] | Yes | 11 | Mix | 20 | 2 | 12 | 40 | 704 | DJ | No |
|
7 | 19.5 | NA | CMJ | ||||||||
Gonzalo-Skok et al. (2019) [78] | Yes | 9 | Male | 13.3 | 2 | 6 | 20 | 960 | Mix—vertical/bilateral | No |
|
9 | 13.2 | 10 | Mix—horizontal/unilateral | ||||||||
Hawkins (1978) [79] | Yes | 10 | Male | NR | 2/3 | 6 | 40–90 | 552 | DJ—optimal height | No |
|
10 | 40–90 | DJ—less height and loaded | |||||||||
8 | 40–90 | DJ—less height | |||||||||
Hoffman et al. (2005) [80] | Yes | 15 | Male | 19.8 | 2 | 5 | NA | 160 | SJ—load | No |
|
16 | SJ—concentric load | ||||||||||
Holcomb et al. (1996) [81] | Yes | 10 | Male | NR—college age | 3 | 8 | NA | 1728 | CMJ | No |
|
10 | 40, 50, 60 | DJ (ankle, knee, and hip) | |||||||||
10 | 40, 50, 60 | DJ | |||||||||
Hori et al. (2008) [82] | No | 10 | Male | 23.7 | 2 | 8 | NA | 576 | Non-braking weighted SJ | No |
|
10 | 24.8 | Braking weighted SJ | |||||||||
Hortobagyi et al. (1990) [83] | Yes | 15 | Male | 13.4 | 2 | 10 | NA | 2600 | Mix—Vertical | No |
|
15 | Mix—Horizontal | ||||||||||
Khoadei et al. (2017) [84] | Yes | 7 | Male | 20.1 | 3 | 4 | NA | 1480 | Mix-Assisted elastics | No |
|
9 | 20.9 | Mix—Resisted elastics. | |||||||||
8 | 20.9 | Mix | |||||||||
King and Cipriani (2010) [85] | Yes | 11 | Male | 15.3 | 2 | 6 | NA | 1296 | Mix—Sagittal plane | No |
|
10 | 15.1 | Mix—Frontal plane | |||||||||
Kusuma et al. (2020) [86] | Yes | 11 | Male | 15–17 | 3 | 8 | NA | NR | Rope jump | NR |
|
11 | High jump | ||||||||||
Laurent et al. (2020) [87] | No | 11 | Mix | 19–26 | 2 | 10 | 30–40 | 2980 | Mix—Bounce DJ | No |
|
11 | Mix—Counter DJ | ||||||||||
Loturco et al. (2020) [88] | Yes | 13 | Male | 18.5 | 3 | 2 | NA | 180 | SJ—traditional weight | No |
|
12 | SJ—elastic band | ||||||||||
Loturco et al. (2015) [8] | Yes | 12 | Male | 18.2 | 2, 4, 5 | 3 | NA | 512 | CMJ—vertical | No |
|
12 | 18.5 | SLJ—horizontal | |||||||||
Machado et al. (2019) [89] | Yes | 8 | Male | 38 | 2 | 8 | 45 | 2880 s | SJ | No |
|
8 | 39 | 45 | DJ | ||||||||
Makaruk et al. (2014) [90] | Yes | 12 | Male | 22.2 | 3 | 6 | 20–30–40–60–76–84–91 | 3888 | Mix—Acyclical | No |
|
12 | 22.7 | Mix—Cyclical | |||||||||
Makaruk et al. (2011) [91] | Yes | 16 | Female | 20.6 | 2 | 12 | 15–20 | 6424 FCPL | Mix—Unilateral | No |
|
18 | 20.9 | 30–35 | Mix—Bilateral | ||||||||
Manouras et al. (2016) [92] | Yes | 10 | Male | 20.7 | 1 | 8 | 40 | 680 | Mix—Vertical | No |
|
10 | 19.1 | Mix—Horizontal | |||||||||
Markovic et al. (2013) [93] | Yes | 12 | Male | 23.7 | 3 | 8 | NA | 1404 | CMJ—Unloaded | No |
|
12 | CMJ—Negative elastic | ||||||||||
12 | CMJ—Positive elastic | ||||||||||
