Insecticidal and Repellent Activity of Different Pomegranate Peel Extracts Against Granary Weevil Adults
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Plant Material
2.3. Pomegranate Peels Extracts
2.4. Contact Toxicity Bioassay
2.5. Ingestion Toxicity, Antifeedant, and Nutritional Activity
2.6. Repellency Bioassay
2.7. Gas Chromatography–Mass Spectrophotometry (GC-MS) Analysis
3. Results
3.1. Contact Bioassay
3.2. Ingestion Toxicity, Antifeedant, and Nutritional Activity
3.3. Area Preference Bioassay
3.4. Gas Chromatography–Mass Spectrophotometry (GC-MS) Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision; United Nations: New York, NY, USA, 2017; Available online: https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html (accessed on 27 July 2025).
- Tadesse, M. Post-harvest loss of stored grain, its causes and reduction strategies. Food Sci. Qual. Manag. 2020, 96, 10–14. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Oláh, J.; Popp, J. Losses in the grain supply chain: Causes and solutions. Sustainability 2020, 12, 2342. [Google Scholar] [CrossRef]
- Kumar, D.; Kalita, P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Likhayo, P.; Bruce, A.Y.; Tefera, T.; Mueke, J. Maize grain stored in hermetic bags: Effect of moisture and pest infestation on grain quality. J. Food Qual. 2018, 2018, 2515698. [Google Scholar] [CrossRef]
- Taylor, R.W.D. Methyl bromide—Is there any future for this noteworthy fumigant? J. Stored Prod. Res. 1994, 30, 253–260. [Google Scholar] [CrossRef]
- Fields, P.G.; White, N.D.G. Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annu. Rev. Entomol. 2002, 47, 331–359. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef]
- Tripathi, K.A.; Upadhyay, S.; Bhuiyan, M.; Bhattacharya, P.R. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytother. 2009, 1, 52–63. [Google Scholar]
- Isman, M.B.; Miresmailli, S.; Machial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Sarmah, K.; Anbalagan, T.; Marimuthu, M.; Mariappan, P.; Angappan, S.; Vaithiyanathan, S. Innovative formulation strategies for botanical- and essential oil-based insecticides. J. Pest Sci. 2025, 98, 1–30. [Google Scholar] [CrossRef]
- FAO. Food Wastage Footprint: Impacts on Natural Resources; Summary Report; Natural Resources Management and Environment Department: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3347e/i3347e.pdf (accessed on 12 August 2025).
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.P.; Pok, P.S.; Resnik, S.L.; Pacin, A.; Munitz, M. Use of citrus flavanones to prevent aflatoxin contamination using response surface methodology. Food Control 2016, 60, 533–537. [Google Scholar] [CrossRef]
- Soto-Madrid, D.; Gutiérrez-Cutiño, M.; Pozo-Martínez, J.; Zúñiga-López, M.C.; Olea-Azar, C.; Matiacevich, S. Dependence of the ripeness stage on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts from industrial by-products. Molecules 2021, 26, 2878. [Google Scholar] [CrossRef]
- Hernández, A.; Ruiz-Moyano, S.; Galván, A.I.; Merchán, A.V.; Nevado, F.P.; Aranda, E.; Martín, A. Anti-fungal activity of phenolic sweet orange peel extract for controlling fungi responsible for post-harvest fruit decay. Fungal Biol. 2021, 125, 143–152. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.S. Grape pomace extracted tannin for green synthesis of silver nanoparticles: Assessment of their antidiabetic, antioxidant potential and antimicrobial activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef]
- Isidro-Requejo, L.M.; Márquez-Ríos, E.; Del Toro-Sánchez, C.L.; Ruiz-Cruz, S.; Valero-Garrido, D.; Suárez-Jiménez, G.M. Tomato plant extract (Lycopersicon esculentum) obtained from agroindustrial byproducts and its antifungal activity against Fusarium spp. Front. Sustain. Food Syst. 2023, 7, 1323489. [Google Scholar] [CrossRef]
