Susceptibility of Aedes aegypti Larvae to Temephos and Fenitrothion in Niamey (Niger) and Ouagadougou (Burkina Faso), Two West African Cities Recently Affected by Dengue
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites, Period, and Methods
2.2. Eggs Hatching and Larvae Rearing
2.3. Larvicides and Concentrations Used
2.4. Larvicides Susceptibility Tests
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AchE | Acetylcholinesterase |
CCEs | Carboxy/Choline Esterases |
DENV | Dengue Virus |
ZIKV | Zika Virus |
CHIKV | Chikungunya Virus |
RG | Rive Gauche |
RD | Rive Droite |
WHO | World Health Organization |
LD | Lethal Dose |
RR | Resistance Ratio |
References
- Kraemer, M.U.G.; Reiner, R.C.; Brady, J.O.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Publisher Correction: Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Shearer, F.M.; Sewalk, K.; Pigott, D.M.; Clarke, J.; Ghouse, A.; Judge, C.; Kang, H.; Messina, J.P.; Kraemer, M.U.G.; et al. The overlapping global distribution of dengue, chikungunya, Zika and yellow fever. Nat. Commun. 2025, 16, 3418. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.H.; Sylla, M.; Badolo, A.; Lutomiah, J.; Ayala, D.; Aribodor, O.B.; Ibe, N.; Akorli, J.; Otoo, S.; Mutebi, J.-P.; et al. Climate and Urbanization Drive Mosquito Preference for Humans. Curr. Biol. 2020, 30, 3570–3579.e6. [Google Scholar] [CrossRef] [PubMed]
- Duvignaud, A.; Stoney, R.J.; Angelo, K.M.; Chen, L.H.; Cattaneo, P.; Motta, L.; Gobbi, F.G.; Bottieau, E.; Bourque, D.L.; Popescu, C.P.; et al. Epidemiology of travel-associated dengue from 2007 to 2022: A GeoSentinel analysis. J. Travel. Med. 2024, 31, taae089. [Google Scholar] [CrossRef]
- Bangoura, S.T.; Keita, A.-K.; Diaby, M.; Sidibé, S.; Le-Marcis, F.; Camara, S.C.; Maltais, S.; Kadio, K.J.J.O.; D’ortenzio, E.; Camara, A.; et al. Arbovirus Epidemics as Global Health Imperative, Africa, 2023. Emerg. Infect. Dis. 2025, 31, e240754. [Google Scholar] [CrossRef]
- Amadou, H.I.; Arzika, I.I.; Ousmane, H.; Amadou, S.; Aoula, B.; Ousmane, A.; Maman Laminou, I.; Lagaré, A. Emergence of Indigenous Dengue Fever, Niger, October 2023. Emerg. Infect. Dis. 2024, 30, 1479–1481. [Google Scholar] [CrossRef]
- Brés, P. Données récentes apportées par les enquêtes sérologiques sur la prévalence des arbovirus en Afrique, avec référence spéciale à la fièvre jaune. Bull. Word Health Organ. 1970, 43, 223–267. [Google Scholar]
- Manigart, O.; Ouedraogo, I.; Ouedraogo, H.S.; Sow, A.; Lokossou, V.K. Dengue epidemic in Burkina Faso: How can the response improve? Lancet 2024, 403, 434–435. [Google Scholar] [CrossRef]
- Ouedraogo, D.; Yaméogo, I.; Zalle, M.; Kagone, T.; Ouedraogo, S.H.; Meda, M. Investigation de cas de chikungunya dans le district sanitaire de Pouytenga, région du Centre-Est du Burkina Faso, septembre 2023. J. Epidemiol. Popul. Health 2024, 72, 202584. [Google Scholar] [CrossRef]
- Pereira, C.A.d.M.; Mendes, R.P.G.; da Silva, P.G.; Chaves, E.J.F.; Pena, L.J. Vaccines Against Urban Epidemic Arboviruses: The State of the Art. Viruses 2025, 17, 382. [Google Scholar] [CrossRef]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, W.A.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed]
- Antonio-Nkondjio, C.; Sandjo, N.N.; Awono-Ambene, P.; Wondji, C.S. Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: Key parameters for success. Parasites Vectors 2018, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Quiñonez, C.A.; Louis, V.R.; Horstick, O.; Velayudhan, R.; Dambach, P.; Runge-Ranzinger, S. Interventions against Aedes/dengue at the household level: A systematic review and meta-analysis. eBioMedicine 2023, 93, 104660. [Google Scholar] [CrossRef] [PubMed]
