Epigenomics of Pancreatic Cancer: A Critical Role for Epigenome-Wide Studies
Abstract
:1. Introduction
2. Epigenetic Processes
2.1. Nucleosome Remodeling Complexes and Nuclear Architecture
2.2. DNA-Protein Interaction
2.2.1. Histone Modifications
2.2.2. Transcription Factors
2.2.3. Next Generation Technologies
2.3. DNA Methylation
2.4. Non-Coding RNA
2.5. Public Databases
3. Sample Collection Considerations
4. Epigenome-Wide Studies for PDAC
4.1. Methylation
4.2. Non-Coding RNA (ncRNA)
4.3. Multi-Omics Studies
5. Discussion
6. Materials and Methods
Funding
Acknowledgments
Conflicts of Interest
References
- Pancreatic Cancer Action Network. Pancreatic Cancer Facts. 2015. Available online: https://www.pancan.org/wp-content/uploads/2015/06/2015-GAA-PC-Facts.pdf (accessed on 15 January 2019).
- Pancreatic Cancer—Symptoms and Causes—Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/pancreatic-cancer/symptoms-causes/syc-20355421 (accessed on 21 December 2018).
- What Causes Pancreatic Cancer? Available online: http://pathology.jhu.edu/pc/BasicCauses.php?area=ba (accessed on 21 December 2018).
- Pancreatic Cancer Risk Factors. Available online: https://www.cancer.org/cancer/pancreatic-cancer/causes-risks-prevention/risk-factors.html (accessed on 21 December 2018).
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Matera, R.; Saif, M.W. New therapeutic directions for advanced pancreatic cancer: Cell cycle inhibitors, stromal modifiers and conjugated therapies. Expert Opin. Emerg. Drugs 2017, 22, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Neureiter, D.; Jager, T.; Ocker, M.; Kiesslich, T. Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J. Gastroenterol. 2014, 20, 7830–7848. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Go, V.L.W.; Sarkar, F.H. The Role of Nutraceuticals in Pancreatic Cancer Prevention and Therapy. Pancreas 2015, 44, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Gao, Y.; Li, X. Cancer epigenetics and the potential of epigenetic drugs for treating solid tumors. Expert Rev. Anticancer Ther. 2018. [Google Scholar] [CrossRef]
- Thompson, M.J.; Rubbi, L.; Dawson, D.W.; Donahue, T.R.; Pellegrini, M. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. PLoS ONE 2015, 10, e0128814. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, S.D.; Madsen, P.H.; Krarup, H.; Thorlacius-Ussing, O. DNA Hypermethylation as a Blood-Based Marker for Pancreatic Cancer: A Literature Review. Pancreas 2015, 44, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Syren, P.; Andersson, R.; Bauden, M.; Ansari, D. Epigenetic alterations as biomarkers in pancreatic ductal adenocarcinoma. Scand. J. Gastroenterol. 2017, 52, 668–673. [Google Scholar] [CrossRef]
- Tchio Mantho, C.I.; Harbuzariu, A.; Gonzalez-Perez, R.R. Histone deacetylases, microRNA and leptin crosstalk in pancreatic cancer. World J. Clin. Oncol. 2017, 8, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Quilichini, E.; Haumaitre, C. Implication of epigenetics in pancreas development and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Van Kampen, J.G.; Marijnissen-van Zanten, M.A.; Simmer, F.; Van der Graaf, W.T.; Ligtenberg, M.J.; Nagtegaal, I.D. Epigenetic targeting in pancreatic cancer. Cancer Treat. Rev. 2014, 40, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Paradise, B.D.; Barham, W.; Fernandez-Zapico, M.E. Targeting Epigenetic Aberrations in Pancreatic Cancer, a New Path to Improve Patient Outcomes? Cancers 2018, 10, 128. [Google Scholar] [CrossRef]
- Lomberk, G.A.; Urrutia, R. The Triple-Code Model for Pancreatic Cancer: Cross Talk Among Genetics, Epigenetics, and Nuclear Structure. Surg. Clin. N. Am. 2015, 95, 935–952. [Google Scholar] [CrossRef]
- Van Attikum, H.; Gasser, S.M. Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol. 2009, 19, 207–217. [Google Scholar] [CrossRef]
- Kadoch, C.; Crabtree, G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 2015, 1, e1500447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, B.G.; Roberts, C.W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 2011, 11, 481–492. [Google Scholar] [CrossRef]
- Lohr, D.; Bash, R.; Wang, H.; Yodh, J.; Lindsay, S. Using Atomic Force Microscopy To Study Chromatin Structure and Nucleosome Remodeling. Methods 2007, 41, 333–341. [Google Scholar] [CrossRef]
- Solis, F.J.; Bash, R.; Yodh, J.; Lindsay, S.M.; Lohr, D. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays. Biophys. J. 2004, 87, 3372–3387. [Google Scholar] [CrossRef]
- Kepert, J.F.; Toth, K.F.; Caudron, M.; Mucke, N.; Langowski, J.; Rippe, K. Conformation of reconstituted mononucleosomes and effect of linker histone H1 binding studied by scanning force microscopy. Biophys. J. 2003, 85, 4012–4022. [Google Scholar] [CrossRef]
