Velocity-Based Strength Training: The Validity and Personal Monitoring of Barbell Velocity with the Apple Watch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Data Collection
2.4. Data Processing
2.5. Statistical Analyses
3. Results
3.1. Data Set Description
3.2. Validity
3.2.1. Precision
3.2.2. Accuracy
3.3. Precision of Wrist Placement
4. Discussion
4.1. Importance of Precision
4.2. Connectivity and Segmentation
4.3. Placement of VBT Device
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beattie, K.; Kenny, I.C.; Lyons, M.; Carson, B.P. The Effect of Strength Training on Performance in Endurance Athletes. Sport. Med. 2014, 44, 845–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoenfeld, B.J.; Wilson, J.M.; Lowery, R.P.; Krieger, J.W. Muscular Adaptations in Low- versus High-Load Resistance Training: A Meta-Analysis. Eur. J. Sport Sci. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sport. Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Westcott, W.L. Resistance Training Is Medicine: Effects of Strength Training on Health. Curr. Sport. Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.R.; Duthie, G.M.; Thornton, H.R.; Dascombe, B.J. Training Monitoring for Resistance Exercise: Theory and Applications. Sport. Med. 2016, 46, 687–698. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; Garcia-Ramos, A. Velocity-Based Training: From Theory to Application. Strength Cond. J. 2021, 43, 31–49. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Lamparter, T.; Lüthy, F. Validity and Reliability of Simple Measurement Device to Assess the Velocity of the Barbell during Squats. BMC Res. Notes 2017, 10, 707. [Google Scholar] [CrossRef] [Green Version]
- Balsalobre-Fernández, C.; Kuzdub, M.; Poveda-Ortiz, P.; Campo-Vecino, J.D. Validity and Reliability of the PUSH Wearable Device to Measure Movement Velocity During the Back Squat Exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Marchante, D.; Muñoz-López, M.; Jiménez, S.L. Validity and Reliability of a Novel IPhone App for the Measurement of Barbell Velocity and 1RM on the Bench-Press Exercise. J. Sport. Sci. 2018, 36, 64–70. [Google Scholar] [CrossRef]
- Banyard, H.G.; Nosaka, K.; Haff, G.G. Reliability and Validity of the Load–Velocity Relationship to Predict the 1RM Back Squat. J. Strength Cond. Res. 2017, 31, 1897–1904. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Marchante, D.; Baz-Valle, E.; Alonso-Molero, I.; Jiménez, S.L.; Muñóz-López, M. Analysis of Wearable and Smartphone-Based Technologies for the Measurement of Barbell Velocity in Different Resistance Training Exercises. Front. Physiol. 2017, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Fritschi, R.; Seiler, J.; Gross, M. Validity and Effects of Placement of Velocity-Based Training Devices. Sports 2021, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Oberhofer, K.; Erni, R.; Sayers, M.; Huber, D.; Lüthy, F.; Lorenzetti, S. Validation of a Smartwatch-Based Workout Analysis Application in Exercise Recognition, Repetition Count and Prediction of 1RM in the Strength Training-Specific Setting. Sports 2021, 9, 118. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Bianco, A.; Stefani, L. The “Journal of Functional Morphology and Kinesiology” Journal Club Series: Highlights on Recent Papers in Athletic Training. JFMK 2018, 3, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, W.R. Worldwide Survey of Fitness Trends for 2021. ACSM Health Fit. J. 2021, 25, 10–19. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Delgado-García, G.; Garrido-Blanca, G.; García-Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Akyildiz, Z.; Pino-Ortega, J.; Rico-González, M. Validity and Reliability of the Inertial Measurement Unit for Barbell Velocity Assessments: A Systematic Review. Sensors 2021, 21, 2511. [Google Scholar] [CrossRef] [PubMed]
- Mitter, B.; Hölbling, D.; Bauer, P.; Stöckl, M.; Baca, A.; Tschan, H. Concurrent Validity of Field-Based Diagnostic Technology Monitoring Movement Velocity in Powerlifting Exercises. J. Strength Cond. Res. 2021, 35, 2170–2178. [Google Scholar] [CrossRef]
- Feuerbacher, J.F.; Jacobs, M.W.; Dragutinovic, B.; Goldmann, J.-P.; Cheng, S.; Schumann, M. Validity and Test-Retest Reliability of the Vmaxpro Sensor for Evaluation of Movement Velocity in the Deep Squat. J. Strength Cond. Res. 2022, 37, 35–40. [Google Scholar] [CrossRef]
- Espinosa, H.G.; Thiel, D.V.; Sorell, M.; Rowlands, D. Can We Trust Inertial and Heart Rate Sensor Data from an APPLE Watch Device? Proceedings 2020, 49, 128. [Google Scholar] [CrossRef]
- Auepanwiriyakul, C.; Waibel, S.; Songa, J.; Bentley, P.; Faisal, A.A. Accuracy and Acceptability of Wearable Motion Tracking for Inpatient Monitoring Using Smartwatches. Sensors 2020, 20, 7313. [Google Scholar] [CrossRef]
- Düking, P.; Fuss, F.K.; Holmberg, H.-C.; Sperlich, B. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR Mhealth Uhealth 2018, 6, e102. [Google Scholar] [CrossRef] [PubMed]
- Menrad, T.; Edelmann-Nusser, J. Validation of Velocity Measuring Devices in Velocity Based Strength Training. Int. J. Comput. Sci. Sport 2021, 20, 106–118. [Google Scholar] [CrossRef]
- Jukic, I.; King, A.; Sousa, C.A.; Prnjak, K.; McGuigan, M.R. Velocity-Based Approach to Resistance Training: The Reproducibility and Sensitivity of Commercially Available Velocity Monitoring Technologies; Auckland University of Technology: Auckland, New Zealand, 2022. [Google Scholar]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Bernd, T. Sensor Log; Mobile Application Software, Version 5.2. Available online: http://sensorlog.berndthomas.net/ (accessed on 12 October 2022).
