The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects
Abstract
:1. Introduction
2. Secondary Metabolites—Origin and Synthesis Roles in Plants
3. Epigenetic Modifications in Plants Related to Metabolite Production
3.1. Epigenetic Modifications at the DNA Level
3.2. Histone Modifications
3.3. Chromatin Remodeling
3.4. Non-Coding RNAs
4. Stress Signaling and Metabolic Reprograming
Primary and Secondary Metabolism: Pathways and Crosstalk
5. Plant Memory: Mechanisms and Implications
5.1. Concept of Plant Memory
5.2. Stress Recovery and Memory Retention
5.3. Regulatory Networks in Phenylpropanoid and Lignin Biosynthesis
5.4. Transgenerational Memory and Metabolite Production
5.5. Stress-Induced Secondary Metabolite Synthetic Pathway Activation
5.6. Temporal Dynamics of Epigenetic Changes Under Stress
6. Applications and Future Directions
6.1. Biotechnological Implications
6.2. Crop Improvement
6.3. Emerging Technologies
6.4. Opportunities and Challenges for Application
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- He, M.; He, C.Q.; Ding, N.Z. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar]
- Willis, K.J. (Ed.) State of the World’s Plants; Report; Royal Botanic Gardens: London, UK, 2017. [Google Scholar]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef]
- Bond, D.M.; Baulcombe, D.C. Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol. 2015, 25, 537–550. [Google Scholar]
- Cao, S.; Wang, L.; Han, T.; Ye, W.; Liu, Y.; Sun, Y.; Moose, S.P.; Song, O.; Chen, Z.J. Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize. Genome Biol. 2022, 23, 53. [Google Scholar]
- Ueda, M.; Seki, M. Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol. 2020, 182, 15–26. [Google Scholar]
- Van Dijk, K.; Ding, Y.; Malkaram, S.; Riethoven, J.J.M.; Liu, R.; Yang, J.; Laczko, P.; Chen, H.; Xia, Y.; Ladunga, I.; et al. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol. 2010, 10, 238. [Google Scholar]
- Papikian, A.; Liu, W.; Gallego-Bartolomé, J.; Jacobsen, S.E. Site-specific manipulation of Arabidopsis loci using CRISPR–Cas9 SunTag systems. Nat. Commun. 2019, 10, 729. [Google Scholar]
- Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant secondary metabolites: An opportunity for circular economy. Molecules 2021, 26, 49. [Google Scholar] [CrossRef]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Aromat. Plants 2018, 9, 26–38. [Google Scholar]
- Maeda, H.; Dudareva, N. The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar]
- Schneider, H.M. Characterization, costs, cues and future perspectives of phenotypic plasticity. Ann. Bot. 2022, 130, 131–148. [Google Scholar]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Jan, R.; Asaf, S.; Numan, M.; Lubna; Kim, K.M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy 2021, 11, 968. [Google Scholar] [CrossRef]
- Dixon, R.A.; Ferreira, D. Genistein. Phytochemistry 2002, 60, 205–211. [Google Scholar]
- Fine, P.V.; Miller, Z.J.; Mesones, I.; Irazuzta, S.; Appel, H.M.; Stevens, M.H.H.; Sääksjärvi, I.; Schultz, J.C.; Coley, P.D. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 2006, 87, S150–S162. [Google Scholar]
- Xu, C.; Tang, X.; Shao, H.; Wang, H. Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Curr. Genom. 2016, 17, 207–214. [Google Scholar]
- Zamljen, T.; Medic, A.; Hudina, M.; Veberic, R.; Slatnar, A. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity level. Plants 2022, 11, 853. [Google Scholar] [CrossRef]
- Caser, M.; Chitarra, W.; D’Angiolillo, F.; Perrone, I.; Demasi, S.; Lovisolo, C.; Pistelli, L.; Pistelli, L.; Scariot, V. Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind. Crops Prod. 2019, 129, 85–96. [Google Scholar]
- Zoratti, L.; Karppinen, K.; Escobar, A.L.; Hã¤Ggman, H.; Jaakola, L. Light-controlled flavonoid biosynthesis in fruits. Front. Plant Sci. 2014, 5, 534. [Google Scholar]
- Yang, B.; Zheng, J.; Laaksonen, O.; Tahvonen, R.; Kallio, H. Effects of latitude and weather conditions on phenolic compounds in currant (Ribes spp.) cultivars. J. Agric. Food Chem. 2013, 61, 3517–3532. [Google Scholar]