- Kerbel, S.; Azzi, H.; Kadi, H.; Fellag, H.; Debras, J.F.; Kellouche, A. Insecticidal activity of crude olive pomace oils from Kabylia (Algeria) against the infestation of Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) in stored wheat grains. Afr. Entomol. 2024, 32, 1–9. [Google Scholar] [CrossRef]
- Valero-Mendoza, A.G.; Meléndez-Rentería, N.P.; Chávez-González, M.L.; Flores-Gallegos, A.C.; Wong-Paz, J.E.; Govea-Salas, M.; Zugasti-Cruz, A.; Ascacio-Valdés, J.A. The whole pomegranate (Punica granatum L.), biological properties and important findings: A review. Food Chem. Adv. 2023, 2, 100153. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Sánchez-Zapata, E.L.; Martín-Sánchez, A.M.; Ruiz-Navajas, Y.O.; Fernández-López, J.U.; Sendra, E.S.; Pérez-Álvarez, J.A.; Sayas, E.; Navarro, C. Technological properties of pomegranate (Punica granatum L.) peel extract obtained as co-product of juice processing. In Dietary Fiber and Health; McCleary, B.V., Prosky, L., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 443–450. [Google Scholar]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Pirzadeh, M.; Caporaso, N.; Rauf, A.; Shariati, M.A.; Yessimbekov, Z.; Khan, M.U.; Imran, M.; Mubarak, M.S. Pomegranate as a source of bioactive constituents: A review on their characterization, properties and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 982–999. [Google Scholar] [CrossRef] [PubMed]
- Glazer, I.; Masaphy, S.; Marciano, P.; Bar-Ilan, I.; Holland, D.; Kerem, Z.; Amir, R. Partial identification of antifungal compounds from Punica granatum peel extracts. J. Agric. Food Chem. 2012, 60, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Nuamsetti, T.; Dechayuenyong, P.; Tantipaibulvut, S. Antibacterial activity of pomegranate fruit peels and arils. Sci. Asia 2012, 38, 319–322. [Google Scholar] [CrossRef]
- Al-Zoreky, N. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef]
- Nicosia, M.G.L.D.; Pangallo, S.; Raphael, G.; Romeo, F.V.; Strano, M.C.; Rapisarda, P.; Droby, S.; Schena, L. Control of postharvest fungal rots on citrus fruit and sweet cherries using a pomegranate peel extract. Postharvest Biol. Technol. 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Ghoneim, K.; Amer, M.; Al-Daly, A.; Mohammad, A.; Khadrawy, F.; Mahmoud, M.A. Effectiveness of Punica granatum Linn. (Lythraceae) extracts on the adult performance of desert locust Schistocerca gregaria. Entomol. Appl. Sci. Lett. 2014, 1, 9–19. [Google Scholar]
- Jung, J.S. Insecticidal effects of ethanol extracts from root peel, stem peel, and fruit peel of pomegranate (Punica granatum L.) on house dust mite. Int. J. Bio-Sci. Biotechnol. 2015, 7, 25–36. [Google Scholar] [CrossRef]
- Farag, R.S.; Emam, S.S. Insecticidal activities of pomegranate peels and leaves crude juices. Int. J. Res. Agric. Food Sci. 2016, 2, 69–89. [Google Scholar]
- Havasi, M.; Kheradmand, K.; Parsa, M.; Riahi, E. Acaricidal activity of Punica granatum L. peel extract against Tetranychus urticae. Arch. Phytopathol. Plant Prot. 2019, 52, 1215–1228. [Google Scholar] [CrossRef]
- El Namaky, A.H.; El Sadawy, H.A.; Al Omari, F.; Bahareth, O.M. Insecticidal activity of Punica granatum L. extract against Rhynchophorus ferrugineus. J. Biopestic. 2020, 13, 13–20. [Google Scholar]
- Storey, C.L.; Sauer, D.B.; Walker, D. Present use of pest management practices in wheat, corn, and oats stored on the farm. J. Econ. Entomol. 1984, 77, 784–788. [Google Scholar] [CrossRef]
- Rajendran, S. Grain storage: Perspectives and problems. In Handbook of Postharvest Technology; Marcel Dekker: New York, NY, USA, 2003; pp. 183–200. [Google Scholar]
- Plarre, R. An attempt to reconstruct the natural and cultural history of the granary weevil, Sitophilus granarius. Eur. J. Entomol. 2010, 107, 1–11. [Google Scholar] [CrossRef]
- Huang, F.; Subramanyam, B. Management of five stored-product insects in wheat with pirimiphos-methyl and pirimiphos-methyl plus synergized pyrethrins. Pest Manag. Sci. 2005, 61, 356–362. [Google Scholar] [CrossRef]