- George, L.; Lenhart, A.; Toledo, J.; Lazaro, A.; Han, W.W.; Velayudhan, R.; Ranzinger, S.R.; Horstick, O.; Barrera, R. Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review. PLoS Negl. Trop. Dis. 2015, 9, e0004006. [Google Scholar] [CrossRef]
- Chareonviriyaphap, T.; Aum-aung, B.; Ratanatham, S. Current insecticides resistance patterns in mosquito vectors in Thailand. Southeast Asian J. Trop. Med. Public Health 1999, 30, 184–194. [Google Scholar]
- Haziqah-Rashid, A.; Chen, C.D.; Lau, K.W.; Low, V.L.; Sofian-Azirun, M.; Suana, I.W.; Harmonis, H.; Syahputra, E.; Razak, A.; Chin, A.C.; et al. Monitoring Insecticide Resistance Profiles of Aedes aegypti (Diptera: Culicidae) in the Sunda Islands of Indonesia Based on Diagnostic Doses of Larvicides. J. Med. Entomol. 2019, 56, 514–518. [Google Scholar] [CrossRef]
- Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 2015, 60, 537–559. [Google Scholar] [CrossRef]
- Badolo, A.; Sombié, A.; Pignatelli, P.M.; Sanon, A.; Yaméogo, F.; Wangrawa, D.W.; Sanon, A.; Kanuka, H.; McCall, P.J.; Weetman, D.; et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou, Burkina Faso. PLoS Negl. Trop. Dis. 2019, 13, e0007439. [Google Scholar] [CrossRef]
- Maiga, A.-A.; Sombié, A.; Zanré, N.; Yaméogo, F.; Iro, S.; Testa, J.; Sanon, A.; Koita, O.; Kanuka, H.; McCall, P.J.; et al. First report of V1016I, F1534C and V410L kdr mutations associated with pyrethroid resistance in Aedes aegypti populations from Niamey, Niger. PLoS ONE 2024, 19, e0304550. [Google Scholar] [CrossRef]
- WHO. Monitoring and managing insecticide resistance in Aedes mosquito populations. In Interim Guidance for Entomologists; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 30 May 2025).
- Gainor, E.M.; Harris, E.; Labeaud, A.D. Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022, 14, 233. [Google Scholar] [CrossRef]
- Ouédraogo, W.M.; Toé, H.K.; Sombié, A.; Viana, M.; Bougouma, C.; Sanon, A.; Weetman, D.; McCall, P.J.; Kanuka, H.; Badolo, A. Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City, Burkina Faso. Parasit Vectors 2022, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, M.M.; Ibrahim, S.S. Temporal Evaluation of Insecticide Resistance in Populations of the Major Arboviral Vector Aedes Aegypti from Northern Nigeria. Insects 2022, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Haidy-Massa, M.; Ould Lemrabott, M.A.; Gomez, N.; Ould Mohamed Salem Boukhary, A.; Briolant, S. Insecticide Resistance Status of Aedes aegypti Adults and Larvae in Nouakchott, Mauritania. Insects 2025, 16, 288. [Google Scholar] [CrossRef] [PubMed]
- Kamgang, B.; Marcombe, S.; Chandre, F.; Nchoutpouen, E.; Nwane, P.; Etang, J.; Corbel, V.; Paupy, C. Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasites Vectors 2011, 4, 79. [Google Scholar] [CrossRef] [PubMed]
- Yougang, A.P.; Kamgang, B.; Wilson Bahun, T.A.; Tedjou, A.N.; Nguiffo-Ngette, D.; Njiokou, F.; Wondji, C. First detection of F1534C knockdown resistance mutation in Aedes aegypti (Diptera: Culicidae) from Cameroon. Infect. Dis. Poverty 2020, 9. [Google Scholar] [CrossRef]
- Ngoagouni, C.; Kamgang, B.; Brengues, C.; Yahouedo, G.; Paupy, C.; Nakouné, E.; Kazanji, M.; Chandre, F. Susceptibility profile and metabolic mechanisms involved in Aedes aegypti and Aedes albopictus resistant to DDT and deltamethrin in the Central African Republic. Parasites Vectors 2016, 9, 599. [Google Scholar] [CrossRef]
- Kamgang, B.; Wilson-Bahun, T.A.; Yougang, A.P.; Lenga, A.; Wondji, C.S. Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infect. Dis. Poverty 2020, 9, 23. [Google Scholar] [CrossRef]
- Rocha, H.D.R.; Paiva, M.H.S.; Silva, N.M.; de Araujo, A.P.; de Azevedo Camacho, D.d.R.d.R.; da Moura, A.J.F.; Gomez, L.F.; Ayres, C.F.J.; de Melo Santos, M.A.V. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides. Acta Trop. 2015, 152, 66–73. [Google Scholar] [CrossRef]