- Nasim, S.A.; Dhir, B. Heavy metals alter the potency of medicinal plants. Rev. Environ. Contam. Toxicol. 2010, 203, 139–149. [Google Scholar]
- Rai, R.; Pandey, S.; Rai, S.P. Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology 2011, 20, 1900–1913. [Google Scholar]
- Chen, S.; Wang, Q.; Lu, H.; Li, J.; Yang, D.; Liu, J.; Yan, C. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia obovata under Cd and Zn stress. Ecotoxicol. Environ. Saf. 2019, 169, 134–143. [Google Scholar]
- Baier, M.; Kandlbinder, A.; Golldack, D.; Dietz, K.J. Oxidative stress and ozone: Perception, signalling and response. Plant Cell Environ. 2005, 28, 1012–1020. [Google Scholar]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar]
- Zhang, H.; Lang, Z.; Zhu, J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 2018, 19, 489–506. [Google Scholar]
- Godínez-Mendoza, P.L.; Rico-Chávez, A.K.; Ferrusquía-Jimenez, N.I.; Carbajal-Valenzuela, I.A.; Villagómez-Aranda, A.L.; Torres-Pacheco, I.; Guevara-González, R.G. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. Sci. Total Environ. 2023, 894, 164883. [Google Scholar] [CrossRef]
- Han, M.; Lin, S.; Zhu, B.; Tong, W.; Xia, E.; Wang, Y.; Yang, T.; Zhang, S.; Wan, X.; Liu, J.; et al. Dynamic DNA methylation regulates season-dependent secondary metabolism in the new shoots of tea plants. J. Agric. Food Chem. 2024, 72, 3984–3997. [Google Scholar]
- Kinoshita, T.; Seki, M. Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 2014, 55, 1859–1863. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; To, T.K.; Nishioka, T.; Seki, M. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ. 2010, 33, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, X.; Gao, Y.; Zhou, C.; Chiang, V.L.; Li, W. Histone acetylation changes in plant response to drought stress. Genes 2021, 12, 1409. [Google Scholar] [CrossRef]
- Sicilia, A.; Scialò, E.; Puglisi, I.; Lo Piero, A.R. Anthocyanin biosynthesis and DNA methylation dynamics in sweet orange fruit (Citrus sinensis L. [Osbeck]) under cold stress. J. Agric. Food Chem. 2020, 68, 7024–7031. [Google Scholar] [CrossRef]
- Han, S.K.; Sang, Y.; Rodrigues, A.; Wu, M.F.; Rodriguez, P.L.; Wagner, D. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 2012, 24, 4892–4906. [Google Scholar] [CrossRef]
- Lämke, J.; Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017, 18, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Meng, X.; Dobrovolskaya, O.B.; Orlov, Y.L.; Chen, M. Non-coding RNAs and their roles in stress response in plants. Genom. Proteom. Bioinform. 2017, 15, 301–312. [Google Scholar] [CrossRef]
- Camargo-Ramírez, R.; Val-Torregrosa, B.; Segundo, B.S. MiR858-mediated regulation of flavonoid-specific MYB transcription factor genes controls resistance to pathogen infection in Arabidopsis. Plant Cell Physiol. 2018, 59, 190–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.; Lin, X.; He, C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci. Hortic. 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Jing, X.; Xu, L.; Huai, X.; Zhang, H.; Zhao, F.; Qiao, Y. Genome-wide identification and characterization of Argonaute, Dicer-like and RNA-dependent RNA polymerase gene families and their expression analyses in Fragaria spp. Genes 2023, 14, 121. [Google Scholar] [CrossRef]
- Kim, D.H.; Sung, S. Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr. Opin. Plant Biol. 2012, 15, 51–56. [Google Scholar] [PubMed]
- Li, C.; Wang, M.; Qiu, X.; Zhou, H.; Lu, S. Noncoding RNAs in medicinal plants and their regulatory roles in bioactive compound production. Curr. Pharm. Biotechnol. 2021, 22, 341–359. [Google Scholar] [PubMed]
- Opdenakker, K.; Remans, T.; Vangronsveld, J.; Cuypers, A. Mitogen-activated protein (MAP) kinases in plant metal stress: Regulation and responses in comparison to other biotic and abiotic stresses. Int. J. Mol. Sci. 2012, 13, 7828–7853. [Google Scholar] [CrossRef]
