The Pollinating Network of Pollinators and the Service Value of Pollination in Hanzhong City, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Species Survey
2.3. Transect Selection
2.4. Transect Survey
2.5. Species Identification
2.6. Diversity Index Analysis
2.7. Building Pollination Networks
2.8. Evaluation of Pollination Service Value
2.8.1. Pollination Dependence Assessment
2.8.2. Pollination Service Value
2.9. Data Analysis
3. Results
3.1. Pollinator Diversity
3.1.1. Butterfly Diversity
3.1.2. Bee Diversity
3.1.3. Diversity of Flies and Moths
3.2. Diversity of Pollinating Insects in Different Habitats
3.3. Pollinator–Plant Pollination Network
- (1)
- Species composition of pollinating insects and flowering plants
- (2)
- Insect–plant interaction network
- (3)
- Pollination service value
4. Discussion
- ①
- Supporting apiculture: There are abundant nectar plants in Hanzhong City, such as rape, milk vetch, and vitex. Supporting apiculture can not only provide honey and its by-products (propolis, beeswax, royal jelly), but also increase the pollination of crops, improve food production, and promote the reproduction of wild plants. However, care should be taken to avoid excessive competition between wild pollinators and honeybees [31].
- ②
- Intercropping nectar plants: In orchards where citrus, apples, and pears are highly dependent on pollination by pollinators, planting flower plants such as Brassica napus, Astragalus sinicus, and Vicia sepiu can attract bees to collect honey, and having more bees is conducive to orchard pollination.
- ③
- Promote green agriculture, accelerate the development of characteristic industries, adjust measures to local conditions, and rationally grow crops.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Codes | Pollinators | Visit Plant Species Degree | Species Strength | Specialization Level (d′) |
|---|---|---|---|---|
| B1 | Papilio bianor | 6 | 0.40606 | 0.23172 |
| B2 | Graphium sarpedon | 7 | 2.79802 | 0.68458 |
| B3 | Papilio xuthus | 13 | 2.85833 | 0.44130 |
| B4 | Pazala alebion | 2 | 0.20199 | 0.40646 |
| B5 | Papilio protenor | 1 | 0.07142 | 0.35813 |
| B6 | Byasa mencius | 1 | 0.46153 | 0.79223 |
| B7 | Byasa impediens | 3 | 0.65109 | 0.62980 |
| B8 | Polyura narcaea | 2 | 0.28205 | 0.47030 |
| 89 | Papilio polytes | 1 | 0.17857 | 0.54654 |
| B10 | Papilio machaon | 2 | 0.12662 | 0.33341 |
| B11 | Colias fieldii | 12 | 1.82326 | 0.21922 |
| B12 | Colias erate | 1 | 0.05555 | 0.28887 |
| B13 | Gonepteryx mahaguru | 2 | 0.4000 | 0.51180 |
| B14 | Eurema blanda | 6 | 0.44819 | 0.24183 |
| B15 | Pieris rapae | 16 | 2.77921 | 0.22902 |
| B16 | Pieris canidia | 4 | 0.32565 | 0.23378 |
| B17 | Pieris napi | 2 | 0.16851 | 0.37924 |
| B11 | Colias fieldii | 12 | 1.82326 | 0.21922 |
| B18 | Anthocharis cardamines | 1 | 0.04347 | 0.22856 |
| B19 | Argyronome laodice | 5 | 0.37687 | 0.19555 |
