Characterization of Spectrin Family Genes and Their Evolutionary Roles in Domestication and Breeding of the Silkworm Bombyx mori
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome-Wide Identification of Spectrin Repeat Domains
2.2. Gene Structure Optimization and Protein Domain Analysis
2.3. Spatiotemporal Expression Analysis of Spectrin Genes
2.4. Silkworm Rearing, Dissection, qPCR Analysis, and Silk Yield Trait Investigation
2.5. Transcriptome Sequencing and Analysis
2.6. Analysis of Genomic Variations
2.7. Association Study of BmBeta_spc SNPs and Cocoon Traits
3. Results
3.1. Genome-Wide Identification and Chromosomal Distribution
3.2. Gene Structure Optimization and Characterization of Spectrin Proteins
3.3. Phylogenetic Relationships
3.4. Spatiotemporal Expression Profiles of Spectrin Genes
3.5. BmTrio Plays Roles in Silkworm Domestication
3.6. BmBeta_spc Is Associated with Silk Yield
3.7. BmBeta_spc Potentially Contributes to Heterosis of Silk Yield
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nicolas, A.; Delalande, O.; Hubert, J.F.; Le Rumeur, E. The spectrin family of proteins: A unique coiled-coil fold for various molecular surface properties. J. Struct. Biol. 2014, 186, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Djinovic-Carugo, K.; Gautel, M.; Ylanne, J.; Young, P. The spectrin repeat: A structural platform for cytoskeletal protein assemblies. FEBS Lett. 2002, 513, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Broderick, M.J.; Winder, S.J. Spectrin, alpha-actinin, and dystrophin. Adv. Protein Chem. 2005, 70, 203–246. [Google Scholar]
- Marchesi, V.T.; Steers, E., Jr. Selective solubilization of a protein component of the red cell membrane. Science 1968, 159, 203–204. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, J.C.; Forget, B.G. Erythroid and nonerythroid spectrins. Blood 1993, 81, 3173–3185. [Google Scholar] [CrossRef]
- Gambetta, K.E.; McCulloch, M.A.; Lal, A.K.; Knecht, K.; Butts, R.J.; Villa, C.R.; Johnson, J.N.; Conway, J.; Bock, M.J.; Schumacher, K.R.; et al. Diversity of dystrophin gene mutations and disease progression in a contemporary cohort of duchenne muscular dystrophy. Pediatr. Cardiol. 2022, 43, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, E.P.; Brown, R.H., Jr.; Kunkel, L.M. Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell 1987, 51, 919–928. [Google Scholar] [CrossRef]
- Khurana, S.; Chakraborty, S.; Lam, M.; Liu, Y.; Su, Y.T.; Zhao, X.; Saleem, M.A.; Mathieson, P.W.; Bruggeman, L.A.; Kao, H.Y. Familial focal segmental glomerulosclerosis (FSGS)-linked alpha-actinin 4 (ACTN4) protein mutants lose ability to activate transcription by nuclear hormone receptors. J. Biol. Chem. 2012, 287, 12027–12035. [Google Scholar] [CrossRef]
- Jorgensen, L.H.; Mosbech, M.B.; Faergeman, N.J.; Graakjaer, J.; Jacobsen, S.V.; Schroder, H.D. Duplication in the Microtubule-Actin Cross-linking Factor 1 gene causes a novel neuromuscular condition. Sci. Rep. 2014, 4, 5180. [Google Scholar] [CrossRef]