- Haswell, E.S.; Peyronnet, R.; Barbier-Brygoo, H.; Meyerowitz, E.M.; Frachisse, J.M. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 2008, 18, 730–734. [Google Scholar] [CrossRef]
- Pfalz, J.; Oelmüller, R. Plastid retrograde signals: More to discover. In Sensory Biology of Plants; Springer: Berlin/Heidelberg, Germany, 2019; pp. 477–507. [Google Scholar]
- Baena-González, E.; Hanson, J. Shaping plant development through the SnRK1–TOR metabolic regulators. Curr. Opin. Plant Biol. 2017, 35, 152–157. [Google Scholar]
- Chini, A.; Gimenez-Ibanez, S.; Goossens, A.; Solano, R. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 2016, 33, 147–156. [Google Scholar]
- Fang, H.; Liu, X.; Thorn, G.; Duan, J.; Tian, L. Expression analysis of histone acetyltransferases in rice under drought stress. Biochem. Biophys. Res. Commun. 2014, 443, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Samsami, H.; Maali-Amiri, R. Global insights into intermediate metabolites: Signaling, metabolic divergence and stress response modulation in plants. Plant Physiol. Biochem. 2024, 213, 108862. [Google Scholar]
- Zhang, B.; Tieman, D.M.; Jiao, C.; Xu, Y.; Chen, K.; Fei, Z.; Giovannoni, J.J.; Klee, H.J. Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci. USA 2016, 113, 12580–12585. [Google Scholar] [CrossRef]
- Crepin, N.; Rolland, F. SnRK1 activation, signaling, and networking for energy homeostasis. Curr. Opin. Plant Biol. 2019, 51, 29–36. [Google Scholar] [CrossRef]
- Xiao, Y.; Savchenko, T.; Baidoo, E.E.K.; Chehab, W.E.; Hayden, D.M.; Tolstikov, V.; Corwin, J.A.; Kliebenstein, D.J.; Keasling, J.D.; Dehesh, K. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 2012, 149, 1525–1535. [Google Scholar]
- BiBiswas, P.; Ghorai, M.; Pandey, D.K.; Singh, J.; Al-Tawaha, A.R.; Bursal, E.; Kumar, V.; Nongdam, P.; Shekhawat, M.S.; Batiha, G.E.-S.; et al. Regulation of expression of transcription factors for enhanced secondary metabolites production under challenging conditions. In Environmental Challenges and Medicinal Plants: Sustainable Production Solutions Under Adverse Conditions; Springer International Publishing: Cham, Switzerland, 2022; pp. 249–280. [Google Scholar]
- Boyko, A.; Kovalchuk, I. Epigenetic control of plant stress response. Environ. Mol. Mutagen. 2008, 49, 61–72. [Google Scholar]
- Crisp, P.A.; Ganguly, D.R.; Eichten, S.R.; Borevitz, J.O.; Pogson, B.J. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2016, 2, e1501340. [Google Scholar]
- Kashyap, S.; Agarwala, N.; Sunkar, R. Understanding plant stress memory traits can provide a way for sustainable agriculture. Plant Sci. 2024, 340, 111954. [Google Scholar] [PubMed]
- Lukić, N.; Schurr, F.M.; Trifković, T.; Kukavica, B.; Walter, J. Transgenerational stress memory in plants is mediated by upregulation of the antioxidative system. Environ. Exp. Bot. 2023, 205, 105129. [Google Scholar]
- Shilpa, R.T.; Prasad, P. Epigenetic regulation of abiotic stress responses in plants. Biochim. Biophys. Acta 2024, 1868, 130661. [Google Scholar]
- Gaude, A.A.; Siqueira, R.H.; Botelho, S.B.; Jalmi, S.K. Epigenetic arsenal for stress mitigation in plants. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2024, 1868, 130620. [Google Scholar]
- Kumari, S.; Nazir, F.; Maheshwari, C.; Kaur, H.; Gupta, R.; Siddique, K.H.M.; Khan, M.I.R. Plant hormones and secondary metabolites under environmental stresses: Enlightening defense molecules. Plant Physiol. Biochem. 2024, 206, 108238. [Google Scholar]
- Koza, N.A.; Adedayo, A.A.; Babalola, O.O.; Kappo, A.P. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 2022, 10, 1528. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.K. Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 2009, 12, 133–139. [Google Scholar]