| B20 | Argyreus hyperbius | 4 | 0.28229 | 0.23008 |
| B21 | Aporia tsinglingica | 1 | 0.04347 | 0.22856 |
| B22 | Aporia crataegi | 1 | 0.01449 | 0.00000 |
| B23 | Polygnia c-aureum | 11 | 1.65782 | 0.29989 |
| B24 | Polygonia c-album | 2 | 0.03738 | 0.03208 |
| B25 | Vanessa indica | 1 | 0.36363 | 0.74052 |
| B26 | Aglais io | 3 | 0.09551 | 0.09823 |
| B27 | Vanessa cardui | 1 | 0.01851 | 0.05789 |
| B28 | Neptis sappho | 1 | 0.07692 | 0.39422 |
| B29 | Coenonympha amaryllis | 2 | 0.08319 | 0.20897 |
| B30 | Mycalesis gotama | 1 | 0.05000 | 0.29248 |
| B31 | Aphantopus hyperanthus | 2 | 0.03336 | 0.00227 |
| B32 | Celastrina argiolus | 3 | 0.26397 | 0.28736 |
| B33 | Pseudozizeeria maha | 2 | 0.23376 | 0.44710 |
| B34 | Albulina orbitula | 1 | 0.04545 | 0.26996 |
| B35 | Lycaena phlaeas | 1 | 0.04545 | 0.26996 |
| B36 | Erynnis montanus | 3 | 0.77692 | 0.62254 |
| B37 | Ochlodes ochracea | 3 | 0.33016 | 0.40763 |
| B38 | Lobocla simplex | 2 | 0.44047 | 0.49986 |
| H1 | Apis mellifera | 18 | 8.74488 | 0.47621 |
| H2 | Apis cerana | 11 | 2.84928 | 0.35855 |
| H3 | Bombus atripes | 6 | 2.05416 | 0.64375 |
| H4 | Bombus Latreille | 6 | 1.91616 | 0.58672 |
| H5 | Bombus flavus | 10 | 2.77510 | 0.43352 |
| H6 | Bombus breviceps | 14 | 4.76304 | 0.34039 |
| H7 | Bombus remotus | 3 | 0.49651 | 0.45941 |
| H8 | Xylocopa nasalis | 1 | 0.50000 | 0.82946 |
| H9 | Xylocopa sinensis | 5 | 1.80615 | 0.57233 |
| H10 | Xylocopa appendiculata | 6 | 0.84421 | 0.36257 |
| H11 | Xylocopa rufipes | 3 | 0.35726 | 0.37880 |
| H12 | Xylocopa phalothorax | 3 | 1.15398 | 0.49656 |
| Codes | Plant Species | Visit Plant Species Degree | Species Strength | Specialization Level (d′) |
|---|---|---|---|---|
| P1 | Brassica napus | 24 | 7.80620 | 0.27147 |
| P2 | Astragalus sinicus | 6 | 0.38164 | 0.23544 |
| P3 | Raphanus sativus | 9 | 1.36435 | 0.25821 |
| P4 | Malus sylvestris | 2 | 0.15650 | 0.29231 |
| P5 | Prunus persica | 4 | 0.24017 | 0.18626 |
| P6 | Cercis chinensis | 5 | 0.67903 | 0.30647 |
| P7 | Malus spectabilis | 5 | 0.58366 | 0.39539 |
| P8 | Paeonia suffruticosa | 0 | 0.00000 | 0.00000 |
| P9 | Pyrus spp. | 2 | 0.40392 | 0.38345 |
| P10 | Wisteria floribunda | 2 | 0.24064 | 0.35589 |
| P11 | Poncirus trifoliata | 2 | 0.10089 | 0.25672 |
| P12 | Photinia serrulata | 3 | 1.52483 | 0.74150 |
| P13 | Trifolium repens | 17 | 3.65696 | 0.21620 |
| P14 | Cerasus pseudocerasus | 2 | 0.04352 | 0.06664 |
| P15 | Vicia faba | 1 | 0.03225 | 0.22704 |
| P16 | Orychophragmus violaceus | 1 | 0.06000 | 0.30964 |
| P17 | Rosa banksiae | 2 | 0.54705 | 0.40417 |
| P18 | Sophora davidii | 2 | 0.11221 | 0.21890 |
| P19 | Paulownia tomentosa | 1 | 0.11538 | 0.47010 |
| P20 | Allium fistulosum | 7 | 2.04990 | 0.52783 |
| P21 | Brassica oleracea | 5 | 1.07154 | 0.48876 |
| P22 | Vicia sepiu | 20 | 5.51398 | 0.24657 |
| P23 | Cosmos bipinnata | 4 | 0.64143 | 0.39294 |