- Kalinin, A.A.; Allyn-Feuer, A.; Ade, A.; Fon, G.V.; Meixner, W.; Dilworth, D.; Husain, S.S.; de Wett, J.R.; Higgins, G.A.; Zheng, G.; et al. 3D Shape Modeling for Cell Nuclear Morphological Analysis and Classification. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Chanpimol, S.; Seamon, B.; Hernandez, H.; Harris-love, M.; Blackman, M.R. Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat. Struct. Mol. Biol. 2017, 24, 1028–1038. [Google Scholar] [Green Version]
- Marmorstein, R.; Zhou, M.M. Writers and readers of histone acetylation: Structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 2014, 6, a018762. [Google Scholar] [CrossRef] [PubMed]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed]
- Ouaissi, M.; Sielezneff, I.; Silvestre, R.; Sastre, B.; Bernard, J.P.; Lafontaine, J.S.; Payan, M.J.; Dahan, L.; Pirro, N.; Seitz, J.F.; et al. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann. Surg. Oncol. 2008, 15, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Hu, H.; Yuan, C.; Jin, Z.; Guo, Z.; Wang, L.; Wang, L. Histone deacetylase 3 promotes pancreatic cancer cell proliferation, invasion and increases drug-resistance through histone modification of P27, P53 and Bax. Int. J. Oncol. 2014, 45, 1523–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivtsov, A.V.; Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 2007, 7, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Black, J.C.; Van Rechem, C.; Whetstine, J.R. Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol. Cell 2012, 48, 491–507. [Google Scholar] [CrossRef]
- Moniaux, N.; Junker, W.M.; Singh, A.P.; Jones, A.M.; Batra, S.K. Characterization of human mucin MUC17: Complete coding sequence and organization. J. Biol. Chem. 2006, 281, 23676–23685. [Google Scholar] [CrossRef]
- Kitamoto, S.; Yamada, N.; Yokoyama, S.; Houjou, I.; Higashi, M.; Goto, M.; Batra, S.K.; Yonezawa, S. DNA methylation and histone H3-K9 modifications contribute to MUC17 expression. Glycobiology 2011, 21, 247–256. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Zhan, Q.; Zhu, Y.; Chen, H.; Deng, X.; Hou, Z.; Shen, B.; Chen, Y.; Peng, C. H2AK119Ub1 and H3K27Me3 in molecular staging for survival prediction of patients with pancreatic ductal adenocarcinoma. Oncotarget 2014, 5, 10421–10433. [Google Scholar] [CrossRef] [Green Version]
- Perez-Burgos, L.; Peters, A.H.; Opravil, S.; Kauer, M.; Mechtler, K.; Jenuwein, T. Generation and characterization of methyl-lysine histone antibodies. Methods Enzym. 2004, 376, 234–254. [Google Scholar]
- Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson, T.; et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, Y.; Espejo, A.; Wu, J.; Xu, W.; Liang, S.; Bedford, M.T. TDRD3 is an effector molecule for arginine-methylated histone marks. Mol. Cell 2010, 40, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, K.R.; Armstrong, J.; Barber, G.P.; Casper, J.; Clawson, H.; Diekhans, M.; Dreszer, T.R.; Fujita, P.A.; Guruvadoo, L.; Haeussler, M.; et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 2015, 43, D670–D681. [Google Scholar] [CrossRef] [PubMed]
- Mayran, A.; Drouin, J. Pioneer transcription factors shape the epigenetic landscape. J. Biol. Chem. 2018, 293, 13795–13804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, A.A.T.; Hasan, G.M.; Hassan, M.I. Investigating the role of transcription factors of pancreas development in pancreatic cancer. Pancreatology 2018, 18, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Civelek, M.; Lusis, A.J. Conducting the metabolic syndrome orchestra. Nat. Genet. 2011, 43, 506–508. [Google Scholar] [CrossRef] [Green Version]
- Loft, A.; Forss, I.; Siersbæk, M.S.; Schmidt, S.F.; Larsen, A.S.B.; Madsen, J.G.S.; Pisani, D.F.; Nielsen, R.; Aagaard, M.M.; Mathison, A.; et al. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes Dev. 2015, 29, 7–22. [Google Scholar] [CrossRef]
- Calvo, E.; Grzenda, A.; Lomberk, G.; Mathison, A.; Iovanna, J.; Urrutia, R. Single and combinatorial chromatin coupling events underlies the function of transcript factor krüppel-like factor 11 in the regulation of gene networks. BMC Mol. Biol. 2014, 15, 10. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef]
- Di Magliano, M.P.; Logsdon, C.D. Roles for KRAS in Pancreatic Tumor Development and Progression. Gastroenterology 2013, 144, 1220–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radulovich, N.; Qian, J.; Tsao, M. Human Pancreatic Duct Epithelial Cell Model for KRAS Transformation. Methods Enzymol. 2008, 439, 1–13. [Google Scholar] [PubMed]
- Von Figura, G.; Morris, J.P.; Wright, C.V.E.; Hebrok, M. Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation. Gut 2014, 63, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.-M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Zhao, B.; Liu, Z.; Ren, X.; Zhao, W.; Li, Z.; You, L.; Zhao, Y. Molecular Subtyping of Pancreatic Cancer: Translating Genomics and Transcriptomics into the Clinic. J. Cancer 2017, 8, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Parikh, H.; Xiao, W.; Hoskins, J.W.; Pflicke, H.; Liu, X.; Collins, I.; Zhou, W.; Wang, Z.; Powell, J.; et al. An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer. BMC Med. Genomics 2013, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, S.; Stebbing, J.; Frampton, A.E.; Zagorac, S.; Krell, J.; De Giorgio, A.; Trabulo, S.M.; Nguyen, V.T.M.; Magnani, L.; Feng, H.; et al. TGF-β induces miR-100 and miR-125b but blocks let-7a through LIN28B controlling PDAC progression. Nat. Commun. 2018, 9, 1845. [Google Scholar] [CrossRef] [Green Version]