- Phillips, T.W.; Hagstrum, D.W. Stored-product insects. In Control and Management of Pests in Stored Products; Academic Press: Cambridge, MA, USA, 2024; pp. 1–20. [Google Scholar]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar]
- Rotundo, G.; Paventi, G.; Barberio, A.; De Cristofaro, A.; Notardonato, I.; Russo, M.V.; Germinara, G.S. Biological activity of Dittrichia viscosa extracts against adult Sitophilus granarius and identification of active compounds. Sci. Rep. 2019, 9, 6429. [Google Scholar] [CrossRef]
- Paventi, G.; Rotundo, G.; Pistillo, M.; D’Isita, I.; Germinara, G.S. Bioactivity of wild hop extracts against the granary weevil, Sitophilus granarius. Insects 2021, 12, 564. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis, 3rd ed.; Cambridge University Press: London, UK, 1971. [Google Scholar]
- Xie, Y.; Bodnaryk, R.; Fields, P. A rapid and simple flour-disk bioassay for testing substances active against stored-product insects. Can. Entomol. 1996, 128, 865–875. [Google Scholar] [CrossRef]
- Germinara, G.S.; Di Stefano, M.G.; De Acutis, L.; Pati, S.; Delfine, S.; De Cristofaro, A.; Rotundo, G. Bioactivities of Lavandula angustifolia essential oil against the stored grain pest Sitophilus granarius. Bull. Insectol. 2017, 70, 129–138. [Google Scholar]
- Farrar, R.R.; Barbour, J.D.; Kennedy, G.G. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 1989, 82, 593–598. [Google Scholar] [CrossRef]
- Di Stefano, M.G. Toxic, Repellent and Antifeedant Activities of Lavandula angustifolia Essential oil Against Sitophilus granarius. Ph.D. Thesis, UniversitÀ Degli Studi del Molise, Campobasso, Italy, 2016. [Google Scholar]
- Tapondjou, A.L.; Adler, C.F.D.A.; Fontem, D.A.; Bouda, H.; Reichmuth, C.H. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais and Tribolium confusum. J. Stored Prod. Res. 2005, 41, 91–102. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Sheng, Y.; Chen, X.-B. Isolation and identification of an isomer of β-sitosterol by HPLC and GC-MS. J. Chromatogr. Sci. 2009, 47, 199–203. [Google Scholar] [CrossRef]
- Jiang, K.; Gachumi, G.; Poudel, A.; Shurmer, B.; Bashi, Z.; El-Aneed, A. The establishment of tandem mass spectrometric fingerprints of phytosterols and tocopherols and the development of targeted profiling strategies in vegetable oils. J. Am. Soc. Mass Spectrom. 2019, 30, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Broughton, R.; Beaudoin, F. Analysis of free and esterified sterol content and composition in seeds using GC and ESI-MS/MS. In Plant Lipids: Methods and Protocols; Hara, A., Horn, P.J., Eds.; Springer: New York, NY, USA, 2021; pp. 179–201. [Google Scholar]
- Yuan, Z.; Fang, Y.; Zhang, T.; Fei, Z.; Han, F.; Liu, C.; Liu, M.; Xiao, W.; Zhang, W.; Wu, S.; et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology. Plant Biotechnol. J. 2018, 16, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Raja, M.; Jayakumar, M.; William, J.S. Insecticidal and oviposition deterrent activity of some plant extracts against the cowpea beetle Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Indian J. Entomol. 2009, 71, 68–71. [Google Scholar]
- Sun, T.L.; Wang, F.J.; Wang, J.F.; Wang, L.Y.; Sun, Y.X. Insecticidal activity of different solvent extracts and partitioned extracts from Humulus scandens. Nat. Prod. Res. 2012, 26, 1685–1690. [Google Scholar]
- Aslan, İ.; Kılıç, T.; Gören, A.C.; Topçu, G. Toxicity of acetone extract of Sideritis trojana and 7-epicandicandiol, 7-epicandicandiol diacetate and 18-acetylsideroxol against stored pests Acanthoscelides obtectus (Say), Sitophilus granarius (L.) and Ephestia kuehniella (Zell.). Ind. Crops Prod. 2006, 23, 171–176. [Google Scholar] [CrossRef]
- El-Araby, R.; El-Sebae, A.; Farahat, A. Insecticidal properties of some plant extracts against the granary weevil, Sitophilus granarius L. J. Appl. Plant Prot. 2014, 2, 7–11. [Google Scholar] [CrossRef]
