Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update
Abstract
:1. Introduction
2. The Importance of Blood-Based Biomarkers for PDAC
3. Cell-Free DNA
4. DNA Methylation
5. Cell-Free DNA Methylation as Diagnostic Biomarkers for PDAC
6. Cell-Free DNA Methylation as Prognostic Biomarkers for PDAC
6.1. Number of Hypermethylated Genes According to Cancer Stage and Survival
6.2. Methylated Genes Associated with Distant Metastasis
6.3. Methylated Genes According to Cancer Stage
6.4. Methylated Genes According to Survival
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Pancreatic adenocarcinoma | (PDAC) |
Carbohydrate antigen-19-9 | (CA-19-9) |
List of Genes: | |
ADAMTS1 | A disintegrin and metalloproteinase with thrombospondin motifs 1 |
APC | Adenomatous polyposis coli |
ALX4 | Homebox Protein Aristaless-Like 4 |
BNC1 | Basonuclin 1 |
BMP3 | Bone Morphogenetic Protein 3 |
CCNT1 | Cyclin T1 |
CDKN2A | Cycklin-Dependent Kinase Inhibitor 2A (p16) |
CDKN2B | Cycklin-Dependent Kinase Inhibitor 2B (p15) |
DCC | Deleted in Colorectal Carcinoma |
HMOX2 | Heme Oxygenase 2 |
HOXA1 | Homeobox protein Hox A1 |
HIC1 | Hypermethylated in Cancer 1 |
ITGB3 | Integrin beta-3 |
MESTv2 | Mesoderm Specific Transcript 2 |
MLH1 | MutL Homolog 1 |
NEUROG1 | Neurogenin 1 |
NPTX2 | Neuronal pentraxin 2 |
ppENK | Preproenkephalin |
PCDH10 | Protocadherin 10 |
RASSF1A | Rras associated domain family member 1 |
RUNX3 | Runt-related transcription factor 3 |
SARP1 | Secreted apoptose related protein 1 |
SARP2 | Secreted apoptose related protein 2 |
SPARC | Secreted Protein Acidic and Cysteine Rich (SPARC) |
SEMA5A | Semaphorin 5A |
SEPT9v2 | Septin 9 Transcript Variant 2 |
SDS | Serine Dehydratase |
SST | Somatostatin |
SPSB4 | SplA/Ryanodine Receptor Domain and SOCS Box Containing 4 |
TAC1 | Tachykinin Precusor 1 |
TFPI2 | Tissue factor pathway inhibitor 2 |
UCHL1 | Ubiquitin carboxy-terminal hydrolase L1 |
WNT5A | Wingless-Type MMTV Integration Site Family, Member 5A |
References
- Siegel, R.L.; Miller, K.D.M.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, W.; Strobel, O.; Hinz, U.; Fritz, S.; Hackert, T.; Roth, C.; Büchler, M.W.; Werner, J. CA19-9 in Potentially Resectable Pancreatic Cancer: Perspective to Adjust Surgical and Perioperative Therapy. Ann. Surg. Oncol. 2012, 20, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Poruk, K.E.; Gay, D.Z.; Brown, K.; Mulvihill, J.D.; Boucher, K.M.; Scaife, C.L.; Firpo, M.A.; Mulvihill, S.J. The Clinical Utility of CA 19-9 in Pancreatic Adenocarcinoma: Diagnostic and Prognostic Updates. Curr. Mol. Med. 2013, 13, 340–351. [Google Scholar] [CrossRef]
- Haab, B.B.; Huang, Y.; Balasenthil, S.; Partyka, K.; Tang, H.; Anderson, M.; Allen, P.; Sasson, A.; Zeh, H.; Kaul, K.; et al. Definitive Characterization of CA 19-9 in Resectable Pancreatic Cancer Using a Reference Set of Serum and Plasma Specimens. PLoS ONE 2015, 10, e0139049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yang, J.; Li, H.; Wu, Y.; Zhang, H.; Chen, W. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 11683–11691. [Google Scholar] [PubMed]
- Kim, J.-E.; Lee, K.T.; Lee, J.K.; Paik, S.W.; Rhee, J.C.; Choi, K.W. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J. Gastroenterol. Hepatol. 2004, 19, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Goggins, M.; Overbeek, K.A.; Brand, R.; Syngal, S.; Del Chiaro, M.; Bartsch, D.K.; Bassi, C.; Carrato, A.; Farrell, J.; Fishman, E.K.; et al. Management of patients with increased risk for familial pancreatic cancer: Updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020, 69, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic Adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef]
- Mattox, A.K.; Bettegowda, C.; Zhou, S.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B. Applications of liquid biopsies for cancer. Sci. Transl. Med. 2019, 11, eaay1984. [Google Scholar] [CrossRef] [Green Version]
- Bettagowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Dectection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 2014, 6, 69–122. [Google Scholar] [CrossRef]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; Papadopoulos, N.; Kopetz, S.; Corcoran, R.; Siu, L.; et al. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019, 30, 1580–1590. [Google Scholar] [CrossRef] [Green Version]
- Parikh, A.R.; Leshchiner, I.; Corcoran, R.B. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 2019, 25, 1415–1421. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef]
- Leon, S.A.; Shapiro, B.; Sklaroff, D.M.; Yaros, M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977, 37, 646–650. [Google Scholar] [PubMed]
- Shapiro, B.; Chakrabarty, M.; Cohn, E.M.; Leon, S.A. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer 1983, 51, 2116–2120. [Google Scholar] [CrossRef]
- Thierry, A.R.; El Messaoudi, S.; Gahan, P.B.; Anker, P.; Stroun, M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016, 35, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Van Der Pol, Y.; Mouliere, F. Toward the Early Detection of Cancer by Decoding the Epigenetic and Environmental Fingerprints of Cell-Free DNA. Cancer Cell 2019, 36, 350–368. [Google Scholar] [CrossRef] [PubMed]
- Mouliere, F.; Rosenfeld, N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. Proc. Natl. Acad. Sci. USA 2015, 112, 3178–3179. [Google Scholar] [CrossRef] [Green Version]
- Delpu, Y.; Hanoun, N.; Lulka, H.; Sicard, F.; Selves, J.; Buscail, L.; Torrisani, J.; Cordelier, P. Genetic and Epigenetic Alterations in Pancreatic Carcinogenesis. Curr. Genom. 2011, 12, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Lomberk, G.A. Epigenetic Silencing of Tumor Suppressor Genes in Pancreatic Cancer. J. Gastrointest. Cancer 2011, 42, 93–99. [Google Scholar] [CrossRef]
- Lomberk, G.; Dusetti, N.; Iovanna, J.; Urrutia, R. Emerging epigenomic landscapes of pancreatic cancer in the era of precision medicine. Nat. Commun. 2019, 10, 3875. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Fukushima, N.; Hruban, R.H.; Goggins, M. CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod. Pathol. 2007, 21, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, N.; Ueki, T.; Fukushima, N.; Iacobuzio–Donahue, C.A.; Hruban, R.H.; Goggins, M.; Yeo, C.J.; Cameron, J.L. Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology 2002, 123, 365–372. [Google Scholar] [CrossRef]
- Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Johansen, M.B.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Promoter hypermethylation in plasma-derived cell-free DNA as a prognostic marker for pancreatic adenocarcinoma staging. Int. J. Cancer 2017, 141, 2489–2497. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, A.A.; Scholtens, D.; Talamonti, M.S.; Bentrem, D.J.; Levenson, V.V. Methylation profile of circulating plasma DNA in patients with pancreatic cancer. J. Surg. Oncol. 2009, 99, 119–122. [Google Scholar] [CrossRef]
- Liggett, T.; Melnikov, A.; Yi, Q.-L.; Replogle, C.; Brand, R.; Kaul, K.; Talamonti, M.; Abrams, R.A.; Levenson, V. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 2010, 116, 1674–1680. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Baek, I.H.; Kim, Y.T. Preliminary study analyzing the methylated genes in the plasma of patients with pancreatic cancer. Scand. J. Surg. 2012, 101, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Park, J.K.; Ryu, J.K.; Yoon, W.J.; Lee, S.H.; Lee, G.Y.; Jeong, K.-S.; Kim, Y.-T.; Yoon, Y.B. The Role of Quantitative NPTX2 Hypermethylation as a Novel Serum Diagnostic Marker in Pancreatic Cancer. Pancreas 2012, 41, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, H.; Igawa, E.; Kohosozawa, R.; Kobayashi, M.; Nishiko, R.; Abe, H. Detection of aberrant methylation of tumor suppressor genes in plasma from cancer patients. Pers. Med. Univ. 2013, 2, 20–24. [Google Scholar] [CrossRef]