11 | CMJ—Vest, change inertia | ||||||||||
Markovic et al. (2011) [94] | Yes | 10 | Male | 11 | 3 | 7 | NA | 1260 | CMJ—Deloaded machine | No |
|
10 | CMJ—Loaded dumbbells | ||||||||||
Marshall and Moran (2013) [95] | Yes | 34 | Male | 22 | 3 | 8 | 30 | 768 | DJ—Bounce | No |
|
35 | DJ—Countermovement | ||||||||||
Mastalerz et al. (2009) [96] | Yes | 12 | Male | 22–24 | 5 | 4 | NR | 800 | Mix—Inclined plane | No |
|
12 | Mix—Vertical | ||||||||||
Masterson and Brown (1993) [97] | Yes | 10 | Mix | 20.2 | 3 | 10 | NA | 1620 s | Rope jump | No |
|
12 | 20.3 | 660 reps | CMJ | ||||||||
Matavulj et al. (2001) [98] | Yes | 11 | Male | 15–16 | 3 | 6 | 50 | 540 | DJ—100 cm | No |
|
11 | 100 | DJ—50 cm | |||||||||
Mazurek et al. (2018) [99] | Yes | 14 | Male | 20 | 2–3 | 5 | 20, 40, 60, 76 | 1218 | Mix—RSI fast SSC | Yes—RT |
|
12 | Mix—height, low SSC | ||||||||||
McBride et al. (2002) [100] | No—1RM squat ratio | 9 | Male | 24.2 | 2 | 6 | NA | Ind | SJ—80%1RM | No |
|
10 | 21.6 | SJ—30%1RM | |||||||||
McClenton et al. (2008) [101] | Yes | 10 | Mix | 22.1 | 2 | 6 | NA | 139 | Mix- Vertimax machine | No |
|
10 | 21.3 | 50–100 | 137 | DJ | |||||||
McCormick et al. (2016) [102] | Yes | 7 | Female | 16.3 | 2 | 6 | NA | 1296 | Mix—Frontal plane | No |
|
7 | 15.7 | Mix—Sagittal plane | |||||||||
McCurdy et al. (2005) [103] | Yes | NR | Male | 20.7 | 2 | 6 | NA | >360 NCR | Mix—Unilateral | Yes—RT |
|
NR | Male | Mix—Bilateral | |||||||||
NR | Female | Mix—Unilateral | |||||||||
NR | Female | Mix—Bilateral | |||||||||
NR | Mix | Mix—Unilateral | |||||||||
NR | Mix | Mix—Bilateral | |||||||||
McGuigan et al. (2003) [104] | Yes | 9 | Male | 24.2 | 2 | 8 | NA | Ind | SJ—30%1RM | No |
|
9 | 21.2 | SJ—80%1RM | |||||||||
Mirzaei et al. (2014) [105] | Yes | 10 | Male | 20.7 | 2 | 6 | 45 | 1200 | DJ | No |
|
10 | 21.2 | NA | CMJ | ||||||||
Mirzaei et al. (2013) [106] | Yes | 9 | Male | 20.5 | 2 | 6 | 45 | 1200 | DJ | No |
|
9 | 20.6 | NA | CMJ | ||||||||
Ramirez-Campillo et al. (2018) [107] | Yes | 25 | Male | 13.9 | 2 | 7 | 30 | 906 | DJ—30 cm | No |
|
24 | 13.1 | Optimal RSI | DJ—Optimal (10 to 40) | ||||||||
Ramirez-Campillo et al. (2015) [26] | Yes | 10 | Male | 11.6 | 2 | 6 | NA | 1610 | Mix—Vertical | No |
|
10 | 11.4 | 1610 | Mix—Horizontal | ||||||||
10 | 11.2 | 1440 | Mix—Vertical/Horizontal | ||||||||
Ramirez-Campillo et al. (2015) [108] | Yes | 12 | Male | 11 | 2 | 6 | NA | 2160 FCPL | Mix—Bilateral | No |
|
16 | 11.6 | 1080 FCPL | Mix—Unilateral | ||||||||
12 | 11.6 | 1440 FCPL | Mix—Bilateral/Unilateral | ||||||||
Rosas et al. (2016) [109] | Yes | 21 | Male | 12.3 | 2 | 6 | NA | 1152 | Mix | No |
|