- Jhanwar, S. Computational Epigenomics and Its Application in Regulatory Genomics. In Bioinformatics: Sequences, Structures, Phylogeny; Springer: Singapore, 2018; pp. 115–139. [Google Scholar]
- Wartenberg, M.; Cibin, S.; Zlobec, I.; Vassella, E.; Eppenberger-Castori, S.; Terracciano, L.; Eichmann, M.D.; Worni, M.; Gloor, B.; Perren, A.; et al. Integrated Genomic and Immunophenotypic Classification of Pancreatic Cancer Reveals Three Distinct Subtypes with Prognostic/Predictive Significance. Clin. Cancer Res. 2018, 24, 4444–4454. [Google Scholar] [CrossRef]
- Vincent, A.; Omura, N.; Hong, S.-M.; Jaffe, A.; Eshleman, J.; Goggins, M. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin. Cancer Res. 2011, 17, 4341–4354. [Google Scholar] [CrossRef]
- Herman, J.G.; Latif, F.; Weng, Y.; Lerman, M.I.; Zbar, B.; Liu, S.; Samid, D.; Duan, D.S.; Gnarra, J.R.; Linehan, W.M.; et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 1994, 91, 9700–9704. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Gonzales, F.A.; Jones, P.A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 2001, 29, 4598–4606. [Google Scholar] [CrossRef]
- Hong, L.; Sun, G.; Peng, L.; Tu, Y.; Wan, Z.; Xiong, H.; Li, Y.; Xiao, W. The interaction between miR 148a and DNMT1 suppresses cell migration and invasion by reactivating tumor suppressor genes in pancreatic cancer. Oncol. Rep. 2018, 2916–2925. [Google Scholar] [CrossRef] [PubMed]
- Neuzillet, C.; de Gramont, A.; Tijeras-Raballand, A.; de Mestier, L.; Cros, J.; Faivre, S.; Raymond, E. Perspectives of TGF-β inhibition in pancreatic and hepatocellular carcinomas. Oncotarget 2014, 5, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Truty, M.J.; Urrutia, R. Basics of TGF-β and pancreatic cancer. Pancreatology 2007, 7, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.A.; Dhele, N.; Cheemadan, S.; Ketkar, A.; Jayandharan, G.R.; Palakodeti, D.; Rampalli, S. Ezh2 mediated H3K27me3 activity facilitates somatic transition during human pluripotent reprogramming. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Jimeno, A.; Lin, S.H.; Wheelhouse, J.; Chan, F.; Solomon, A.; Rajeshkumar, N.V.; Rubio-Viqueira, B.; Hidalgo, M. Characterizing DNA methylation patterns in pancreatic cancer genome. Mol. Oncol. 2009, 3, 425–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, A.; Parle-McDermott, A. DNA methylation: A timeline of methods and applications. Front. Genet. 2011, 2, 74. [Google Scholar] [CrossRef]
- Fan, S.; Chi, W. Methods for genome-wide DNA methylation analysis in human cancer. Br. Funct. Genomics 2016, 15, 432–442. [Google Scholar] [CrossRef]
- Flusberg, B.A.; Webster, D.R.; Lee, J.H.; Travers, K.J.; Olivares, E.C.; Clark, T.A.; Korlach, J.; Turner, S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 2010, 7, 461–465. [Google Scholar] [CrossRef]
- Walker, D.L.; Bhagwate, A.V.; Baheti, S.; Smalley, R.L.; Hilker, C.A.; Sun, Z.; Cunningham, J.M. DNA methylation profiling: Comparison of genome-wide sequencing methods and the Infinium Human Methylation 450 Bead Chip. Epigenomics 2015, 7, 1287–1302. [Google Scholar] [CrossRef]
- Fouad, M.A.; Salem, S.E.; Hussein, M.M.; Zekri, A.R.N.; Hafez, H.F.; El Desouky, E.D.; Shouman, S.A. Impact of Global DNA Methylation in Treatment Outcome of Colorectal Cancer Patients. Front. Pharmacol. 2018, 9, 1173. [Google Scholar] [CrossRef] [PubMed]
- Kurdyukov, S.; Bullock, M. DNA Methylation Analysis: Choosing the Right Method. Biology 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Laird, P.W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet. 2010, 11, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Pradhan, K.; Campbell, N.; Mazdo, J.; Vasantkumar, A.; Maqbool, S.; Bhagat, T.D.; Gupta, S.; Suzuki, M.; Yu, Y.; et al. Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways. Genome Res. 2017, 27, 1830–1842. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Zhang, Z.; Wang, J.; Chiu, B.C.H.; Hou, L.; Zhang, W. Novel 5-Hydroxymethylcytosine Markers for Pancreatic Cancer. bioRxiv 2018. [Google Scholar] [CrossRef]
- Collin, F.; Ning, Y.; Phillips, T.; McCarthy, E.; Scott, A.; Ellison, C.; Ku, C.-J.; Guler, G.D.; Chau, K.; Ashworth, A.; et al. Detection of early stage pancreatic cancer using 5-hydroxymethylcytosine signatures in circulating cell free DNA. bioRxiv 2018, 422675. [Google Scholar]
- Orom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010, 143, 46–58. [Google Scholar] [CrossRef]
