Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Familiarization Session
2.3. Training Program
2.4. Broad Jump Testing
2.5. Change of Direction Performance Test
2.6. Counter-Movement Jump Testing
2.7. Test 1RM Back Squat
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- English, K.L.; Loehr, J.A.; Lee, S.M.C.; Smith, S.M. Early-Phase Musculoskeletal Adaptations to Different Levels of Eccentric Resistance after 8 Weeks of Lower Body Training. Eur. J. Appl. Physiol. 2014, 114, 2263–2280. [Google Scholar] [CrossRef] [PubMed]
- Maeo, S.; Shan, X.; Otsuka, S.; Kanehisa, H.; Kawakami, Y. Neuromuscular Adaptations to Work-Matched Maximal Eccentric versus Concentric Training. Med. Sci. Sport. Exerc. 2018, 50, 1629–1640. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Wagle, J.P.; Douglas, J.; Taber, C.B.; Harden, M.; Haff, G.G.; Stone, M.H. Implementing Eccentric Resistance Training-Part 1: A Brief Review of Existing Methods. J. Funct. Morphol. Kinesiol. 2019, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blazevich, A.J.; Cannavan, D.; Coleman, D.R.; Horne, S. Influence of Concentric and Eccentric Resistance Training on Architectural Adaptation in Human Quadriceps Muscles. J. Appl. Physiol. 2007, 103, 1565–1575. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sport. Med. 2017, 47, 663–675. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sport. Med. 2017, 47, 917–941. [Google Scholar] [CrossRef]
- Franchi, M.V.; Atherton, P.J.; Reeves, N.D.; Flück, M.; Williams, J.; Mitchell, W.K.; Selby, A.; Beltran Valls, R.M.; Narici, M.V. Architectural, Functional and Molecular Responses to Concentric and Eccentric Loading in Human Skeletal Muscle. Acta Physiol. 2014, 210, 642–654. [Google Scholar] [CrossRef]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Naczk, M.; Brzenczek-Owczarzak, W.; Arlet, J.; Naczk, A.; Adach, Z. Training Effectiveness of the Inertial Training and Measurement System. J. Hum. Kinet. 2014, 44, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Maroto-Izquierdo, S.; García-López, D.; de Paz, J.A. Functional and Muscle-Size Effects of Flywheel Resistance Training with Eccentric-Overload in Professional Handball Players. J. Hum. Kinet. 2017, 60, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Naczk, M.; Naczk, A.; Brzenczek-Owczarzak, W.; Arlet, J.; Adach, Z. Impact of Inertial Training on Strength and Power Performance in Young Active Men. J. Strength Cond. Res. 2016, 30, 2107–2113. [Google Scholar]
- Bridgeman, L.A.; McGuigan, M.R.; Gill, N.D.; Dulson, D.K. Relationships between Concentric and Eccentric Strength and Countermovement Jump Performance in Resistance Trained Men. J. Strength Cond. Res. 2018, 32, 255–260. [Google Scholar] [CrossRef]
- Morgans, R.; Bezuglov, E.; Orme, P.; Burns, K.; Rhodes, D.; Babraj, J.; Di Michele, R.; Oliveira, R.F.S. The Physical Demands of Match-Play in Academy and Senior Soccer Players from the Scottish Premiership. Sports 2022, 10, 150. [Google Scholar] [CrossRef]
- de Keijzer, K.L.; Gonzalez, J.R.; Beato, M. The Effect of Flywheel Training on Strength and Physical Capacities in Sporting and Healthy Populations: An Umbrella Review. PLoS ONE 2022, 17, e0264375. [Google Scholar] [CrossRef]