| P24 | Coreopsis lanceolata | 6 | 1.07236 | 0.36694 |
| P25 | Trifolium pratense | 0 | 0.0000 | 0.0000 |
| P26 | Rosa multiflora | 5 | 1.73534 | 0.63958 |
| P27 | Erigeron annuus | 13 | 4.39642 | 0.36535 |
| P28 | Ligustrum lucidum | 8 | 2.44347 | 0.43086 |
| P29 | Cirsium arvense | 3 | 1.00000 | 0.74397 |
| P30 | Punicagranatum | 1 | 0.03529 | 0.17943 |
| P31 | Camassia | 3 | 0.32763 | 0.34404 |
| P32 | Daucus carota | 5 | 1.66586 | 0.50199 |
| P33 | Calystegia hederacea | 1 | 0.03225 | 0.22704 |
| P34 | Melilotus albus | 1 | 0.03529 | 0.179435 |
| P35 | Leonurus japonicus | 5 | 0.89374 | 0.48913 |
| P36 | Verbena bonariensis | 2 | 0.10083 | 0.27018 |
| P37 | Thladiantha dubia Bunge | 2 | 0.10618 | 0.25617 |
| P38 | Nelumbo sp. | 7 | 0.47016 | 0.21784 |
| P39 | Zinnia elegans | 13 | 4.28096 | 0.51146 |
| P40 | Althaea rosea | 1 | 0.19047 | 0.58322 |
| P41 | Clerodendrum bungei | 2 | 1.70000 | 0.94416 |
| P42 | Rudbeckia hirta | 7 | 1.92055 | 0.38166 |
| P43 | Lagerstroemia indica | 4 | 0.90600 | 0.57961 |
| P44 | Cinnamomum camphora | 1 | 0.30769 | 0.67885 |
| P45 | Luffa cylindrica | 2 | 1.37500 | 0.87119 |
| P46 | Buddleja davidii | 8 | 2.53460 | 0.55613 |
| P47 | Vitex negundo | 1 | 0.33333 | 0.73700 |
| P48 | Rubus lambertianus | 2 | 0.53496 | 0.62791 |
| P49 | Sesamum indicum | 1 | 0.12500 | 0.53193 |
| P50 | Aster indicus | 3 | 0.49263 | 0.49757 |
| P51 | Cayratia japonica | 3 | 0.74423 | 0.55021 |
| P52 | Phaseolus vulgaris | 1 | 0.06451 | 0.34387 |
| P53 | Sambucus chinensis | 1 | 0.07989 | 0.41378 |
| P54 | Citrus reticulata | 3 | 0.89554 | 0.24017 |
| P55 | Cosmos sulphureus | 2 | 0.10488 | 0.90087 |
References
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.L.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J. Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) on Pollinators, Pollination and Food Production; IPBES Secretariat: Bonn, Germany, 2016. [Google Scholar]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar]
- Lautenbach, S.; Seppelt, R.; Liebscher, J.; Dormann, C.F. Spatial and temporal trends of global benefits. PLoS ONE 2012, 7, e35954. [Google Scholar]
- Ou, Y.F.; Wang, L.; Yan, Z.; Men, X.; Ge, F. Evaluation of insect pollination and service value in China’s agricultural ecosystems. Acta Ecol. Sin. 2019, 39, 131–145. [Google Scholar]
- Xie, Z.H.; Xu, H.L.; Yang, P. Notes on monitoring, assessing and conserving pollinator biodiversity. Chin. J. Appl. Entomol. 2011, 48, 746–775. [Google Scholar]
- Huang, J.X.; An, J.D. Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodivers. Sci. 2018, 26, 486–497. [Google Scholar] [CrossRef]
- Chou, I. Chinese Butterfly Records; Henan Science and Technology Publishing House: Zhengzhou, China, 2000. [Google Scholar]
- Wu, C.S.; Xu, Y.F. China Butterfly Atlas; Straits Book Company: Fuzhou, China, 2017. [Google Scholar]