- Le, T.N.; Schumann, U.; Smith, N.A.; Tiwari, S.; Zhang, C. DNA demethylases target promoter transposable elements to positively regulate stress-responsive genes in Arabidopsis. Genes Dev. 2014, 28, 699–709. [Google Scholar]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant secondary metabolites produced in response to abiotic stresses have potential application in pharmaceutical product development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, G.; Berni, R.; Muñoz-Sanchez, J.A.; Apone, F.; Abdel-Salam, E.M.; Qahtan, A.A.; Alatar, A.A.; Cantini, C.; Cai, G.; Hausman, J.-F.; et al. Production of plant secondary metabolites: Examples, tips, and suggestions for biotechnologists. Genes 2018, 9, 309. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [PubMed]
- Zhou, J.; Lee, C.; Zhong, R.; Ye, Z.H. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 2009, 21, 248–266. [Google Scholar] [PubMed]
- Zhong, R.; Ye, Z.H. Transcriptional regulation of lignin biosynthesis. Plant Signal. Behav. 2009, 4, 1028–1034. [Google Scholar]
- Hussey, S.G.; Mizrachi, E.; Creux, N.M.; Myburg, A.A. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. Front. Plant Sci. 2013, 4, 325. [Google Scholar]
- Pireyre, M.; Burow, M. Regulation of MYB and bHLH transcription factors: A glance at the protein level. Mol. Plant 2015, 8, 378–388. [Google Scholar] [CrossRef]
- Wasternack, C.; Song, S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 2017, 68, 1303–1321. [Google Scholar]
- De Zélicourt, A.; Colcombet, J.; Hirt, H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 2016, 21, 677–685. [Google Scholar] [CrossRef]
- Grativol, C.; Hemerly, A.S.; Ferreira, P.C.G. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim. Biophys. Acta Gene Regul. Mech. 2012, 1819, 176–185. [Google Scholar]
- Mojzes, A.; Kalapos, T.; Kröel-Dulay, G. Drought in maternal environment boosts offspring performance in a subordinate annual grass. Environ. Exp. Bot. 2021, 187, 104472. [Google Scholar]
- Alsdurf, J.D.; Ripley, T.J.; Matzner, S.L.; Siemens, D.H. Drought-induced trans-generational tradeoff between stress tolerance and defence: Consequences for range limits? AoB Plants 2013, 5, plt038. [Google Scholar] [PubMed]
- Yadav, N.S.; Titov, V.; Ayemere, I.; Byeon, B.; Ilnytskyy, Y.; Kovalchuk, I. Multigenerational exposure to heat stress induces phenotypic resilience, and genetic and epigenetic variations in Arabidopsis thaliana offspring. Front. Plant Sci. 2022, 13, 728167. [Google Scholar]
- Wibowo, A.; Becker, C.; Marconi, G.; Durr, J.; Price, J.; Hagmann, J.; Papareddy, R.; Putra, H.; Kageyama, J.; Becker, J.; et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 2016, 5, e13546. [Google Scholar]
- Migicovsky, Z.; Yao, Y.; Kovalchuk, I. Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal. Behav. 2014, 9, e27971. [Google Scholar] [PubMed]
- Agrawal, A. Transgenerational consequences of plant responses to herbivory: An adaptive maternal effect? Am. Nat. 2001, 157, 555–569. [Google Scholar]
- Agrawal, A. Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance. Ecology 2002, 83, 3408–3415. [Google Scholar]
- Holeski, L.M. Within and between generation phenotypic plasticity in trichome density of Mimulus guttatus. J. Evol. Biol. 2007, 20, 2092–2100. [Google Scholar]
- Scoville, A.G.; Barnett, L.L.; Bodbyl-Roels, S.; Kelly, J.K.; Hileman, L.C. Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol. 2011, 191, 251–263. [Google Scholar]
- Wu, X.; Xia, M.; Su, P.; Zhang, Y.; Tu, L.; Zhao, H.; Gao, W.; Huang, L.; Hu, Y. MYB transcription factors in plants: A comprehensive review of their discovery, structure, classification, functional diversity and regulatory mechanism. Int. J. Biol. Macromol. 2024, 282, 136652. [Google Scholar] [CrossRef] [PubMed]
- Gutzat, R.; Scheid, O.M. Epigenetic responses to stress: Triple defense? Curr. Opin. Plant Biol. 2012, 15, 568–573. [Google Scholar] [CrossRef]
- Yang, J.; Gu, D.; Wu, S.; Zhou, X.; Chen, J.; Liao, Y.; Zeng, L.; Yang, Z. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Hortic. Res. 2021, 8, 253. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, P.; Verma, V.; Sharma, R.; Bhargava, B.; Irfan, M. Understanding plant stress memory response for abiotic stress resilience: Molecular insights and prospects. Plant Physiol. Biochem. 2022, 179, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Lephatsi, M.M.; Meyer, V.; Piater, L.A.; Dubery, I.A.; Tugizimana, F. Plant responses to abiotic stresses and rhizobacterial biostimulants: Metabolomics and epigenetics perspectives. Metabolites 2021, 11, 457. [Google Scholar] [CrossRef]