- Yi, J.M.; Guzzetta, A.A.; Bailey, V.J.; Downing, S.R.; Van Neste, L.; Chiappinelli, K.B.; Keeley, B.P.; Stark, A.; Herrera, A.; Wolfgang, C.; et al. Novel Methylation Biomarker Panel for the Early Detection of Pancreatic Cancer. Clin. Cancer Res. 2013, 19, 6544–6555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eissa, M.A.L.; Lerner, L.; Abdelfatah, E.; Shankar, N.; Canner, J.K.; Hasan, N.M.; Yaghoobi, V.; Huang, B.; Kerner, Z.; Takaesu, F.; et al. Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clin. Epigenet. 2019, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Rashid, S.; Rashid, S.; Dash, N.R.; Gupta, S.; Saraya, A. Clinical significance of promoter methylation status of tumor suppressor genes in circulating DNA of pancreatic cancer patients. J. Cancer Res. Clin. Oncol. 2020, 146, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, S.D.; Madsen, P.H.; Krarup, H.; Thorlacius-Ussing, O. DNA Hypermethylation as a Blood-Based Marker for Pancreatic Cancer. Pancreas 2015, 44, 1036–1045. [Google Scholar] [CrossRef]
- Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Johansen, M.B.; Drewes, A.M.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Cell-free DNA promoter hypermethylation in plasma as a diagnostic marker for pancreatic adenocarcinoma. Clin. Epigenet. 2016, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, Y.; Suehiro, Y.; Kaino, S.; Suenaga, S.; Tsuyama, T.; Matsui, H.; Higaki, S.; Fujii, I.; Suzuki, C.; Hoshida, T.; et al. Combination of CA19-9 and Blood Free-Circulating Methylated RUNX3 May Be Useful to Diagnose Stage I Pancreatic Cancer. Oncology 2021, 8505, 1–6. [Google Scholar] [CrossRef]
- Shinjo, K.; Hara, K.; Nagae, G.; Umeda, T.; Katsushima, K.; Suzuki, M.; Murofushi, Y.; Umezu, Y.; Takeuchi, I.; Takahashi, S.; et al. A novel sensitive detection method for DNA methylation in circulating free DNA of pancreatic cancer. PLoS ONE 2020, 15, e0233782. [Google Scholar] [CrossRef]
- Pepe, M.S.; Etzioni, R.; Feng, Z.; Potter, J.D.; Thompson, M.L.; Thornquist, M.D.; Winget, M.; Yasui, Y. Phases of Biomarker Development for Early Detection of Cancer. J. Natl. Cancer Inst. 2001, 93, 1054–1061. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Johansen, M.B.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Cell-free DNA promoter hypermethylation in plasma as a predictive marker for survival of patients with pancreatic adenocarcinoma. Oncotarget 2017, 8, 93942–93956. [Google Scholar] [CrossRef] [Green Version]
- Misawa, K.; Mochizuki, D.; Imai, A.; Endo, S.; Mima, M.; Misawa, Y.; Kanazawa, T.; Carey, T.E.; Mineta, H. Prognostic value of aberrant promoter hypermethylation of tumor-related genes in early-stage head and neck cancer. Oncotarget 2016, 7, 26087–26098. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Qin, Q.; Zhang, J.; Liu, Y.; Deng, S.; Liu, L.; Wang, B.; Tian, K.; Wang, C. Hypermethylation of HIC1 Promoter and Aberrant Expression of HIC1/SIRT1 Might Contribute to the Carcinogenesis of Pancreatic Cancer. Ann. Surg. Oncol. 2012, 20, 301–311. [Google Scholar] [CrossRef]
- Veeck, J.; Niederacher, D.; An, H.; Klopocki, E.; Wiesmann, F.; Betz, B.; Galm, O.; Camara, O.; Dürst, M.; Kristiansen, G.; et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 2006, 25, 3479–3488. [Google Scholar] [CrossRef] [Green Version]
- Ricketts, C.J.; Hill, V.K.; Linehan, W.M. Tumor-Specific Hypermethylation of Epigenetic Biomarkers, Including SFRP1, Predicts for Poorer Survival in Patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) Project. PLoS ONE 2014, 9, e85621. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.-K.; Sun, Q.; Fan, Y.-C.; Gao, S.; Zhao, J.; Li, F.; Jia, Y.-B.; Liu, C.; Wang, L.-Y.; Li, X.-Y.; et al. Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma after hepatectomy. J. Gastroenterol. Hepatol. 2016, 31, 484–492. [Google Scholar] [CrossRef]