- Hu, D.; Li, X.S.; Chang, X.M.; Xu, X.L.; Zeng, G.; Wang, Q. Study on the pollination network and pollination service values of insects to main pollinating crops in Nanchong City, Sichuan Province, Southwest China. Acta Entomol. Sin. 2024, 67, 255–269. [Google Scholar]
- Garratt, M.P.D.; de Groot, A.G.; Albrecht, M.; Bosch, J.; Breeze, T.D.; Fountain, M.T.; Klein, A.M.; McKerchar, M.; Park, M.; Paxton, R.J.; et al. Opportunities to reduce pollination deficits and production shortfalls in a globally important crop. Ecol. Appl. 2021, 31, e02445. [Google Scholar] [CrossRef]
- Smith, M.R.; Mueller, N.D.; Springman, M.; Sulser, T.B.; Garibaldi, L.A.; Gerber, J.; Wiebe, K.; Myers, S.S. Pollinator Deficits, Food Consumption, and Consequences for Human Health: A Modeling Study. Environ. Health Perspect. 2022, 130, 127003. [Google Scholar]
- Mashilingi, S.K.; Zhang, H.; Chen, W.; Vaissière, B.E.; Garibaldi, L.A.; An, J. Temporal Trends in Pollination Deficits and Its Potential Impacts on Chinese Agriculture. J. Econ. Entomol. 2021, 114, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhao, Z.; Dong, H.; Ma, J.; Gao, Y. Beekeeping Behavior of Chinese Beekeepers Shows Spatial Contraction. Agriculture 2024, 14, 540. [Google Scholar] [CrossRef]
- Breeze, T.D.; Gallai, N.; Garibaldi, L.A.; Li, X.S. Economic Measures of Pollination Services: Shortcomings and Future Directions. Trends Ecol. Evol. 2016, 31, 927–939. [Google Scholar] [CrossRef]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef]
- Si, H.; Gao, P.; Yang, X.M.; Yu, Z.J.; Li, D.N. Rapeseed production status and development countermeasures in Hanzhong City. China Agric. Technol. Ext. 2024, 40, 14–16. [Google Scholar]
- Niu, Z.Q.; Wu, Q.T.; Zhou, Q.S. The Second Comprehensive Scientific Expedition to the Qinghai-Tibet Plateau, Tibet Bees Atlas; China Forestry Publishing House: Beijing, China, 2017. [Google Scholar]
- Xi, X.Q.; Gong, X.T.; Zhang, S.Y.; Yang, N.; Sun, S.C. Structure and robustness of ‘pollinator-plant-herbivore’ interaction network in alpine meadow of northwestern Sichuan. Sci. Sin. Vitae 2022, 52, 449–458. [Google Scholar]
- Feng, Z.Y.; Chen, Y.C.; Peng, Y.Q.; Li, L.; Wang, B. Ecological network analysis: From metacommunity to metanetwork. Biodivers. Sci. 2023, 31, 23171. [Google Scholar] [CrossRef]
- Hu, L. The Plant-Pollinator Bipartite and Its Formation Mechanism in the Zoige Alpine Meadow; Nanjing University: Nanjing, China, 2018. [Google Scholar]
- Ulrich, W.; Almeida-Neto, M.; Gotelli, N.J. A consumer’s guide to nestedness analysis. Oikos 2009, 118, 3–17. [Google Scholar] [CrossRef]
- Gallai, N.; Salles, J.-M.; Settele, J.; Vaissière, B.E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 2009, 68, 810–821. [Google Scholar] [CrossRef]
- Priyadarshana, T.S.; Lee, M.; Ascher, J.S.; Qiu, L.; Goodale, E. Crop heterogeneity is positively associated with beneficial insect diversity in subtropical farmlands. J. Appl. Ecol. 2021, 58, 2747–2759. [Google Scholar] [CrossRef]