21 | 12.1 | Mix—handheld haltered | |||||||||
Ruffieux et al. (2020) [110] | Yes | 13 | Female | 20.4 | 2 | 6 | 37 | 720 | CMJ (80%) + DJ (20%) | Yes—regular |
|
13 | 22 | DJ (80%) + CMJ (20%) | |||||||||
Sheppard et al. (2008) [111] | Yes | 8 | Mix | 21.8 | 3 | 5 | NA | 705 | CMJ—load eccentric | Yes—volleyball |
|
8 | CMJ—without load | ||||||||||
Singh et al. (2018) [112] | Yes | 8 | Mix | 23 | 2 | 6 | 30–40 | 240 | DJ—low to high | Yes—RT |
|
8 | 70–85 | DJ—high to low | |||||||||
Singh and Singh (2013) [113] | Yes | 20 | Male | 18–21 | 2 | 10 | 20, 25, 30, 35, 40 | 1200 | DJ—Vertical | NR |
|
20 | DJ—Horizontal | ||||||||||
20 | DJ—Vertical/Horizontal | ||||||||||
Singh and Singh (2012) [114] | Yes | 20 | Male | 19.9 | 2 | 10 | Optimal 20–40 | 1200 | DJ—Vertical | NR |
|
20 | DJ—Horizontal | ||||||||||
20 | DJ—Vertical/Horizontal | ||||||||||
Singh and Singh (2012) [115] | Yes | 20 | Male | 19.9 | 2 | 10 | Optimal 20–40 | 1200 | DJ—Vertical | NR |
|
20 | DJ—Horizontal | ||||||||||
20 | DJ—Vertical/Horizontal | ||||||||||
Sotiropoulos et al. (2022) [116] | Yes | 11 | Female | 23.8 | 1–2 | 8 | Optimal RSI | 600 | DJ—Optimal RSI | Yes—RT |
|
11 | 25% high | DJ—25% high | |||||||||
11 | 25% low | DJ—25% less | |||||||||
Staniszewski et al. (2021) [117] | Yes | 13 | Male | 21 | 5 | 4 | 14–28 | 1600 | Box upward + vertical jumps | Yes—PE classes |
|
13 | Box downward + vertical jumps | ||||||||||
Stern et al. (2020) [118] | Yes | 11 | Male | 17.6 | 2 | 6 | 30–40 | 576 | Mix—Unilateral | RT split |
|
12 | 15–20 | Mix—Bilateral | RT squat | ||||||||
Stien et al. (2020) [119] | Yes | 18 | Female | 21.3 | 2–3 | 8 | NA | 1380 | Mix—elastic band assisted | No |
|
18 | 20.9 | Mix—elastic band resisted | |||||||||
Strate et al. (2022) [120] | Yes | 16 | Female | 21.3 | 2–5 | 8 | NA | 1380 | Mix—elastic band assisted | No |
|
17 | 20.9 | Mix—elastic band resisted | |||||||||
Taube et al. (2012) [121] | Yes | 11 | Mix | 24 | 3 | 4 | 30, 50, 75 | 396 | DJ—Bounded | No |
|
11 | 25 | 30 | DJ—Counter | ||||||||
Thomas et al. (2009) [122] | Yes | 6 | Male | 17.3 | 2 | 6 | 40 | 580 | DJ | No |
|
6 | NA | CMJ | |||||||||
Trzaskoma et al. (2010) [123] | Yes | 10 | Male | 22.1 | 4 | 3 | NA | 1176 | Pendulum “natural” take off | No |
|
10 | 22.6 | NA | Pendulum “impact” take off | ||||||||
Watkins et al. (2021) [124] | Yes | 8 | Male | 18.9 | 2 | 3 | 30 | 300 | Mix—Horizontal | No |
|
8 | 20–60 | Mix—Vertical | |||||||||
12 | 19.8 | 30 | Mix—Horizontal | ||||||||
12 | 20–60 | Mix—Vertical | |||||||||
Weakley et al. (2021) [125] | Yes | 16 | Male | 20.8 | 3 | 4 | NA | 108 SJ + 72 horizontal | SJ barbell + horizontal | Yes—RT + others |