- Yadav, R.K.; Sangwan, R.S.; Sabir, F.; Srivastava, A.K.; Sangwan, N.S. Effect of prolonged water stess on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol. Biochem. 2013, 65, 96–104. [Google Scholar]
- Li, Y.; Luo, Z.Q.; Yuan, J.; Wang, S.; Liu, J.; Su, P.; Zhou, J.H.; Li, X.; Yang, J.; Guo, L.P. Metabolic and transcriptional stress memory in Sorbus pohuashanensis suspension cells induced by yeast extract. Cells 2022, 11, 3757. [Google Scholar] [CrossRef]
- Liu, B.; Lei, C.; Shu, T.; Zhang, Y.; Jin, J.; Li, S.; Liu, W. Effects of low-temperature stress on secondary metabolism in mosses exposed to simulated nitrogen deposition. Plant Ecol. Divers. 2015, 8, 415–426. [Google Scholar] [CrossRef]
- Kulak, M. Recurrent drought stress effects on essential oil profile of Lamiaceae plants: An approach regarding stress memory. Ind. Crops Prod. 2020, 154, 112695. [Google Scholar] [CrossRef]
- Ali, S.; Khan, N.; Tang, Y. Epigenetic marks for mitigating abiotic stresses in plants. J. Plant Physiol. 2022, 275, 153740. [Google Scholar] [CrossRef]
- Sunkar, R.; Chinnusamy, V.; Zhu, J.; Zhu, J.K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci. 2007, 12, 301–309. [Google Scholar] [PubMed]
- Johannes, F.; Porcher, E.; Teixeira, F.K.; Saliba-Colombani, V.; Simon, M.; Agier, N.; Bulski, A.; Albuisson, J.; Heredia, F.; Audigier, P.; et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009, 5, e1000530. [Google Scholar] [CrossRef] [PubMed]
- Suter, L.; Widmer, A. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS ONE 2013, 8, e60364. [Google Scholar]
- Mladenov, V.; Fotopoulos, V.; Kaiserli, E.; Karalija, E.; Maury, S.; Baranek, M.; Segal, N.; Testillano, P.S.; Vassileva, V.; Pinto, G.; et al. Deciphering the epigenetic alphabet involved in transgenerational stress memory in crops. Int. J. Mol. Sci. 2021, 22, 7118. [Google Scholar] [CrossRef]
- Fleta-Soriano, E.; Munné-Bosch, S. Stress memory and the inevitable effects of drought: A physiological perspective. Front. Plant Sci. 2016, 7, 143. [Google Scholar]
- Khadfy, Z.; Atifi, H.; Mamouni, R.; Jadouali, S.M.; Chartier, A.; Nehmé, R.; Karra, Y.; Tahiri, A. Nutraceutical and cosmetic applications of bioactive compounds of Saffron (Crocus sativus L.) stigmas and its by-products. S. Afr. J. Bot. 2023, 163, 250–261. [Google Scholar]
- Mahmoudieh, M.; Naghavi, M.R.; Sobri, Z.M.; Azzeme, A.M.; Abd-Aziz, N.; Abd Rahman, N.M.A.N.; Alitheen, N.B.; Hussin, Y.; Bahmanrokh, G.; Baharum, N.A. Biotechnological approaches in the production of plant secondary metabolites for treating human viral diseases: Prospects and challenges. Biocatal. Agric. Biotechnol. 2024, 59, 103249. [Google Scholar] [CrossRef]
- Hilal, B.; Khan, M.M.; Fariduddin, Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: Phenolics, terpenes, and alkaloids. Plant Physiol. Biochem. 2024, 211, 108674. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. International natural product sciences taskforce. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Fazili, M.A.; Bashir, I.; Ahmad, M.; Yaqoob, U.; Geelani, S.N. In vitro strategies for the enhancement of secondary metabolite production in plants: A review. Bull. Nat. Res. Cent. 2022, 46, 35. [Google Scholar]
- Wu, W.; Fan, G. The role of epigenetics in plant pathogens interactions under the changing environments; A systematic review. Plant Stress 2025, 15, 100753. [Google Scholar]
- Kessler, A.; Baldwin, I.T. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science 2001, 291, 2141–2144. [Google Scholar]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [PubMed]