- Bejerano, G.; Pheasant, M.; Makunin, I.; Stephen, S.; Kent, W.J.; Mattick, J.S.; Haussler, D. Ultraconserved elements in the human genome. Science 2004, 304, 1321–1325. [Google Scholar] [CrossRef]
- Ledford, H. Circular RNAs throw genetics for a loop. Nature 2013, 494, 415. [Google Scholar] [CrossRef]
- Patrick, S.; Nana-Sinkam, C.M.C. Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol. Oncol. 2011, 5, 483–491. [Google Scholar] [Green Version]
- Wu, K.; Sharma, S.; Venkat, S.; Liu, K.; Zhou, X.; Watabe, K. Non-coding RNAs in cancer brain metastasis. Front. Biosci. (Schol. Ed.) 2016, 8, 187–202. [Google Scholar] [PubMed]
- Hahne, J.C.; Valeri, N. Non-Coding RNAs and Resistance to Anticancer Drugs in Gastrointestinal Tumors. Front. Oncol. 2018, 8, 226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Qin, Q.; Zhang, J.; Liu, Y.; Deng, S.; Liu, L.; Wang, B.; Tian, K.; Wang, C. Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer. Ann. Surg. Oncol. 2013, 20 (Suppl. 3), S301–S311. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Zheng, K.; Yu, J.; Huang, Z. MicroRNA‑661 expression is upregulated in pancreatic ductal adenocarcinoma and promotes cell proliferation. Oncol. Lett. 2017, 16, 6293–6298. [Google Scholar] [CrossRef] [PubMed]
- Hardik, R. Mody Rakesh Pathak, Jazmine Griffin, Zobeida Cruz-Monserrate, Rajgopal Govindarajan, S.W.H. miR-202 Diminishes TGFβ Receptors and Attenuates TGFβ1-induced EMT in Pancreatic Cancer. Mol. Cancer Res. 2018, 15, 1029–1039. [Google Scholar]
- Meijer, L.L.; Garajova, I.; Caparello, C.; Le Large, T.Y.S.; Frampton, A.E.; Vasile, E.; Funel, N.; Kazemier, G.; Giovannetti, E. Plasma miR-181a-5p Downregulation Predicts Response and Improved Survival After FOLFIRINOX in Pancreatic Ductal Adenocarcinoma. Ann. Surg. 2018. [Google Scholar] [CrossRef]
- Huang, Y.K.; Yu, J.C. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review. World J. Gastroenterol. 2015, 21, 9863–9886. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Cheng, D. The Long Noncoding RNA HOST2 Promotes Gemcitabine Resistance in Human Pancreatic Cancer Cells. Pathol. Oncol. Res. 2018. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, T.; Wang, W.W.; Ge, P.L.; Gao, Z.Q.; Zhang, G.; Tang, Z.; Dang, X.W.; Zhao, Y.F.; Zhang, J.Y.; et al. Long Noncoding RNA HOST2 Promotes Epithelial-Mesenchymal Transition, Proliferation, Invasion and Migration of Hepatocellular Carcinoma Cells by Activating the JAK2-STAT3 Signaling Pathway. Cell. Physiol. Biochem. 2018, 51, 301–314. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Shen, P.; Zhang, D. CCAT2 is an oncogenic long non-coding RNA in pancreatic ductal adenocarcinoma. Biol. Res. 2018, 51, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, C.; Liu, Y.; Chen, M.; Zhou, Q.; Chen, Z.; He, A.; Zhao, G.; Guo, Y.; Wu, H.; et al. shRNA targeting long non-coding RNA CCAT2 controlled by tetracycline-inducible system inhibits progression of bladder cancer cells. Oncotarget 2016, 7, 28989–28997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; He, J.; Zhang, D. Long noncoding RNA CCAT2 promotes breast tumor growth by regulating the wnt signaling pathway. Oncol. Targets Ther. 2015, 8, 2657–2664. [Google Scholar]
- Wang, Y.J.; Liu, J.Z.; Lv, P.; Dang, Y.; Gao, J.Y.; Wang, Y. Long non-coding RNA CCAT2 promotes gastric cancer proliferation and invasion by regulating the E-cadherin and LATS2. Am. J. Cancer Res. 2016, 6, 2651–2660. [Google Scholar] [PubMed]
- Zhang, J.; Baran, J.; Cros, A.; Guberman, J.M.; Haider, S.; Hsu, J.; Liang, Y.; Rivkin, E.; Wang, J.; Whitty, B.; et al. International Cancer Genome Consortium Data Portal—A one-stop shop for cancer genomics data. Database 2011, 2011, bar026. [Google Scholar] [CrossRef] [PubMed]
- Tomczak, K.; Czerwinska, P.; Wiznerowicz, M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68–A77. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [Green Version]
- Nones, K.; Waddell, N.; Song, S.; Patch, A.M.; Miller, D.; Johns, A.; Wu, J.; Kassahn, K.S.; Wood, D.; Bailey, P.; et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int. J. Cancer 2014, 135, 1110–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birnbaum, D.J.; Bertucci, F.; Finetti, P.; Birnbaum, D.; Mamessier, E. Molecular classification as prognostic factor and guide for treatment decision of pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer 2018, 1869, 248–255. [Google Scholar] [CrossRef]
- Campbell, P.J.; Getz, G.; Stuart, J.M.; Korbel, J.O.; Stein, L.D. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Net. Pan-cancer analysis of whole genomes. bioRxiv 2017, 3, 162784. [Google Scholar]