- Petré, H.; Wernstål, F.; Mattsson, C.M. Effects of Flywheel Training on Strength-Related Variables: A Meta-Analysis. Sport. Med.-Open 2018, 4, 55. [Google Scholar] [CrossRef]
- Allen, W.J.C.; De Keijzer, K.L.; Raya-González, J.; Castillo, D.; Coratella, G.; Beato, M. Chronic Effects of Flywheel Training on Physical Capacities in Soccer Players: A Systematic Review. Res. Sport. Med. 2021, 31, 228–248. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Cè, E.; Scurati, R.; Milanese, C.; Schena, F.; Esposito, F. Effects of In-Season Enhanced Negative Work-Based vs Traditional Weight Training on Change of Direction and Hamstrings-to-Quadriceps Ratio in Soccer Players. Biol. Sport 2019, 36, 241–248. [Google Scholar] [CrossRef]
- Sagelv, E.H.; Pedersen, S.; Nilsen, L.P.R.; Casolo, A.; Welde, B.; Randers, M.B.; Pettersen, S.A. Flywheel Squats versus Free Weight High Load Squats for Improving High Velocity Movements in Football. A Randomized Controlled Trial. BMC Sport. Sci. Med. Rehabil. 2020, 12, 61. [Google Scholar] [CrossRef]
- Núñez, F.J.; Santalla, A.; Carrasquila, I.; Asian, J.A.; Reina, J.I.; Suarez-Arrones, L.J. The Effects of Unilateral and Bilateral Eccentric Overload Training on Hypertrophy, Muscle Power and COD Performance, and Its Determinants, in Team Sport Players. PLoS ONE 2018, 13, e0193841. [Google Scholar] [CrossRef]
- Gonzalo-Skok, O.; Moreno-Azze, A.; Arjol-Serrano, J.L.; Tous-Fajardo, J.; Bishop, C. A Comparison of 3 Different Unilateral Strength Training Strategies to Enhance Jumping Performance and Decrease Interlimb Asymmetries in Soccer Players. Int. J. Sport. Physiol. Perform. 2019, 14, 1256–1264. [Google Scholar] [CrossRef]
- Raya-González, J.; Castillo, D.; de Keijzer, K.L.; Beato, M. The Effect of a Weekly Flywheel Resistance Training Session on Elite U-16 Soccer Players’ Physical Performance during the Competitive Season. A Randomized Controlled Trial. Res. Sport. Med. 2021, 29, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Soriano, M.A.; Jiménez-Reyes, P.; Rhea, M.R.; Marín, P.J. The Optimal Load for Maximal Power Production during Lower-Body Resistance Exercises: A Meta-Analysis. Sport. Med. 2015, 45, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Sayers, M.G.L. Influence of Test Distance on Change of Direction Speed Test Results. J. Strength Cond. Res. 2015, 29, 2412–2416. [Google Scholar] [CrossRef]
- Janicijevic, D.; García-Ramos, A.; Lamas-Cepero, J.L.; García-Pinillos, F.; Marcos-Blanco, A.; Rojas, F.J.; Weakley, J.; Pérez-Castilla, A. Comparison of the Two Most Commonly Used Gold-Standard Velocity Monitoring Devices (GymAware and T-Force) to Assess Lifting Velocity during the Free-Weight Barbell Back Squat Exercise. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2021, 175433712110296. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Jukic, I.; Janicijevic, D.; Akyildiz, Z.; Senturk, D.; García-Ramos, A. Load-Velocity Relationship Variables to Assess the Maximal Neuromuscular Capacities during the Back-Squat Exercise. Sport. Health Multidiscip. Approach 2022, 14, 885–893. [Google Scholar] [CrossRef]