- Steward, N.; Ito, M.; Yamaguchi, Y.; Koizumi, N.; Sano, H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J. Biol. Chem. 2002, 277, 37741–37746. [Google Scholar]
- Hossain, M.S.; Kawakatsu, T.; Kim, K.D.; Zhang, N.; Nguyen, C.T.; Khan, S.M.; Batek, J.M.; Joshi, T.; Schmutz, J.; Grimwood, J.; et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol. 2017, 214, 808–819. [Google Scholar] [PubMed]
- Po-Wen, P.; Singh, L.Z. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 2013, 14, 58–70. [Google Scholar] [PubMed]
- Pandey, G.; Sharma, N.; Sahu, P.P.; Prasad, M. Chromatin-based epigenetic regulation of plant abiotic stress response. Curr. Genom. 2016, 17, 490–498. [Google Scholar]
- López Sánchez, A.; Stassen, J.H.; Furci, L.; Smith, L.M.; Ton, J. The role of DNA (de) methylation in immune responsiveness of Arabidopsis. Plant Sci. J. 2016, 88, 361–374. [Google Scholar]
- Iqbal, B.; Zhao, X.; Khan, K.Y.; Javed, Q.; Nazar, M.; Khan, I.; Zhao, X.; Li, G.; Du, D. Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. Sci. Total Environ. 2024, 906, 167756. [Google Scholar]
- Thiebaut, F.; Hemerly, A.S.; Ferreira, P.C.G. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front. Plant Sci. 2019, 10, 246. [Google Scholar]
- Cong, W.; Li, N.; Miao, Y.; Huang, Y.; Zhao, W.; Kang, Y.; Zhang, B.; Wang, J.; Zhang, J.; Lv, Y.; et al. DNA hypomethylation-associated transcriptional rewiring enables resistance to heavy metal mercury (Hg) stress in rice. J. Hazard. Mater. 2024, 461, 132649. [Google Scholar]
- Chmielowska-Bąk, J.; Searle, I.R.; Wakai, T.N.; Arasimowicz-Jelonek, M. The role of epigenetic and epitranscriptomic modifications in plants exposed to non-essential metals. Front. Plant Sci. 2023, 14, 1278185. [Google Scholar]
- Verma, V.; Kumar, A.; Partap, M.; Thakur, M.; Bhargava, B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. Front. Plant Sci. 2023, 14, 1122940. [Google Scholar]
- Navarro, L.; Dunoyer, P.; Jay, F.; Arnold, B.; Dharmasiri, N.; Estelle, M.; Voinnet, O.; Jones, J.D.G. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006, 312, 436–439. [Google Scholar] [PubMed]
- Singh, V.K.; Ahmed, S.; Saini, D.K.; Gahlaut, V.; Chauhan, S.; Khandare, K.; Kumar, A.; Sharma, P.K.; Kumar, J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim. Biophys. Acta 2024, 1868, 130544. [Google Scholar] [CrossRef] [PubMed]
- Tenllado, F.; Dıaz-Ruız, J.R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 2001, 75, 12288–12297. [Google Scholar]
- Nishihara, M.; Nakatsuka, T.; Yamamura, S. Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett. 2005, 579, 6074–6078. [Google Scholar] [PubMed]
- Hauben, M.; Haesendonckx, B.; Standaert, E.; Van Der Kelen, K.; Azmi, A.; Akpo, H.; Van Breusegem, F.; Guisez, Y.; Bots, M.; Lambert, B.; et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl. Acad. Sci. USA 2009, 106, 20109–20114. [Google Scholar]
- Kooke, R.; Morgado, L.; Becker, F.; van Eekelen, H.; Hazarika, R.; Zheng, Q.; de Vos, R.C.; Johannes, F.; Keurentjes, J.J. Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map. Genome Res. 2019, 29, 96–106. [Google Scholar]
- Ogneva, Z.V.; Suprun, A.; Dubrovina, A.S.; Kiselev, K.V. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Prot. Sci. 2019, 55, 73–80. [Google Scholar]
- Marfil, F.; Asurmendi, S.; Masuelli, R.W. Changes in micro-RNA expression in a wild tuber-bearing Solanum species induced by 5-Azacytidine treatment. Plant Cell Rep. 2012, 31, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Miura, T.; Wada, K.C.; Takeno, K. Induction of flowering by 5-azacytidine in some plant species: Relationship between the stability of photoperiodically induced flowering and flower-inducing effect of DNA demethylation. Physiol. Plant. 2007, 131, 462–469. [Google Scholar] [CrossRef]
- Mondal, P.; Natesh, J.; Penta, D.; Meeran, S.M. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: A clinical update. Semin. Cancer Biol. 2022, 83, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.T.; Shah, J.M. Biotic stress-induced epigenetic changes and transgenerational memory in plants. Biologia 2022, 77, 2007–2021. [Google Scholar] [CrossRef]