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the Propulsive Phase in Strength Assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A New View of Statistics: Measures of Validity . Available online: https://www.sportsci.org/resource/stats/precision.html (accessed on 2 January 2022).
- Ludbrook, J. Linear Regression Analysis for Comparing Two Measurers or Methods of Measurement: But Which Regression? Linear Regression for Comparing Methods. Clin. Exp. Pharmacol. Physiol. 2010, 37, 692–699. [Google Scholar] [CrossRef]
- Siegel, A.F. Correlation and Regression. In Practical Business Statistics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 299–354. ISBN 978-0-12-804250-2. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 2018, 3, 1026. [Google Scholar] [CrossRef]
- Held, S.; Rappelt, L.; Deutsch, J.-P.; Donath, L. Valid and Reliable Barbell Velocity Estimation Using an Inertial Measurement Unit. IJERPH 2021, 18, 9170. [Google Scholar] [CrossRef]
- Thompson, S.W.; Olusoga, P.; Rogerson, D.; Ruddock, A.; Barnes, A. “Is It a Slow Day or a Go Day?”: The Perceptions and Applications of Velocity-Based Training within Elite Strength and Conditioning. Int. J. Sport. Sci. Coach. 2022, 1–12. [Google Scholar] [CrossRef]
Device | Total | Fast | Slow | Connection Issue | Segmentation Error | Validity Check | Ghost Reps | Participant Excluded | Handling Error |
---|---|---|---|---|---|---|---|---|---|
AW Barbell | 578 | 290 | 288 | 19 | 2 | - | - | - | - |
AW Wrist | 547 | 282 | 265 | 49 | 3 | - | - | - | - |
Enode Pro Barbell | 496 | 258 | 238 | 36 | 17 | 17 | 25 | 1 (27 reps) | 6 |
Accuracy | |||||
---|---|---|---|---|---|
Device | Parameter | Slope | Intercept | SEE (m/s, %) | Correlation Coefficient (r) |
AW Barbell | Vmean | 1.022 | 0.001 | 0.049 | 0.976 |
[1.004, 1.041] | [−0.010, 0.012] | 8.1% | [0.971, 0.979] | ||
Vpeak | 1.112 | 0.023 | 0.092 | 0.959 | |
[1.087, 1.138] | [−0.006, 0.052] | 7.2% | [0.952, 0.965] | ||
Vprop | 1.045 | −0.006 | 0.05 | 0.977 | |
[1.027, 1.064] | [−0.016, 0.004] | 8.3% | [0.973, 0.981] | ||
AW Wrist | Vmean | 1.016 | −0.008 | 0.064 | 0.959 |
[0.992, 1.041] | [−0.023, 0.007] | 10.4% | [0.952, 0.965] | ||
Vpeak | 1.105 | 0.041 | 0.114 | 0.934 | |
[1.072, 1.139] | [0.003, 0.078] | 8.8% | [0.922, 0.944] | ||
Vprop | 1.029 | −0.013 | 0.062 | 0.964 | |
[1.006, 1.052] | [−0.027, −0.0] | 10.4% | [0.957, 0.969] | ||
Enode Pro Barbell | Vmean | 1.065 | −0.048 | 0.059 | 0.966 |
[1.041, 1.090] | [−0.063, −0.033] | 9.6% | [0.959, 0.971] | ||
Vpeak | 0.967 | 0.185 | 0.188 | 0.833 | |
[0.921, 1.016] | [0.131, 0.237] | 14.8% | [0.804, 0.858] | ||
Vprop | 0.990 | 0.038 | 0.113 | 0.882 | |
[0.949, 1.032] | [0.008, 0.055] | 19.1% | [0.860, 0.900] |
Wrist-Worn vs. Barbell-Mounted Apple Watch | ||
---|---|---|
Parameter | SEE (m/s, %) | Correlation Coefficient (r) |
Vmean | 0.063 | 0.958 |
10.6% | [0.950, 0.964] | |
Vpeak | 0.09 | 0.951 |
7.9% | [0.942, 0.958] | |
Vprop | 0.06 | 0.963 |
10.4% | [0.957, 0.969] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achermann, B.; Oberhofer, K.; Ferguson, S.J.; Lorenzetti, S.R. Velocity-Based Strength Training: The Validity and Personal Monitoring of Barbell Velocity with the Apple Watch. Sports 2023, 11, 125. https://doi.org/10.3390/sports11070125
Achermann B, Oberhofer K, Ferguson SJ, Lorenzetti SR. Velocity-Based Strength Training: The Validity and Personal Monitoring of Barbell Velocity with the Apple Watch. Sports. 2023; 11(7):125. https://doi.org/10.3390/sports11070125
Chicago/Turabian StyleAchermann, Basil, Katja Oberhofer, Stephen J. Ferguson, and Silvio R. Lorenzetti. 2023. "Velocity-Based Strength Training: The Validity and Personal Monitoring of Barbell Velocity with the Apple Watch" Sports 11, no. 7: 125. https://doi.org/10.3390/sports11070125
APA StyleAchermann, B., Oberhofer, K., Ferguson, S. J., & Lorenzetti, S. R. (2023). Velocity-Based Strength Training: The Validity and Personal Monitoring of Barbell Velocity with the Apple Watch. Sports, 11(7), 125. https://doi.org/10.3390/sports11070125