- Voelzmann, A.; Liew, Y.T.; Qu, Y.; Hahn, I.; Melero, C.; Sanchez-Soriano, N.; Prokop, A. Drosophila short stop as a paradigm for the role and regulation of spectraplakins. Semin. Cell Dev. Biol. 2017, 69, 40–57. [Google Scholar] [CrossRef]
- Featherstone, D.E.; Davis, W.S.; Dubreuil, R.R.; Broadie, K. Drosophila alpha- and beta-spectrin mutations disrupt presynaptic neurotransmitter release. J. Neurosci. 2001, 21, 4215–4224. [Google Scholar] [CrossRef]
- Bosher, J.M.; Hahn, B.S.; Legouis, R.; Sookhareea, S.; Weimer, R.M.; Gansmuller, A.; Chisholm, A.D.; Rose, A.M.; Bessereau, J.L.; Labouesse, M. The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J. Cell Biol. 2003, 161, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Daimon, T.; Koyama, T.; Yamamoto, G.; Sezutsu, H.; Mirth, C.K.; Shinoda, T. The number of larval molts is controlled by hox in caterpillars. Curr. Biol. 2021, 31, 884–891.e3. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.L.; Han, M.J.; Lu, K.P.; Tai, S.S.; Liang, S.B.; Liu, Y.C.; Hu, H.; Shen, J.H.; Long, A.X.; Zhan, C.Y.; et al. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. Nat. Commun. 2022, 13, 5619. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.Y.; Tong, X.T.; Li, C.L.; Hu, H. The genetics of the silkworm. In The Sericultural Science in China, 1st ed.; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu University of Science and Technology, Eds.; Shanghai Scientific & Technical Publishers: Shanghai, China, 2020; pp. 265–309. [Google Scholar]
- Kawamoto, M.; Kiuchi, T.; Katsuma, S. SilkBase: An integrated transcriptomic and genomic database for Bombyx mori and related species. Database 2022, 2022, baac040. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Kim, D.; Landmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Lu, K.P.; Pan, Y.F.; Shen, J.H.; Yang, L.; Zhan, C.Y.; Liang, S.B.; Tai, S.S.; Wan, L.R.; Li, T.; Cheng, T.C.; et al. SilkMeta: A comprehensive platform for sharing and exploiting pan-genomic and multi-omic silkworm data. Nucleic Acids Res. 2024, 52, D1024–D1032. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wei, Z.; Luo, Y.; Guo, H.; Zhang, G.; Xia, Q.; Wang, Y. SilkDB 3.0: Visualizing and exploring multiple levels of data for silkworm. Nucleic Acids Res. 2020, 48, D749–D755. [Google Scholar] [CrossRef]
- Xu, H.; Chen, L.; Tong, X.L.; Hu, H.; Liu, L.Y.; Liu, G.C.; Zhu, Y.N.; Zhao, R.P.; Wang, W.; Dai, F.Y.; et al. Comprehensive silk gland multi-omics comparison illuminates two alternative mechanisms in silkworm heterosis. Zool. Res. 2022, 43, 585–596. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Fang, S.M.; Hu, B.L.; Zhou, Q.Z.; Yu, Q.Y.; Zhang, Z. Comparative analysis of the silk gland transcriptomes between the domestic and wild silkworms. BMC Genom. 2015, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.S.; Shen, Y.H.; Yuan, G.X.; Hu, Y.G.; Xu, H.E.; Xiang, Z.H.; Zhang, Z. Evidence of selection at melanin synthesis pathway loci during silkworm domestication. Mol. Biol. Evol. 2011, 28, 1785–1799. [Google Scholar] [CrossRef]