- Kingazi, N.; Temu, R.; Sirima, A.; Jonsson, M. Tropical agroforestry supports insect pollinators and improves bean yield. J. Appl. Ecol. 2024, 61, 1067–1080. [Google Scholar] [CrossRef]
- Varah, A.; Jones, H.; Smith, J.; Potts, S.G. Temperate agroforestry systems provide greater pollination service than monoculture. Agric. Ecosyst. Environ. 2020, 301, 107031. [Google Scholar] [CrossRef]
- Liu, X.; Chesters, D.; Wu, C.; Zhou, Q.; Zhu, C. Impact of Environmental Changes on the Diversity of Wild Bees in China. Biodiversity 2018, 26, 760–765. [Google Scholar]
- Bascompte, J.; Scheffer, M. The Resilience of Plant–Pollinator Networks. Annu. Rev. Entomol. 2023, 68, 363–380. [Google Scholar] [CrossRef]
- Tremlett, C.J.; Peh, K.S.-H.; Zamora-Gutierrez, V.; Schaafsma, M. Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico. Ecosyst. Serv. 2021, 47, 101197. [Google Scholar] [CrossRef]
- Garratt, M.P.D.; O’COnnor, R.S.; Carvell, C.; Fountain, M.T.; Breeze, T.D.; Pywell, R.; Redhead, J.W.; Kinneen, L.; Mitschunas, N.; Truslove, L.; et al. Addressing pollination deficits in orchard crops through habitat management for wild pollinators. Ecol. Appl. 2022, 33, e2743. [Google Scholar] [CrossRef] [PubMed]
- Page, M.L.; Francis, J.S.; Muller, U.; Williams, N.M. Wildflower plantings and honeybee competition impact nutritional quality of wild bee diets. J. Appl. Ecol. 2024, 61, 3104–3114. [Google Scholar] [CrossRef]




| Family | Number of Species (%) | Number of Individuals (%) | Shannon–Wiener Diversity Index H′ | Pielou’s Evenness Index J | Berger–Parker Dominance Index D′ |
|---|---|---|---|---|---|
| Papilionidae | 10 (17.24) | 408 (31.00) | 1.582 | 0.727 | 0.156 |
| Pieridae | 14 (24.13) | 536 (40.73) | 1.679 | 0.699 | 0.117 |
| Nymphalidae | 25 (43.10) | 277 (21.05) | 2.175 | 0.992 | 0.368 |
| Lycaenidae | 4 (6.89) | 45 (3.42) | 0.853 | 0.401 | 0.442 |
| Hesperiidae | 3 (5.17) | 40 (3.03) | 0.564 | 0.260 | 0.783 |
| Riodinidae | 1 (1.72) | 7 (0.53) | 0.336 | 0.470 | 0.005 |
| Danaidae | 1 (1.72) | 3 (0.23) | 0.338 | 0.770 | 0.002 |
| Total | 58 (100.00) | 1316 (100.00) |
| Family | Genus | Species | Number of Individuals (%) |
|---|---|---|---|
| Apidae | Apis | 2 | 251 (43.35) |
| Xylocopa | 5 | 46 (7.95) | |
| Bombus | 5 | 265 (45.77) | |
| Megachilidae | Mesoneura | 1 | 1 (0.17) |
| Osmia | 1 | 13 (2.24) | |
| Vespidae | Poliste | 1 | 3 (0.52) |
| Total | 6 | 15 | 579 (100.00) |
| Family | Genus | Species (%) | Number of Individuals (%) |
|---|---|---|---|
| Syrphidae | Eristali | 1 | 18 (22.22) |
| Phytomia | 1 | 16 (19.75) | |
| Syrphidae | 2 | 35 (43.21) | |
| Syritta | 1 | 2 (2.47) | |
| Melanostoma | 1 | 2 (2.47) | |
| Sphingidae | Macroglossum | 1 | 8 (9.88) |
| Total | 6 | 7 | 81 |