- Cohen, J.D.; Javed, A.A.; Thoburn, C.; Wong, F.; Tie, J.; Gibbs, P.; Schmidt, C.M.; Yip-Schneider, M.T.; Allen, P.J.; Schattner, M.; et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 10202–10207. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Jiang, P.; Chan, C.W.; Sun, K.; Wong, J.; Hui, E.P.; Chan, S.L.; Chan, W.C.; Hui, D.S.; Ng, S.S.; et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, 18761–18768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorim, M.G.; Valieris, R.; Drummond, R.D.; Pizzi, M.P.; Freitas, V.M.; Sinigaglia-Coimbra, R.; Calin, G.A.; Pasqualini, R.; Arap, W.; Silva, I.T.; et al. A total transcriptome profiling method for plasma-derived extracellular vesicles: Applications for liquid biopsies. Sci. Rep. 2017, 7, 14395. [Google Scholar] [CrossRef] [PubMed]
- Mayers, J.R.; Wu, C.; Clish, C.B.; Kraft, P.; Torrence, M.E.; Fiske, B.P.; Yuan, C.; Bao, Y.; Townsend, M.K.; Tworoger, S.S.; et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 2014, 20, 1193–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell. Mol. Neurobiol. 2016, 36, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016, 126, 1208–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widschwendter, M.; Evans, I.; Jones, A.; Ghazali, S.; Reisel, D.; Ryan, A.; Gentry-Maharaj, A.; Zikan, M.; Cibula, D.; Eichner, J.; et al. Methylation patterns in serum DNA for early identification of disseminated breast cancer. Genome Med. 2017, 9, 115. [Google Scholar] [CrossRef]
- Widschwendter, M.; Zikan, M.; Wahl, B.; Lempiainen, H.; Paprotka, T.; Evans, I.; Jones, A.; Ghazali, S.; Reisel, D.; Eichner, J.; et al. The potential of circulating tumor DNA methylation analysis for the early detection and management of ovarian cancer. Genome Med. 2017, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Eberwine, J.; Yeh, H.; Miyashiro, K.; Cao, Y.; Nair, S.; Finnell, R.; Zettel, M.; Coleman, P. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 1992, 89, 3010–3014. [Google Scholar] [CrossRef]
- Brady, G. Iscove NN, B.M. Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol. Cell. Biol. 1990, 2, 17–25. [Google Scholar]
- Ilicic, T.; Kim, J.K.; Kolodziejczyk, A.A.; Bagger, F.O.; McCarthy, D.J.; Marioni, J.C.; Teichmann, S.A. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016, 17, 29. [Google Scholar] [CrossRef] [PubMed]
- Moignard, V.; Woodhouse, S.; Haghverdi, L.; Lilly, A.J.; Tanaka, Y.; Wilkinson, A.C.; Buettner, F.; Macaulay, I.C.; Jawaid, W.; Diamanti, E.; et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 2015, 33, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buganim, Y.; Faddah, D.A.; Cheng, A.W.; Itskovich, E.; Markoulaki, S.; Ganz, K.; Klemm, S.L.; van Oudenaarden, A.; Jaenisch, R. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 2012, 150, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Bendall, S.C.; Davis, K.L.; Amir el, A.D.; Tadmor, M.D.; Simonds, E.F.; Chen, T.J.; Shenfeld, D.K.; Nolan, G.P.; Pe’er, D. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014, 157, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Deng, Z.; Yang, M.; Xu, C.; Zhang, X.; Zhang, Q.; Liao, Y.; Deng, X.; Lv, D.; Zhang, X.; et al. Transcriptomic but not genomic variability confers phenotype of breast cancer stem cells. Cancer Commun. (Lond.) 2018, 38, 56. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, H.; Wu, J.; Dal Molin, M.; Shi, C.; Perner, S.; Kristiansen, G.; Lingohr, P.; Kalff, J.C.; Wolfgang, C.L.; Kinzler, K.W.; et al. GNAS sequencing identifies IPMN-specific mutations in a subgroup of diminutive pancreatic cysts referred to as “incipient IPMNs”. Am. J. Surg. Pathol. 2014, 38, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Kuboki, Y.; Fischer, C.G.; Beleva Guthrie, V.; Huang, W.; Yu, J.; Chianchiano, P.; Hosoda, W.; Zhang, H.; Zheng, L.; Shao, X.; et al. Single-cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. J. Pathol. 2018. [Google Scholar] [CrossRef]
- Ting, D.T.; Wittner, B.S.; Ligorio, M.; Jordan, N.V.; Ajay, M.; Miyamoto, D.T.; Aceto, N.; Bersani, F.; Brian, W.; Xega, K.; et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2015, 8, 1905–1918. [Google Scholar] [CrossRef]
- Lomberk, G.A.; Iovanna, J.; Urrutia, R. The promise of epigenomic therapeutics in pancreatic cancer. Epigenomics 2016, 8, 831–842. [Google Scholar] [CrossRef]
- Simes, R.J. An improved bonferroni procedure for multiple tests of significance. Biometrika 1986, 73, 751–754. [Google Scholar] [CrossRef]
- Reiner, A.; Yekutieli, D.; Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19, 368–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Merlo, L.M.F.; Pepper, J.W.; Reid, B.J.; Maley, C.C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 2006, 6, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Moschovis, D.; Gazouli, M.; Tzouvala, M.; Vezakis, A.; Karamanolis, G. Long non-coding RNA in pancreatic adenocarcinoma and pancreatic neuroendocrine tumors. Ann. Gastroenterol. 2017, 30, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Le Large, T.Y.S.; Bijlsma, M.F.; Kazemier, G.; van Laarhoven, H.W.M.; Giovannetti, E.; Jimenez, C.R. Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies. Semin. Cancer Biol. 2017, 44, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-S.; Kim, Y.; Lee, S.; Namkung, J.; Yun, T.; Yi, S.G.; Han, S.; Kang, M.; Kim, S.W.; Jang, J.-Y.; et al. Integrative analysis of multi-omics data for identifying multi-markers for diagnosing pancreatic cancer. BMC Genomics 2015, 16 (Suppl. 9), S4. [Google Scholar] [CrossRef]