- Lu, K.P.; Liang, S.B.; Han, M.J.; Wu, C.M.; Song, J.B.; Li, C.L.; Wu, S.Y.; He, S.Z.; Ren, J.Y.; Hu, H.; et al. Flight muscle and wing mechanical properties are involved in flightlessness of the domestic silkmoth, Bombyx mori. Insects 2020, 11, 220. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, J.; Urs, R.; Datta, R.K. Crossbreeding and heterosis in the silkworm, Bombyx mori: A review. Sericologia 1996, 36, 1–26. [Google Scholar]
- Lorenzo, D.N.; Edwards, R.J.; Slavutsky, A.L. Spectrins: Molecular organizers and targets of neurological disorders. Nat. Rev. Neurosci. 2023, 24, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.P.; Skepper, J.N.; Yang, F.T.; Davies, J.D.; Hegyi, L.; Roberts, R.G.; Weissberg, P.L.; Ellis, J.A.; Shanahan, C.M. Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 2001, 114, 4485–4498. [Google Scholar] [CrossRef]
- Pesacreta, T.C.; Byers, T.J.; Dubreuil, R.; Kiehart, D.P.; Branton, D. Drosophila spectrin: The membrane skeleton during embryogenesis. J. Cell Biol. 1989, 108, 1697–1709. [Google Scholar] [CrossRef]
- Huelsmann, S.; Brown, N.H. Spectraplakins. Curr. Biol. 2014, 24, R307–R308. [Google Scholar] [CrossRef]
- Wang, M.; Lin, Y.; Zhou, S.; Cui, Y.; Feng, Q.; Yan, W.; Xiang, H. Genetic mapping of climbing and mimicry: Two behavioral traits degraded during silkworm domestication. Front. Genet. 2020, 11, 566961. [Google Scholar] [CrossRef]
- Ichikawa, T.; Aoki, S.; Shimizu, I. Neuroendocrine control of diapause hormone secretion in the silkworm, Bombyx mori. J. Insect Physiol. 1997, 43, 1101–1109. [Google Scholar] [PubMed]
- Song, W.T.; Zhu, F.F.; Chen, K.P. The molecular mechanisms and factors affecting the feeding habits of silkworm (Lepidoptera: Bombyxidae). J. Asia-Pac. Entomol. 2021, 24, 955–962. [Google Scholar] [CrossRef]
- Guo, N.; Lu, K.; Cheng, L.; Li, Z.; Wu, C.; Liu, Z.; Liang, S.; Chen, S.; Chen, W.; Jiang, C.; et al. Structure analysis of the spinneret from Bombyx mori and its influence on silk qualities. Int. J. Biol. Macromol. 2019, 126, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Bisch-Knaden, S.; Daimon, T.; Shimada, T.; Hansson, B.S.; Sachse, S. Anatomical and functional analysis of domestication effects on the olfactory system of the silkmoth Bombyx mori. Proc. Biol. Sci. 2014, 281, 20132582. [Google Scholar] [CrossRef] [PubMed]
- Liebl, E.C.; Forsthoefel, D.J.; Franco, L.S.; Sample, S.H.; Hess, J.E.; Cowger, J.A.; Chandler, M.P.; Shupert, A.M.; Seeger, M.A. Dosage-sensitive, reciprocal genetic interactions between the Abl tyrosine kinase and the putative GEF trio reveal trio’s role in axon pathfinding. Neuron 2000, 26, 107–118. [Google Scholar] [CrossRef]
- Varvagiannis, K.; Vissers, L.; Baralle, D.; de Vries, B.B.A.; Gazdagh, G. TRIO-related neurodevelopmental disorder. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993; pp. 1993–2025. [Google Scholar]
Gene ID | Chr. | Strand (+/−) | Predicted Genomic Region | Optimized Genomic Region | AAS Length (aa) | Protein Domain |
---|---|---|---|---|---|---|
KWMTBOMO14882 | 24 | + | 16986141–16994985 | 16927869–17074342 | 4083 | Spectrin repeats (29), PH, CH |