- Chediak, M.; Pimenta, F.G.; Coelho, G.E.; Braga, I.A.; Lima, J.P.B.; Cavalcante, K.R.; de Souza, L.C.; de Melo-Santos, M.A.V.; Macoris, M.D.; de Araujo, A.P.; et al. Spatial and temporal country-wide survey of temephos resistance in Brazilian populations of Aedes aegypti. Mem. Inst. Oswaldo Cruz 2016, 111, 311–321. [Google Scholar] [CrossRef]
- Grisales, N.; Poupardin, R.; Gomez, S.; Fonseca-Gonzalez, I.; Ranson, H.; Lenhart, A. Temephos Resistance in Aedes aegypti in Colombia Compromises Dengue Vector Control. PLoS Neglected Trop. Dis. 2013, 7, e2438. [Google Scholar] [CrossRef]
- Bisset, J.A.; Marin, R.; Rodriguez, M.M.; Severson, D.W.; Ricardo, Y.; French, L.; Diaz, M.; Perez, O. Insecticide resistance in two Aedes aegypti (Diptera: Culicidae) strains from Costa Rica. J. Med. Entomol. 2013, 50, 352–361. [Google Scholar] [CrossRef]
- Poupardin, R.; Srisukontarat, W.; Yunta, C.; Ranson, H. Identification of Carboxylesterase Genes Implicated in Temephos Resistance in the Dengue Vector Aedes aegypti. PLoS Negl. Trop. Dis. 2014, 8, e2743. [Google Scholar] [CrossRef]
Insecticide | Aedes aegypti Population | LC (95% CI) (mg/L) | RR | Resistance Status | |||
---|---|---|---|---|---|---|---|
LC50 | LC95 | RR50 | RR95 | ||||
Temephos | Reference strain | 0.0038 (0.0000–0.1524) | 0.0075 (0.0000–0.2416) | 1.00 | 1.00 | S | |
Niger | Lamordé (Rive Droite) | 0.0089 (0.0002–0.0767) | 0.0395 (0.0013–0.2402) | 2.36 | 5.23 | S | |
Yantala (Rive Gauche) | 0.0113 (0.0004–0.0788) | 0.0358 (0.0018–0.1945) | 3 | 4.75 | S | ||
Burkina Faso | Zongo drums | 0.0059 (0.0002–0.0444) | 0.0294 (0.0016–0.1591) | 1.56 | 3.89 | S | |
Zongo metallic | 0.0083 (0.0000–0.1492) | 0.0223 (0.0000–0.2954) | 2.21 | 2.95 | S | ||
Zongo Plastic | 0.0068 (0.0002–0.0533) | 0.0357 (0.0018–0.1956) | 1.81 | 4.75 | S | ||
Fenitrothion | Reference strain | 0.0121 (0.0001–0.1158) | 0.0257 (0.0004–0.2031) | 1.00 | 1.00 | S | |
Niger | Lamordé (Rive Droite) | 0.0075 (0.0004–0.04880 | 0.0159 (0.0010–0.0893) | 0.624 | 0.62 | S | |
Yantala (Rive Gauche) | 0.0109 (0.0008–0.0563) | 0.0234 (0.0022–0.1054) | 0.91 | 0.91 | S | ||
Burkina Faso | Zongo drums | 0.0057 (0.0009–0.0217) | 0.0154 (0.0030–0.0516) | 0.47 | 0.60 | S | |
Zongo metallic | 0.0058 (0.0001–0.0515) | 0.0188 (0.0006–0.1289) | 0.48 | 0.73 | S | ||
Zongo Plastic | 0.0057 (0.0005–0.0311) | 0.0130 (0.0013–0.0616) | 0.47 | 0.51 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maiga, A.-A.; Sombié, A.; Zanré, N.; Maiga, R.; Laminou, I.M.; Doumma, A.; Sanon, A.; Badolo, A. Susceptibility of Aedes aegypti Larvae to Temephos and Fenitrothion in Niamey (Niger) and Ouagadougou (Burkina Faso), Two West African Cities Recently Affected by Dengue. Insects 2025, 16, 870. https://doi.org/10.3390/insects16090870
Maiga A-A, Sombié A, Zanré N, Maiga R, Laminou IM, Doumma A, Sanon A, Badolo A. Susceptibility of Aedes aegypti Larvae to Temephos and Fenitrothion in Niamey (Niger) and Ouagadougou (Burkina Faso), Two West African Cities Recently Affected by Dengue. Insects. 2025; 16(9):870. https://doi.org/10.3390/insects16090870
Chicago/Turabian StyleMaiga, Abdoul-Aziz, Aboubacar Sombié, Nicolas Zanré, Rahmatoulaye Maiga, Ibrahim Maman Laminou, Ali Doumma, Antoine Sanon, and Athanase Badolo. 2025. "Susceptibility of Aedes aegypti Larvae to Temephos and Fenitrothion in Niamey (Niger) and Ouagadougou (Burkina Faso), Two West African Cities Recently Affected by Dengue" Insects 16, no. 9: 870. https://doi.org/10.3390/insects16090870
APA StyleMaiga, A.-A., Sombié, A., Zanré, N., Maiga, R., Laminou, I. M., Doumma, A., Sanon, A., & Badolo, A. (2025). Susceptibility of Aedes aegypti Larvae to Temephos and Fenitrothion in Niamey (Niger) and Ouagadougou (Burkina Faso), Two West African Cities Recently Affected by Dengue. Insects, 16(9), 870. https://doi.org/10.3390/insects16090870