- Thompson, M.J.; Rubbi, L.; Dawson, D.W.; Donahue, T.R.; Pellegrini, M. Pancreatic Cancer Patient Survival Correlates with DNA Methylation of Pancreas Development Genes. PLoS ONE 2015, 10, e0128814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.; Sun, J.; Zhang, S.; Chen, J.; Wang, G.; Ju, S.; Wang, X. A novel methylation signature predicts inferior outcome of patients with PDAC. Aging 2021, 13, 2851–2863. [Google Scholar] [CrossRef] [PubMed]
Reference | Genes | Method | Cases | Controls | Results | Strenghts | Limitations | Maturity Level * |
---|---|---|---|---|---|---|---|---|
Nidhi Singh et al., 2020 [33] | SPARC UCHL1 PENK NPTX2 | MSP | PDAC 61 | CP 22 HC 21 | SPARC: AUC of 0.76 (0.65–0.87) The other genes did not reach statistical significance. | - Consecutive inclusion of PDAC patients. - Large group of well-defined cases. - Inclusion of controls with benign pancreatic disease. | - Lack information on whether cases and controls were matched according to age, sex etc. - No information on treatment before blood sampling. | Phase 1/Phase 2. No further validation. |
Fujimoto et al., 2020 [36] | RUNX3 | CORD assay | PDAC 55 | CP 12 HC 80 | RUNX3: Sens; 50.9%, Spec; 93.5% (the total control group) Combining RUNX3 and CA-19-9: Sens; 85.5%, Spec; 93,5% | - Large group of cases and controls. - Inclusion of controls with benign pancreatic disease. | - Not matched according to age and sex. - No information on treatment before blood sampling. | Phase 1/Phase 2. No validation studies. |
Shinjo et al., 2020 [37] | ADAMTS1 HOXA1 PCDH10 SEMA5A SPSB4 | qMSP | PDAC 47 | HC 14 | The panel of five genes (with at least one gene methylated): Sens; 49%, Spec; 86% Combining the gene panel and KRAS mutation in cell-free DNA: Sens; 68%, Spec; 86% | - Well described and comprehensive analysis of tissue samples. - Pretreatment blood samples. - Cases and controls matched according to age and sex. | - Lacking a control group of patients with benign pancreatic disease. | Phase 1/Phase 2. No validation studies |
Henriksen et al., 2017 [25] | SFRP2 SFRP1 APC TFPI2 MESTv2 BNC1 RASSF1A BMP3 | MSP | PDAC 95 | CP 97 SN 27 | Prediction model combining hypermethylation status of the eight genes and age <65 years: PDAC vs. CP and SN: AUC 0.86 (0.81–0.91) | - Consecutive inclusion of PDAC patients. - Large group of cases and controls with benign pancreatic disease. - Pretreatment plasma | - Cases and controls not age-matched. - The gene-panel is not analyzed in tumor tissue. | Phase 1/Phase 2. An external validation study is initiated. |
Eissa et al., 2019 [32] | BNC1 ADAMTS1 | MOB and qMSP | PDAC 39 | HC 95 CP 8 | Combining BNC1 and ADAMTS1: PDAC vs HC: AUC 0.95 (0.91–0.98) CP: 7/8 were had either BNC1 or ADAMTS1 methylated. | - Population-based matched and age-matched controls. - Pretreatment serum. | - Small control group of CP patients - Racial difference between cases and controls. | Phase 1/Phase 2. Validation study of Joo Mi Yi et al., 2013 [31]. |
Joo Mi Yi et al., 2013 [31] | BNC1 ADAMTS1 | MOB | PDAC 42 | HC 26 | BNC1: PDAC 79% (33/42), HC 11,5% (3/26) ADAMTS1: PDAC 48% (20/42), HC 7.7% (2/26) Combining BNC1 and ADAMTS1 did not improve sensitivity and specificity. | - Well described and comprehensive analysis of cell-lines and tissue samples. - Pretreatment serum. | - Lack information on whether cases and controls were matched according to age, sex etc. - Lacking a control group of patients with benign pancreatic disease | Phase 1 and phase 2. One validation study is performed (Eissa et al., 2019 [32]). |