- Asencio, P.; Hernández-Davó, J.L.; García-Valverde, A.; Sabido, R. Effects of Flywheel Resistance Training Using Horizontal vs Vertical Exercises. Int. J. Sport. Sci. Coach. 2022, 174795412211353. [Google Scholar] [CrossRef]
- Muñoz-López, A.; de Souza Fonseca, F.; Ramírez-Campillo, R.; Gantois, P.; Javier Nuñez, F.; Nakamura, F.Y. The Use of Real-Time Monitoring during Flywheel Resistance Training Programmes: How Can We Measure Eccentric Overload? A Systematic Review and Meta-Analysis. Biol. Sport 2021, 38, 639–652. [Google Scholar] [CrossRef]
- Fry, A.C. The Role of Resistance Exercise Intensity on Muscle Fibre Adaptations. Sport. Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Nuñez, F.J.; de Hoyo, M.; López, A.M.; Sañudo, B.; Otero-Esquina, C.; Sanchez, H.; Gonzalo-Skok, O. Eccentric-Concentric Ratio: A Key Factor for Defining Strength Training in Soccer. Int. J. Sport. Med. 2019, 40, 796–802. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Martone, D.; Padulo, J. Acute Effects of Drop-Jump Protocols on Explosive Performances of Elite Handball Players. J. Strength Cond. Res. 2016, 30, 3122–3133. [Google Scholar] [CrossRef]
- Krzysztofik, M.; Wilk, M.; Pisz, A.; Kolinger, D.; Tsoukos, A.; Aschenbrenner, P.; Stastny, P.; Bogdanis, G.C. Effects of Unilateral Conditioning Activity on Acute Performance Enhancement: A Systematic Review. J. Sport. Sci. Med. 2022, 21, 625–639. [Google Scholar] [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; McMaster, D.T.; Reyneke, J.H.T.; Cronin, J.B. Effects of a Six-Week Hip Thrust vs. Front Squat Resistance Training Program on Performance in Adolescent Males: A Randomized Controlled Trial. J. Strength Cond. Res. 2017, 31, 999–1008. [Google Scholar] [CrossRef]
Group | Pre (95%CI) | Post (95%CI) | ANOVA | ||
---|---|---|---|---|---|
Between Group Effect | Group × Time Interaction | Main Effect of Time | |||
Counter-movement Jump Height [cm] | |||||
FSQ | 33.5 ± 2.9 (31.0 to 35.9) | 35.9 ± 2.8 * (33.1 to 38.6) | F = 0.140; p = 0.87; η2 = 0.013 | F = 3.543; p = 0.047; η2 = 0.252 | F = 20.239; p < 0.001; η2 = 0.491 |
LSQ | 34.1 ± 3.8 (31.7 to 36.6) | 36.5 ± 4 * (33.8 to 39.3) | |||
TRAD | 34.3 ± 3.2 (31.9 to 36.8) | 34.6 ± 4.3 (31.8 to 37.3) | |||
Counter-movement Jump Relative Peak Power [W/kg] | |||||
FSQ | 50.6 ± 3.3 (46.3 to 54.9) | 52.8 ± 3.0 (48.9 to 56.8) | F = 0.176; p = 0.840; η2 = 0.016 | F = 0.319; p = 0.730; η2 = 0.029 | F = 0.046; p = 0.832; η2 = 0.002 |
LSQ | 52.1 ± 6.8 (47.8 to 56.4) | 52.7 ± 7.4 (48.7 to 56.6) | |||
TRAD | 51.9 ± 6.8 (47.6 to 56.2) | 51.1 ± 4.9 (47.1 to 55.0) | |||
Counter-movement Jump Peak Velocity [m/s] | |||||
FSQ | 2.65 ± 0.16 (2.54 to 2.77) | 2.67 ± 0.08 (2.58 to 2.77) | F = 0.176; p = 0.840; η2 = 0.016 | F = 0.319; p = 0.730; η2 = 0.029 | F = 0.046; p = 0.832; η2 = 0.002 |
LSQ | 2.69 ± 0.17 (2.58 to 2.81) | 2.71 ± 0.15 (2.60 to 2.80) | |||
TRAD | 2.70 ± 0.14 (2.58 to 2.81) | 2.68 ± 0.14 (2.59 to 2.78) | |||
Counter-movement Jump Time to Take Off [ms] | |||||