- Rajamani, D.; Bhasin, M.K. Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Med. 2016, 8, 38. [Google Scholar] [CrossRef]
- Omura, N.; Li, C.-P.; Li, A.; Hong, S.-M.; Walter, K.; Jimeno, A.; Hidalgo, M.; Goggins, M. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol. Ther. 2008, 7, 1146–1156. [Google Scholar] [CrossRef]
- Pedersen, K.S.; Bamlet, W.R.; Oberg, A.L.; de Andrade, M.; Matsumoto, M.E.; Tang, H.; Thibodeau, S.N.; Petersen, G.M.; Wang, L. Leukocyte DNA methylation signature differentiates pancreatic cancer patients from healthy controls. PLoS ONE 2011, 6, e18223. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, J.; Zhang, H.; Guo, S.; Gu, J.; Wang, W.; Tang, N.; Zhou, X.; Yu, J. High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq. Clin. Epigenetics 2014, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.K.; Guda, C. Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer. Oncotarget 2017, 8, 28990–29012. [Google Scholar] [CrossRef] [PubMed]
- Zagorac, S.; Alcala, S.; Fernandez Bayon, G.; Bou Kheir, T.; Schoenhals, M.; Gonzalez-Neira, A.; Fernandez Fraga, M.; Aicher, A.; Heeschen, C.; Sainz, B.J. DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster. Cancer Res. 2016, 76, 4546–4558. [Google Scholar] [CrossRef] [PubMed]
- Lomberk, G.; Blum, Y.; Nicolle, R.; Nair, A.; Gaonkar, K.S.; Marisa, L.; Mathison, A.; Sun, Z.; Yan, H.; Elarouci, N.; et al. Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat. Commun. 2018, 9, 1978. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Gao, Y.; Chen, Y.; Wang, Z.; Yin, J. Genome-scale analysis identifies GJB2 and ERO1LB as prognosis markers in patients with pancreatic cancer. Oncotarget 2017, 8, 21281–21289. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, R.; Blum, Y.; Marisa, L.; Loncle, C.; Gayet, O.; Moutardier, V.; Turrini, O.; Giovannini, M.; Bian, B.; Bigonnet, M.; et al. Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts. Cell Rep. 2017, 21, 2458–2470. [Google Scholar] [CrossRef] [PubMed]
- Mello, S.S.; Sinow, C.; Raj, N.; Mazur, P.K.; Bieging-Rolett, K.; Broz, D.K.; Imam, J.F.C.; Vogel, H.; Wood, L.D.; Sage, J.; et al. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 2017, 31, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.C.; Nassour, I.; Xiao, S.; Zhang, S.; Luo, X.; Lee, J.; Li, L.; Sun, X.; Nguyen, L.H.; Chuang, J.; et al. SWI/SNF component ARID1A restrains pancreatic neoplasia formation. Gut 2018. [Google Scholar] [CrossRef]
- Martinelli, P.; Carrillo-De Santa Pau, E.; Cox, T.; Sainz, B.; Dusetti, N.; Greenhalf, W.; Rinaldi, L.; Costello, E.; Ghaneh, P.; Malats, N.; et al. GATA6 regulates EMT and tumour dissemination, and is a marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 2017, 66, 1665–1676. [Google Scholar] [CrossRef]
- Goecks, J.; El-Rayes, B.F.; Maithel, S.K.; Khoury, H.J.; Taylor, J.; Rossi, M.R. Open pipelines for integrated tumor genome profiles reveal differences between pancreatic cancer tumors and cell lines. Cancer Med. 2015, 4, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Jang, W.-J.; Choi, B.; Song, S.-H.; Lee, N.; Kim, D.-J.; Lee, S.; Jeong, C.-H. Multi-omics analysis reveals that ornithine decarboxylase contributes to erlotinib resistance in pancreatic cancer cells. Oncotarget 2017, 8, 92727–92742. [Google Scholar] [CrossRef]
- Yin, Y.; Morgunova, E.; Jolma, A.; Kaasinen, E.; Sahu, B.; Khund-Sayeed, S.; Das, P.K.; Kivioja, T.; Dave, K.; Zhong, F.; et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 2017, 356, eaaj2239. [Google Scholar] [CrossRef]
- Henriksen, S.D.; Madsen, P.H.; Larsen, A.C.; Johansen, M.B.; Pedersen, I.S.; Krarup, H.; Thorlacius-Ussing, O. Promoter hypermethylation in plasma-derived cell-free DNA as a prognostic marker for pancreatic adenocarcinoma staging. Int. J. Cancer 2017, 141, 2489–2497. [Google Scholar] [CrossRef]
- Barhli, A.; Cros, J.; Bartholin, L.; Neuzillet, C. Prognostic stratification of resected pancreatic ductal adenocarcinoma: Past, present, and future. Dig. Liver Dis. 2018, 50, 979–990. [Google Scholar] [CrossRef]
- Gress, T.M.; Lausser, L.; Schirra, L.-R.; Ortmuller, L.; Diels, R.; Kong, B.; Michalski, C.W.; Hackert, T.; Strobel, O.; Giese, N.A.; et al. Combined microRNA and mRNA microfluidic TaqMan array cards for the diagnosis of malignancy of multiple types of pancreatico-biliary tumors in fine-needle aspiration material. Oncotarget 2017, 8, 108223–108237. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, S.; Zeng, L.; Chen, Y.; Lian, G.; Qian, C.; Li, J.; Xie, R.; Huang, K.-H. New developments in the early diagnosis of pancreatic cancer. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 149–156. [Google Scholar] [CrossRef]