- Iqbal, B.; Ahmad, N.; Li, G.; Jalal, A.; Khan, A.R.; Zheng, X.; Naeem, M.; Du, D. Unlocking plant resilience: Advanced epigenetic strategies against heavy metal and metalloid stress. Plant Sci. 2024, 349, 112265. [Google Scholar] [CrossRef] [PubMed]
- Abdulraheem, M.I.; Xiong, Y.; Moshood, A.Y.; Cadenas-Pliego, G.; Zhang, H.; Hu, J. Mechanisms of plant epigenetic regulation in response to plant stress: Recent discoveries and implications. Plants 2024, 13, 163. [Google Scholar] [CrossRef]
- Aboud, N.M.A.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Carvalho Lemos, V.; Reimer, J.J.; Wormit, A. Color for life: Biosynthesis and distribution of phenolic compounds in pepper (Capsicum annuum). Agriculture 2019, 9, 81. [Google Scholar] [CrossRef]
Plant Species | Stress Type | Secondary Metabolite | Identified Epigenetic Control | Memory in Progeny? |
---|---|---|---|---|
Artemisia annua [89] | Water deficit | Artemisinin | DNA methylation and histone acetylation | No clear evidence |
Sorbus pohuashanensis [90] | Biotic stress (yeast extract) | Biphenyl phytoalexins | Altered histone marks and DNA methylation | Yes, short-term |
Mosses (Pogonatum cirratum, Hypnum plumaeforme) [91] | Low-temperature stress | Phenylpropanoids, triterpenes | DNA methylation | Partial, species-specific |
Lamiaceae (Rosmarinus officinalis, Salvia officinalis, etc.) [92] | Recurrent drought stress | Essential oils (α-pinene, D-limonene, eucalyptol) | Histone methylation | Yes, short-term |
Camellia sinensis [86] | UV and drought stress | Catechins, L-theanine | Histone acetylation and DNA methylation | Not clear |
Catharanthus roseus [87] | Drought stress | Vinblastine, vincristine | Histone methylation and chromatin remodeling | Yes, transgenerational |
Medicago truncatula [88] | Salinity stress | Flavonoids | Chromatin remodeling and miRNA regulation | No |
Thymus vulgaris [92] | Reduced irrigation | Thymol, carvacrol | Epigenetic priming (DNA methylation) | Yes, short-term |
Glycine max (soybean) [93] | Drought stress | Isoflavonoids | DNA methylation and histone modifications | Yes, transgenerational |
Populus tremula [87] | Pathogen attack | Salicylates | DNA demethylation | Yes, transgenerational |
Nicotiana tabacum [65] | Drought and salinity stress | Alkaloids (e.g., nicotine) | Small RNAs and chromatin remodeling | Not clear |
Method | Description | Application Examples |
---|---|---|
miRNAs [104,117] | MicroRNAs (miRNAs), small non-coding RNAs, regulate gene expression at the post-transcriptional level and are key players in plant–pathogen interactions. They control immune responses, stress signaling, and cross-kingdom communication. miRNAs interact with other epigenetic mechanisms, like DNA methylation and histone modifications, influencing chromatin dynamics and gene regulation. Environmental factors, such as temperature and drought, can also impact miRNA activity during pathogen attacks. Understanding and manipulating miRNA pathways offers potential for improving plant immunity and developing new crop protection strategies. | mi393—One of the most studied miRNAs in plant immunity. mi398—Involved in regulating oxidative stress during pathogen attack. |
Exo-RNAi [118,119,120] | RNAi has gained attention in agriculture for enhancing disease resistance, plant development, and crop traits. Traditionally, this was achieved by introducing transgenes into plants, but resistance to genetically modified (GM) crops has limited their use. As a non-transgenic alternative, researchers now use exogenous RNA molecules (exo-RNAi) in plants. Exogenous dsRNAs, siRNAs, or hpRNAs can activate RNAi and protect plants from pathogens such as viruses, fungi, and insects. RNAi is initiated when dsRNA is processed into small interfering RNAs (siRNAs) by dicer-like endonucleases. Methods for applying RNA molecules include spraying, injection, infiltration, and soaking. The main limitation of exogenously applied naked dsRNAs is their short stability. | External application of dsRNAs and siRNAs has proven effective in protecting plants like barley, tomatoes, strawberries, and soybeans from fungal pathogens.Co-injecting dsRNAs targeting the replicase protein gene of Pepper mild mottle virus, Tobacco etch virus, and Alfalfa mosaic virus into tobacco leaves significantly reduced viral infections.RNAi-based genetic transformation targeting the carotenoid cleavage dioxygenase gene aimed to regulate branch growth and increase the number of branches in kiwi plants. |