FSQ | 769 ± 174 (671 to 866) | 810 ± 130 (716 to 904) | F = 0.388; p = 0.683; η2 = 0.036 | F = 0.004; p = 0.996; η2 = 0.000 | F = 1.820; p = 0.192; η2 = 0.080 |
LSQ | 751 ± 90 (653 to 848) | 786 ± 111 (692 to 880) | |||
TRAD | 722 ± 121 (624 to 820) | 759 ± 141 (664 to 853) | |||
Counter-movement Jump Depth [cm] | |||||
FSQ | 29.3 ± 7.8 (25.3 to 33.3) | 30.1 ± 5.6 (26.4 to 33.7) | F = 0.183; p = 0.834; η2 = 0.017 | F = 0.183; p = 0.834; η2 = 0.017 | F = 2.520; p = 0.127; η2 = 0.107 |
LSQ | 26.4 ± 5 (22.4 to 30.4) | 27.4 ± 5.4 (23.7 to 31.0) | |||
TRAD | 29.6 ± 1.7 (25.6 to 33.6) | 31.4 ± 3.6 (27.8 to 35.1) | |||
Broad-Jump Length [m] | |||||
FSQ | 2.38 ± 0.08 (2.25 to 2.52) | 2.40 ± 0.13 * (2.29 to 2.52) | F = 0.038; p = 0.962; η2 = 0.004 | F = 1.619; p = 0.222; η2 = 0.134 | F = 4.713; p = 0.042; η2 = 0.183 |
LSQ | 2.33 ± 0.15 (2.20 to 2.47) | 2.47 ± 0.09 * (2.36 to 2.59) | |||
TRAD | 2.37 ± 0.27 (2.23 to 2.50) | 2.40 ± 0.22 * (2.28 to 2.51) |
Group | Pre (95%CI) | Post (95%CI) | ANOVA | ||
---|---|---|---|---|---|
Between Group Effect | Group × Time Interaction | Main Effect of Time | |||
Turn with Dominant Leg [s] | |||||
FSQ | 2.31 ± 0.08 (2.24 to 2.38) | 2.28 ± 0.08 * (2.23 to 2.33) | F = 0.423; p = 0.66; η2 = 0.039 | F = 0.083; p = 0.921; η2 = 0.008 | F = 4.881; p = 0.038; η2 = 0.189 |
LSQ | 2.31 ± 0.08 (2.24 to 2.38) | 2.26 ± 0.04 * (2.21 to 2.31) | |||
TRAD | 2.33 ± 0.12 (2.26 to 2.40) | 2.30 ± 0.09 * (2.25 to 2.36) | |||
Turn with non-dominant Leg [s] | |||||
FSQ | 2.35 ± 0.06 (2.30 to 2.39) | 2.33 ± 0.09 (2.27 to 2.38) | F = 1.983; p = 0.163; η2 = 0.159 | F = 0.474; p = 0.629; η2 = 0.043 | F = 1.299; p = 0.267; η2 = 0.058 |
LSQ | 2.31 ± 0.08 (2.26 to 2.36) | 2.29 ± 0.08 (2.23 to 2.34) | |||
TRAD | 2.36 ± 0.06 (2.31 to 2.41) | 2.37 ± 0.06 (2.31 to 2.42) | |||
1RM Back Squat [kg] | |||||
FSQ | 120 ± 16 (107 to 132) | 133 ± 21 * (119 to 147) | F = 1.470; p = 0.253; η2 = 0.123 | F = 2.193; p = 0.136; η2 = 0.173 | F = 15.448; p = 0.001; η2 = 0.424 |
LSQ | 110 ± 16 (97 to 122) | 114 ± 17 * (100 to 128) | |||
TRAD | 120 ± 19 (107 to 132) | 125 ± 19 * (111 to 139) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarosz, J.; Królikowska, P.; Matykiewicz, P.; Aschenbrenner, P.; Ewertowska, P.; Krzysztofik, M. Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players. Sports 2023, 11, 124. https://doi.org/10.3390/sports11070124
Jarosz J, Królikowska P, Matykiewicz P, Aschenbrenner P, Ewertowska P, Krzysztofik M. Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players. Sports. 2023; 11(7):124. https://doi.org/10.3390/sports11070124
Chicago/Turabian StyleJarosz, Jakub, Paulina Królikowska, Patryk Matykiewicz, Piotr Aschenbrenner, Paulina Ewertowska, and Michał Krzysztofik. 2023. "Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players" Sports 11, no. 7: 124. https://doi.org/10.3390/sports11070124
APA StyleJarosz, J., Królikowska, P., Matykiewicz, P., Aschenbrenner, P., Ewertowska, P., & Krzysztofik, M. (2023). Effects of Flywheel vs. Free-Weight Squats and Split Squats on Jumping Performance and Change of Direction Speed in Soccer Players. Sports, 11(7), 124. https://doi.org/10.3390/sports11070124