- Pedersen, K.; Bilal, F.; Bernado Morales, C.; Salcedo, M.T.; Macarulla, T.; Masso-Valles, D.; Mohan, V.; Vivancos, A.; Carreras, M.-J.; Serres, X.; et al. Pancreatic cancer heterogeneity and response to Mek inhibition. Oncogene 2017, 36, 5639–5647. [Google Scholar] [CrossRef]
- Grasso, D.; Bintz, J.; Lomberk, G.; Molejon, M.I.; Loncle, C.; Garcia, M.N.; Lopez, M.B.; Urrutia, R.; Iovanna, J.L. Pivotal Role of the Chromatin Protein Nupr1 in Kras-Induced Senescence and Transformation. Sci. Rep. 2015, 5, 17549. [Google Scholar] [CrossRef] [Green Version]
Source | Tissue Type | Techniques | Sample Size | Comparisons | Strengths | Weakness |
---|---|---|---|---|---|---|
[123] | Pancreas tissue | 88K Agilent promotor array and 244K island array—methylated CpG island amplification (MCA) | 10 pancreatic cancer cell lines; normal human pancreatic ductal epithelium (HPDE) and human pancreatic Nestin-expressing cells (HPNE) | Cancer vs. normal | ● Study conducted in cells lines and patient tissue | ● Early implementation of technology |
57 pancreatic cancer samples and 34 normal pancreas samples | ● Investigated using several approaches | ● Limited number of probes | ||||
[124] | Leukocytes | Illumina GoldenGate methylation Beadchip—1505 CpG sites | Phase 1: 132 never-smoker cases and 60 never-smoker controls | Cancer vs. normal | ● Validation | ● Limited number of probes |
Phase 2: 240 cases and 240 matched controls (half never smokers) | ● Adjustment for some confounders | ● Promotor region CpGs only | ||||
[54] | Cell lines and pancreas tissue samples | 244K ChIP-on-Chip microarray—27800 CpG island array | 9 pairs of pancreatic cancer versus normal pancreatic epithelial tissues | Cancer vs. normal | ● Looked at number different cell lines and tissue samples | ● CpG islands only |
3 matched pairs of pancreatic cancer versus lymphoid tissue from same individual | ● No validation within this study | ● Looked at methylation difference as individual samples rather than average of population | ||||
[125] | Pancreas tissue samples | Methyl capture sequencing method—(methylCap-Seq) | 10 pancreatic cancer tissues and 10 adjacent non-tumor tissues | Cancer vs. normal | ● Explored potential functional result of CpG methylation | ● Used p-value < 0.05 |
● 728/3911 differently methylated genes identified that were also reported in at least one of 3 different studies | ● Early implementation of technology | |||||
[92] | Pancreas tissue samples | Infinium 450k methylation array (Illumina) | 167 untreated PDACs and 29 adjacent normal pancreata | Cancer vs. normal | ● Larger sample size | ● No discussion of the significance of dissimilar pathway analysis results using two different methods |
121 PDAC and 8 nontumor | Survival | ● Looked at methylation across potential confounding factors | ● Survival analysis methods not described | |||
● 850/3522 genes previously reported to have differential methylation | ||||||
● Determined significance based on p-value and beta value | ||||||
[126] | Pancreas tissue samples | HumanMethylation450k Beadchip (Illumina) | Secondary analysis of public TCGA data - 184 tumors and 10 normals | Cancer vs. normal | ● Looked at methylation and expression, as well as mutation loads and copy number variations of key oncogenes or suppressor genes | ● Had to attempt to adjust for batch effects using PCA |
● Promoter region methylation highly negatively correlated with gene expression | ● Used median beta value for genes with multiple methylation markers with no justification | |||||
● Non-promoter region methylation highly positively correlated with gene expression | ● Stated gender bias was ignored by excluding X and Y chromosomes | |||||
● Determined significance based on p-value and beta value | ● Used only beta value for significance | |||||
● Highlighted methylation of genes coding for other epigenetic markers | ||||||
[127] | PDX – pancreas tissues - stem cells | HumanMethylation450k Beadchip (Illumina) | Not given | Cancer stems cells vs. non-cancer stem cells | ● Looked at stem cells from PDAC-185, liver met (PDAC-A6L) and single cell-derived tumor | ● Unknown systematic effects of DNMT1 treatment |
● Function of stems cells reduced by inhibiting DNMT1 | ● Unknown sample size used | |||||
● Cancer stem cells show hypermethylation in intergenic regions | ||||||
[128] | PDX – pancreas tissue | Chip-seq | 24 xenograft samples - tumor | Survival | ● Looked at chromatin states, DNA methylation, Gene expression, and Transcription factors | ● limited to later stage samples |
RNA-seq | ||||||
MethEpic |
Source | Tissue Type | Techniques | Sample Size | Comparisons | Strengths | Weakness |
---|---|---|---|---|---|---|