Kawasaki et al., 2013 [30] | APC DCC P16 P14 RASSF1A | MSP | PDAC 47 | Patients with other types of cancer 197 | APC: 23.4% (11/47) DCC: 6.4% (3/47) P16: 17% (8/47) P14: 14.9% (7/47) RASSF1A: 34% (16/47) | - Pretreatment plasma. - Large cohort of cases. | - Lack of HC or controls of patients with benign pancreatic disease. | Phase 1/Phase 2. No validation studies. |
Park, Ryu et al., 2012 [29] | NPTX2 | qMSP | PDAC 104 | CP 60 GD 5 | Frequency of hypermethylation: PDAC: 84% (87/104) CP: 33% (20/60) GD: 0% (0/5) Statistically significant difference (P = 0.016) | - Pretreatment plasma. - Large cohort of cases and controls. - Include controls with benign pancreatic disease. | - Not age matched cases and controls - No description of inclusion period. | Phase 1/Phase 2. A validation study of NPTX2 (Park, Baek et al., 2012 [28]). No further validation. |
Park, Baek et al., 2012 [28] | NPTX2 UCHL1 SARP2 ppENK P16 RASSF1A | MSP | PDAC 16 | CP 13 HC 29 | Frequency of hypermethylation: NPTX2: PDAC 6/16, CP 2/13, HC 0/29 UCHL1: PDAC 4/16, CP 2/13, HC 0/29 SARP2: PDAC 5/16, CP 3/13, HC 0/29 ppENK: PDAC 5/16, CP 2/13, HC 0/29 P16: PDAC 4/16, CP 2/13, HC 1/29 RASSF1A: PDAC 1/16, CP 1/13, HC 0/29 No statistically significant difference. | - Include controls with benign pancreatic disease. | - Small cohort of cases and controls. - No information on treatment before blood sampling. - Not age-matched cases and controls. | Phase 1/Phase 2. NPTX2 was subsequently validated (Park, Ryu et al., 2012 [29]). No further validation. |
Liggett et al., 2010 [27] | MethDet56 | PDAC 30 | CP 30 HC 30 | - 8 gene promoters could differentiate CP and HC: Sens; 78.0%, Spec; 81.7% - 14 gene promoters could differentiate PDAC and CP: Sens; 90.8%, Spec; 91.2 | - Cases and controls matched on sex, age and race. - Detailed description of CP patients. - Pretreatment plasma. | - No information on whether the aberrantly methylated genes were hypo- or hypermethylated. - No description of inclusion period **. | Phase 1/Phase 2. No validation studies. | |
Melnikov et al., 2009 [26] | MethDet56 | PDAC 30 | CP 30 HC 30 | Based on five hypomethylated promoter regions: Sens; 76%, Spec; 59% | - Cases and controls matched on sex and age. | - No description of inclusion period **. - No information on treatment before blood sampling. | Phase 1/Phase 2. No validation studies. |
• Cases and controls matched according to age, sex and race. |
• The use of pretreatment blood samples. |
• Studies combining methylated gene-panels and other diagnostic modalities. |
• Large validation studies including cases with early stage cancer and controls with benign pancreatic disease. |
• Validation on cases with pancreatic cancer precursor lesions. |
• Validation on cases with increased risk of pancreatic cancer e.g., subjects with a risk of familial pancreatic cancer and subjects with diabetes. |
• Retrospective longitudinal studies. |
• Prospective screening studies of subjects with increased risk of pancreatic cancer. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henriksen, S.D.; Thorlacius-Ussing, O. Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update. Epigenomes 2021, 5, 8. https://doi.org/10.3390/epigenomes5020008
Henriksen SD, Thorlacius-Ussing O. Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update. Epigenomes. 2021; 5(2):8. https://doi.org/10.3390/epigenomes5020008
Chicago/Turabian StyleHenriksen, Stine Dam, and Ole Thorlacius-Ussing. 2021. "Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update" Epigenomes 5, no. 2: 8. https://doi.org/10.3390/epigenomes5020008
APA StyleHenriksen, S. D., & Thorlacius-Ussing, O. (2021). Cell-Free DNA Methylation as Blood-Based Biomarkers for Pancreatic Adenocarcinoma—A Literature Update. Epigenomes, 5(2), 8. https://doi.org/10.3390/epigenomes5020008