| Habitat Type | Number of Families | Number of Genera | Number of Individuals | Abundance Index (R) | Shannon–Wiener Diversity Index (H′) | Pielou’s Evenness Index (J) | Dominance Index (D) |
|---|---|---|---|---|---|---|---|
| farmland | 6 | 23 | 591 | 4.111 | 2.598 | 0.730 | 0.175 |
| forest area | 6 | 17 | 335 | 3.491 | 2.344 | 0.911 | 0.192 |
| agroforestry | 8 | 28 | 499 | 6.811 | 3.102 | 0.839 | 0.162 |
| Habitat Type | Mann–Whitney Statistics U Value | Mann–Whitney Test Statistic z Value | p | ||
|---|---|---|---|---|---|
| Number of individuals | Agroforestry | Forest area | 8 | −1.607 | 0.108 |
| 89.000 | 60.000 | ||||
| Agroforestry | Farmland | 13 | −0.8 | 0.432 | |
| 89.000 | 96.000 | ||||
| Farmland | Forest area | 3 | −2.402 | 0.016 * | |
| 96.000 | 60.000 | ||||
| Crop Common | Degree of Dependence (D) | Production (tons) | Price (CNY/kg) | Value of Services (CNY 10,000) | Economic Contribution Rate (%) |
|---|---|---|---|---|---|
| Brassica napus | 0.28–0.39 | 148,400 | 7.80 | 32,410.56–45,143.28 | 0.921–1.283 |
| Malus pumila | 0.40–0.90 | 15,778 | 6.00 | 3786.72–8520.12 | 0.108–0.242 |
| Pyrus spp. | 0.44–0.65 | 60,801 | 5.60 | 14,981.3664–22,131.564 | 0.426–0.629 |
| Citrus reticulata | 0.50–0.96 | 458,680 | 3.20 | 73,388.8–140,906.496 | 2.086–4.172 |
| Prunus persica | 0.40–0.90 | 31,509 | 5.00 | 6301.8–14,179.05 | 0.179–0.403 |
| Actinidia chinensis | 0.90–1.00 | 68,967 | 8.00 | 49,656.24–55,173.6 | 1.412–1.568 |
| Vitis vinifera | 0.00–0.10 | 13,330 | 10.00 | 0–1333 | 0.000–0.038 |
| Diospyros kaki | 0.40–0.90 | 16,740 | 12.00 | 8035.2–18,079.2 | 0.228–0.514 |
| Prunus armeniaca | 0.63–1.00 | 2592 | 9.60 | 1567.6416–2488.32 | 0.045–0.071 |
| Prunus pseudocerasus | 0.43–0.63 | 7510 | 20.00 | 6458.6–9462.6 | 0.184–0.269 |
| Cucumis sativus | 0.90–1.00 | 346,440 | 5.00 | 155,898–173,220 | 4.431–4.924 |
| sum | 52,484.928–487,847.334 | 10.020–13.867 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.; Yan, X.; Lv, F.; Zhang, Y.; Breeze, T.D.; Li, X. The Pollinating Network of Pollinators and the Service Value of Pollination in Hanzhong City, China. Insects 2025, 16, 1223. https://doi.org/10.3390/insects16121223
Chang X, Yan X, Lv F, Zhang Y, Breeze TD, Li X. The Pollinating Network of Pollinators and the Service Value of Pollination in Hanzhong City, China. Insects. 2025; 16(12):1223. https://doi.org/10.3390/insects16121223
Chicago/Turabian StyleChang, Xuemei, Xiaofeng Yan, Fengming Lv, Ying Zhang, Tom D. Breeze, and Xiushan Li. 2025. "The Pollinating Network of Pollinators and the Service Value of Pollination in Hanzhong City, China" Insects 16, no. 12: 1223. https://doi.org/10.3390/insects16121223
APA StyleChang, X., Yan, X., Lv, F., Zhang, Y., Breeze, T. D., & Li, X. (2025). The Pollinating Network of Pollinators and the Service Value of Pollination in Hanzhong City, China. Insects, 16(12), 1223. https://doi.org/10.3390/insects16121223