[129] | Pancreas tissue | Affymetrix Human Genome U133 Plus 2.0 | Secondary analysis: 117 tumor samples and 73 normal pancreas samples | Cases vs. control | ● Two markers validated in independent cohort | ● Set significance at log2 fold change > 1 and p-value < 0.05 |
Agilent-014850 Whole Human Genome Microarray | Independent set: 145 tumor and 46 normal samples | ● Multiple platforms used | ||||
IlluminaHiSeq | 165 samples from TCGA | Survival | ||||
[130] | Pancreas tissue | RNA-seq | 29 pancreatic ductal adenocarcinoma xenogragts | Drug targets | ● Used public databases and patient-based samples | ● Most functional impacts unknown |
miRNA-seq | 3 public databases | |||||
[128] | PDX—Pancrease tissues | Chip-seq | 24 xenograft samples - tumor | Survival | ● Looked at chromatin states, DNA methylation, gene expression, and transcription factors | ● Limited to later stage samples |
RNA-seq | ● | |||||
MethEpic | ● | |||||
[131] | Pancreas tissue—cell line and mouse | RNA-seq | 4 E1A;HRasV12;Neat1+/+ and 4 E1A;HRasV12;Neat1−/− | Gene expression | ● Used multiple mouse and human cells | ● Literature has contradictory role for Neat1 |
Chip-seq | ● Demonstrated important functional roles for Neat1 | ● Previous evidence of Neat1 role in tumorigenesis is unclear | ||||
Implication related to p53 | ||||||
[132] | Pancreas tissue | RNA-seq | Mouse | Gene expression | ● Associated Arid1a with MyC | ● Previous evidence of ARID1A role in tumorigenesis is unclear |
Cell lines | Chip-seq | Pancreatic ductal epithelial cells | ● Different roles given pancreatic cancer cell type | ● Mutational profiles of IPMN currently unknown | ||
[133] | Cell lines | 11 cell line from patient-derived xenografts | Gene expression | ● GATA6 regulated epithelial-mesenchymal transition | ● Proposed new functional role of an EMT regulator | |
Pancreas tissue samples | 25 tumor samples | Survival | ● Patients with low GATA6 have worse survival and worse treatment response | ● Prior evidence for functional roles in other cancers | ||
Treatment response | ● Used samples from randomized clinical trial | ● GATA6 suspected oncogene, but patients with low expression have worse outcomes | ||||
● Support role of GATA6 in tumor differentiation | ● No cause-effect relationship with 5-FU treatment response |
Source | Tissue Type | Techniques | Sample Size | Comparisons | Strengths | Weakness |
---|---|---|---|---|---|---|
[121] | Pancreas tissue | 5617 miRNA—Affymetrix GeneChip miRNA 3.0 | 104 PDAC and 17 benign pancreas tissue | Cancer vs. benign | ● Candidate markers annotated using gene ontology analysis | ● New approach - unvalidated |
33,297 mRNA—HuGene 1.0 ST | Validation in GEO and TCGA databases | Cancer vs. normal | ● Selection of genes based on predictive measures and adjusted p-values | ● Weights are dataset dependent, however, limited markers to validation in at least 2 datasets | ||
[134] | PDAC tumor tissue and cell lines | exome—llumina HiSeq 2000) | 3 different cell lines and 6 primary pancreatic cancer tumors | Primary tumor vs cell lines | ● Combined exome data and transcriptome data | ● Variant analysis and interpretation |
transcriptome—RNA-seq (Illumina HiSeq 2000) | ● Variant filtering in pipeline removes most false positives | ● Biopsy samples generally included normal tissue | ||||
● Made analysis pipeline available for others to try and establish standard and reproducibility | ● Exome only on cell lines | |||||
[122] | Pancreas tissue | multiple—Table 1 in reference | Cancer vs. normal | ● Used FDR to determine significance | ● Datasets with no class-based clustering were excluded | |
Survival | ● Focused meta-analysis on functional markers | ● Several arbitrary filters applied - currently no standardized data combining techniques | ||||
● Visualization of significant results | ● Clinical factors not taken into account in survival plots | |||||
● Large sample size - meta analysis | ● Hard to identify causal changes | |||||
[135] | Cell lines | Agilent Human Whole-genome expression microarray | 3 BxPC-3 and 3 BxPC-3ER | Treatment response | ● Investigated specific expression changes associated with erlotinib resistance using BXPC cell line | ● Understanding metabolite changes is limited |
● Identified potential metabolic pathways and associated genes to target to counter resistance | ● Expression and phosphorylation of RTKs not consistent with previous reports |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.R.; Reindl, K.M.; Jansen, R.J. Epigenomics of Pancreatic Cancer: A Critical Role for Epigenome-Wide Studies. Epigenomes 2019, 3, 5. https://doi.org/10.3390/epigenomes3010005
Singh RR, Reindl KM, Jansen RJ. Epigenomics of Pancreatic Cancer: A Critical Role for Epigenome-Wide Studies. Epigenomes. 2019; 3(1):5. https://doi.org/10.3390/epigenomes3010005
Chicago/Turabian StyleSingh, Rahul R., Katie M. Reindl, and Rick J. Jansen. 2019. "Epigenomics of Pancreatic Cancer: A Critical Role for Epigenome-Wide Studies" Epigenomes 3, no. 1: 5. https://doi.org/10.3390/epigenomes3010005