KWMTBOMO14883 | 24 | + | 16995271–17036415 | |||
KWMTBOMO14884 | 24 | + | 16995271–17036415 | |||
KWMTBOMO11867 | 20 | − | 2360655–2407092 | 2359470–2714880 | 9267 | GAS2, plectin repeats (36), spectrin repeats (34), CH |
KWMTBOMO11868 | 20 | − | 2408554–2440562 | |||
KWMTBOMO11870 | 20 | − | 2442893–2507042 | |||
KWMTBOMO11872 | 20 | − | 2510156–2587372 | |||
KWMTBOMO04201 | 7 | − | 13360093–13375354 | 13357711–13859261 | 3583 | Spectrin repeats (15), WW, ZnF, CH |
KWMTBOMO04202 | 7 | − | 13427021–13458274 | |||
KWMTBOMO04207 | 7 | − | 13666034–13671749 | |||
KWMTBOMO04210 | 7 | − | 13743571–13764629 | |||
KWMTBOMO04212 | 7 | − | 13807018–13833429 | |||
KWMTBOMO11045 | 18 | − | 10803357–10884353 | 10802397–10884586 | 2575 | Spectrin repeats (17), PH, CH |
KWMTBOMO08648 | 15 | − | 1561077–1596812 | 1560551–1596880 | 2421 | Spectrin repeats (19), EFh |
KWMTBOMO00548 | 1 | − | 16223310–16295639 | 16129442–16295639 | 2851 | Spectrin repeats (7), SEC14, RhoGEF, PH |
KWMTBOMO07009 | 12 | − | 1611446–1737463 | 1610900–1774453 | 13424 | Spectrin repeats (54), KASH, CH |
KWMTBOMO11008 | 18 | − | 9286104–9331592 | 9285843–9331723 | 899 | Spectrin repeats (4), EFh, CH |
Gene ID | B. mori | Orthologs | ||
---|---|---|---|---|
D. melanogaster | H. sapiens | M. musculus | ||
KWMTBOMO14882/14883/14884 | BmSptbn5 | Karst | Sptbn5 | Sptbn5 |
KWMTBOMO11867/118688/11870 | BmMacf1 | Short stop | Macf1 | Macf1 |
KWMTBOMO04201/04202/04207/04210/04212 | BmDys | Dys/dystrophin | Dystrophin | Dystrophin |
KWMTBOMO11045 | BmBeta_spc | Beta spectrin | Sptbn1 | Sptbn1 |
KWMTBOMO08648 | BmAlpha_spc | Alpha spectrin | Sptan1 | Sptan1 |
KWMTBOMO00548 | BmTrio | Trio | Trio | Trio |
KWMTBOMO07009 | BmSyne1 | Msp300 | Syne1 | Syne1 |
KWMTBOMO11008 | BmActn | Actn | Actn1 | Actn1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Zhan, C.; Shen, J.; Zhi, C.; Deng, J.; Lai, K.; Han, M.; Hu, H.; Tong, X.; Dai, F. Characterization of Spectrin Family Genes and Their Evolutionary Roles in Domestication and Breeding of the Silkworm Bombyx mori. Insects 2025, 16, 556. https://doi.org/10.3390/insects16060556
Lu K, Zhan C, Shen J, Zhi C, Deng J, Lai K, Han M, Hu H, Tong X, Dai F. Characterization of Spectrin Family Genes and Their Evolutionary Roles in Domestication and Breeding of the Silkworm Bombyx mori. Insects. 2025; 16(6):556. https://doi.org/10.3390/insects16060556
Chicago/Turabian StyleLu, Kunpeng, Chengyu Zhan, Jianghong Shen, Chao Zhi, Jun Deng, Kerui Lai, Minjin Han, Hai Hu, Xiaoling Tong, and Fangyin Dai. 2025. "Characterization of Spectrin Family Genes and Their Evolutionary Roles in Domestication and Breeding of the Silkworm Bombyx mori" Insects 16, no. 6: 556. https://doi.org/10.3390/insects16060556
APA StyleLu, K., Zhan, C., Shen, J., Zhi, C., Deng, J., Lai, K., Han, M., Hu, H., Tong, X., & Dai, F. (2025). Characterization of Spectrin Family Genes and Their Evolutionary Roles in Domestication and Breeding of the Silkworm Bombyx mori. Insects, 16(6), 556. https://doi.org/10.3390/insects16060556