|
13 | 21.4 | SJ hexagonal + horizontal | |||||||||
Weltin et al. (2017) [126] | Yes | 12 | Female | 21 | 3 | 4 | NA | 2890 FCPL | Unilateral lateral jumps | No |
|
12 | 22 | 45 | >3940 FCPL | Mix—Bilateral vertical | |||||||
Wilson et al. (1993) [127] | Yes | 13 | NR | 22.1 | 2 | 10 | 20–80 | >540 | DJ | No |
|
13 | 23.7 | NA | SJ—Loaded | ||||||||
Yang et al. (2020) [128] | Yes | 20 | Mix | 13.4 | 3 | 12 | NA | 88,560–95,040 | Rope jump—freestyle | No |
|
20 | 13.5 | Rope jump—traditional | |||||||||
Young et al. (1999) [129] | Yes | 11 | Male | 19–34 | 3 | 6 | Max height | 468 | DJ—for height | No |
|
5 | Max RSI | DJ—for RSI |
Sex | Male | 71.0% | Age | ≥18 years old | 72.5% | Physical performance level | High | 14.5% | Sport practiced | Team sports | 34.8% | PJT previous experience | Experience | 20.3% | Training period | In-season | 17.4% |
Female | 10.0% | <18 years old | 24.6% | Moderate/normal | 71.0% | Individual sports | 7.3% | No experience | 43.5% | Pre-season | 13.0% | ||||||
Mix | 17.4% | NCR | 2.9% | Low | 5.8% | Mixed | 10.1% | Mixed | 1.4% | Off-season | 2.9% | ||||||
NCR | 1.6% | Mix | 1.4% | Non-Competitive | 33.3% | NCR | 34.8% | Non-Competitive | 56.5% | ||||||||
NCR | 7.3% | NCR | 14.5% | NCR | 24.6% |
Surface | Soft | 17.3% | Dose | Reported | 97.1% | Habitual training | Added | 34.8% | Combined? | Yes | 17.4% | Duration | ≥6 weeks | 79.7% | Frequency | 1 day/week | 1.4% |
Unstable | 1.4% | No reported | 2.9% | Replaced | 11.6% | No | 75.4% | <6 weeks | 20.3% | 2 days/week | 55.1% | ||||||
Machines | 2.9% | No previous training | 17.4% | NCR | 7.2% | 3 days/week | 30.4% | ||||||||||
Mat/parquet | 1.4% | NCR | 36.2% | ≥4 days/week | 4.4% | ||||||||||||
NCR | 73.9% | Mixed | 8.7% | ||||||||||||||
Intensity | Maximal | 60.9% | Progressive overload | Volume | 29.0% | Tapering | No | 7.2% | Rest/Sets | > 120 s | 31.9% | Rest/Sessions | ≥48 h | 33.3% | |||
Submaximal | 13.0% | Intensity | 10.1% | Yes | 11.6% | ≤ 120 s | 46.4% | NCR | 50.7% | ||||||||
NCR | 26.1% | Technique | 10.1% | NCR | 81.2% | NCR | 21.7% | ||||||||||
Mixed | 20.3% | ||||||||||||||||
No overload | 21.7% | ||||||||||||||||
Yes, no report | 5.8% | ||||||||||||||||
NCR | 2.9% |
OUTCOMES | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strength | Vertical Jump | Horizontal Jump | Sprint | COD/Agility | Power | Asymmetry | SSP | Physiological Changes | Biomechanical Changes | Flexibility | Balance | Aerobic Capacity | ||
COMPARATORS | Hip DJ vs. Knee DJ a | 1 | 1 | 1 | 1 | |||||||||
Hip DJ vs. Ankle DJ a | 1 | 1 | 1 | 1 | ||||||||||