epiRILs [118,121,122] | epiRILs are crucial for crop improvement and genetics, helping researchers to understand epigenetic effects like DNA methylation on plant traits. They are valuable for studying the heritability of epigenetic traits and exploring the use of epigenetic variation in crop breeding to advance improvement strategies. | Studies with epiRILs in Arabidopsis have shown that stress-induced epigenetic changes can be heritable, providing phenotypic plasticity that helps plants withstand stress. |
CRISPR/Cas [93] | This gene-editing technology is still relatively new but rapidly advancing and revolutionizing the ability to modify plant genomes with precision, especially for secondary metabolite production. | CRISPR/Cas-based epigenome editing improved salt tolerance in maize by modifying epigenetic markers, altering gene expression for ion homeostasis and osmotic control. In wheat, epigenetic changes under heat stress induced transgenerational stress memory, enhancing long-term heat tolerance. |
Inhibition of DNA methylation [118,123,124,125] | This method targets DNA methylation to regulate gene expression and plant traits, including secondary metabolite pathways. Compounds like 5-AzaC and zebularine, non-methylable cytidine analogs, are commonly used, though researchers are exploring more stable alternatives. | In addition to Arabidopsis, many plant species have been studied using 5-aza or aza-dC to explore DNA methylation’s role. In carrots, 5-aza suppressed embryogenic cell clump formation. It induced flowering in Silene armeria, Pharbitis nil, and Perilla frutescens, independent of photoperiodic conditions. In Solanum ruiz-lealii, 5-aza induced early flowering and leaf morphology changes, likely due to increased miR172 transcription. |
Inhibition of histone deacetylation and demethylation [49,118,126,127] | The second major group of histone deacetylase inhibitors includes amino-benzamides, hydroxamic acids, short-chain fatty acids, and cyclic peptides. Compounds like butyrate and trichostatin A inhibit histone deacetylation. Trichostatin A and suberoylanilide hydroxamic acid inhibit HDAC, increasing histone acetylation and loosening chromatin to activate stress-responsive genes. Small molecules targeting histone acetyltransferases can also enhance acetylation, promoting an open chromatin state for stress-related gene expression. | These epigenetically active drugs are now primarily used in plant tissue culture therapy.Histone acetylation changes in drought-stressed rice enhanced drought-related gene expression, improving water-use efficiency and resistance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibragić, S.; Dahija, S.; Karalija, E. The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects. Epigenomes 2025, 9, 10. https://doi.org/10.3390/epigenomes9020010
Ibragić S, Dahija S, Karalija E. The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects. Epigenomes. 2025; 9(2):10. https://doi.org/10.3390/epigenomes9020010
Chicago/Turabian StyleIbragić, Saida, Sabina Dahija, and Erna Karalija. 2025. "The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects" Epigenomes 9, no. 2: 10. https://doi.org/10.3390/epigenomes9020010
APA StyleIbragić, S., Dahija, S., & Karalija, E. (2025). The Good, the Bad, and the Epigenetic: Stress-Induced Metabolite Regulation and Transgenerational Effects. Epigenomes, 9(2), 10. https://doi.org/10.3390/epigenomes9020010