Knee DJ vs. Ankle DJ a | 1 | 1 | 1 | 1 | ||||||||||
DJ vs. CMJ | 3 | 6 | 1 | 2 | 3 | 3 | 1 | |||||||
Loaded vs. Unloaded | 2 | 3 | 1 | |||||||||||
Bounce DJ vs. Counter DJ b | 7 | 9 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | |||||
Bilateral vs. Unilateral | 3 | 5 | 2 | 2 | 2 | 3 | 1 | 1 | 1 | |||||
Fast SSC vs. Slow SSC c | 1 | 3 | 1 | 1 | 1 | 1 | 2 | 1 | ||||||
Cyclical vs. Acyclical | 3 | 2 | 1 | 2 | 1 | 2 | 1 | |||||||
Eccentric overload vs. Plyometric | 1 | 1 | 1 | 1 | ||||||||||
Vertical vs. Horizontal | 1 | 4 | 3 | 4 | 3 | 1 | 2 | 2 | 1 | |||||
CMJ vs. No arms CMJ | 1 | 1 | ||||||||||||
Vert + Bil vs. Hor + Uni | 1 | 1 | 1 | 1 | 1 | |||||||||
Loaded vs. concentric load | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
Eccentric braking vs. No braking | 2 | 2 | 2 | |||||||||||
Assisted vs. Resisted | 3 | 3 | 2 | 1 | 2 | 3 | 1 | |||||||
Sagittal vs. Frontal | 2 | 1 | 1 | |||||||||||
Bands vs. Traditional weight | 1 | 1 | 1 | |||||||||||
SJ vs. DJ | 1 | 1 | 1 | 1 | ||||||||||
Inclined vs. Vertical | 1 | 1 | 1 | |||||||||||
SJ 80% vs. SJ 30% | 2 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
Machine vs. DJ | 1 | |||||||||||||
Box jump upward vs. downward | 1 | 1 | 1 | 1 | 1 | |||||||||
Handheld altered vs. plyometric | 1 | 1 | 1 | 1 | ||||||||||
Traditional barbell vs. hexagonal | 1 | 1 | 1 | |||||||||||
Rope jump traditional vs. freestyle | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrio, E.D.; Thapa, R.K.; Villanueva-Flores, F.; Garcia-Atutxa, I.; Santibañez-Gutierrez, A.; Fernández-Landa, J.; Ramirez-Campillo, R. Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature. Sports 2023, 11, 150. https://doi.org/10.3390/sports11080150
Barrio ED, Thapa RK, Villanueva-Flores F, Garcia-Atutxa I, Santibañez-Gutierrez A, Fernández-Landa J, Ramirez-Campillo R. Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature. Sports. 2023; 11(8):150. https://doi.org/10.3390/sports11080150
Chicago/Turabian StyleBarrio, Ekaitz Dudagoitia, Rohit K. Thapa, Francisca Villanueva-Flores, Igor Garcia-Atutxa, Asier Santibañez-Gutierrez, Julen Fernández-Landa, and Rodrigo Ramirez-Campillo. 2023. "Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature" Sports 11, no. 8: 150. https://doi.org/10.3390/sports11080150
APA StyleBarrio, E. D., Thapa, R. K., Villanueva-Flores, F., Garcia-Atutxa, I., Santibañez-Gutierrez, A., Fernández-Landa, J., & Ramirez-Campillo, R. (2023). Plyometric Jump Training Exercise Optimization for Maximizing Human Performance: A Systematic Scoping Review and Identification of Gaps in the Existing Literature. Sports, 11(8), 150. https://doi.org/10.3390/sports11080150