- Hamouda, A.B.; Mechi, A.; Zarred, K.; Chaieb, I.; Laarif, A. Insecticidal activities of fruit peel extracts of pomegranate (Punica granatum) against the red flour beetle Tribolium castaneum. Tunis. J. Plant Prot. 2014, 9, 91–100. [Google Scholar]
- El-Sayed, S.M.; Said, S.M. Antioxidant and insecticidal effect of some plant extracts against Callosobruchus maculatus (Coleoptera: Bruchidae). World J. Agric. Sci. 2017, 13, 17–25. [Google Scholar]
- El Sakaan, H.A.; Abdel Wahed, M.S.; El-Lakwah, S.F.; Hammad, M.A.; Ali, A.R. Toxicological, biochemical and biological effects of pomegranate peel extracts against larvae of Spodoptera littoralis. J. Environ. Sci. 2024, 53, 1435–1460. [Google Scholar] [CrossRef]
- Rotundo, G.; Paventi, G.; Germinara, G.S. Insecticidal activity of extracts from Scrophularia canina L. against adult Sitophilus granarius (L.). Tec. Molit. 2014, 45, 90–96. [Google Scholar]
- Huang, Y.; Ho, S.H. Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum and Sitophilus zeamais. J. Stored Prod. Res. 1998, 34, 11–17. [Google Scholar] [CrossRef]
- Haridasan, P.; Gokuldas, M.; Ajaykumar, A.P. Antifeedant effects of Vitex negundo L. leaf extracts on the stored product pest, Tribolium castaneum. Int. J. Pharm. Pharm. Sci. 2017, 9, 17–22. [Google Scholar] [CrossRef]
- Ben Hamouda, A.; Mechi, A.; Zarred, K.; Chaieb, I.; Laarif, A. Disruptive effects of pomegranate Punica granatum Linn. (Lythraceae) extracts on the feeding, digestion and morphology of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Entomol. Appl. Sci. Lett. 2015, 2, 1–6. [Google Scholar]
- Kanik, F.; Karakoç, Ö.C. Insecticidal and behavioral effect of some plant extracts on Sitophilus granarius and Tribolium castaneum. Plant Prot. Bull. 2020, 60, 31–40. [Google Scholar] [CrossRef]
- Mohammad, H.H. Insecticidal effect of different plant extracts against Tribolium confusum. J. Agric. Sci. Technol. A 2012, 2, 1175. [Google Scholar]
- Valsala, K.K.; Gokuldas, M. Repellent and oviposition deterrent effects of Clerodendrum infortunatum on the pulse beetle Callosobruchus chinensis L. (Coleoptera: Bruchidae). J. Entomol. Zool. Stud. 2015, 3, 250–253. [Google Scholar]
- Akbar, R.; Faheem, B.; Aziz, T.; Ali, A.; Ullah, A.; Khan, I.A.; Sun, J. Evaluating the efficacy of plant extracts in managing the bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Insects 2024, 15, 691. [Google Scholar] [CrossRef]
- Germinara, G.S.; Conte, A.; Lecce, L.; Di Palma, A.; Del Nobile, M.A. Propionic acid in bio-based packaging to prevent Sitophilus granarius (L.) (Coleoptera, Dryophthoridae) infestation in cereal products. Innov. Food Sci. Emerg. Technol. 2010, 11, 498–502. [Google Scholar] [CrossRef]
- Mohamedfarook, E.; Thirumurugan, A.; Suresh, K.; Paramasivam, M.; Merina, S.K.P.; Prabakaran, M. Efficacy of botanical repellents on major pests—A review. Plant Sci. Today 2024, 11, 5476. [Google Scholar] [CrossRef]
- Mishra, M.; Sharma, A.; Dagar, V.S.; Kumar, S. Effects of β-sitosterol on growth, development and midgut enzymes of Helicoverpa armigera. Arch. Biol. Sci. 2020, 72, 271–278. [Google Scholar] [CrossRef]
- Levinson, Z.H. The function of dietary sterols in phytophagous insects. J. Insect Physiol. 1962, 8, 191–198. [Google Scholar] [CrossRef]
- Abdul Rahuman, A.; Gopalakrishnan, G.; Venkatesan, P.; Geetha, K. Isolation and identification of mosquito larvicidal compound from Abutilon indicum. Parasitol. Res. 2008, 102, 981–988. [Google Scholar] [CrossRef]
- Lou-Bonafonte, J.M.; Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current insights into the biological action of squalene. Mol. Nutr. Food Res. 2018, 62, 1800136. [Google Scholar] [CrossRef]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant sources, extraction methods, and uses of squalene. Int. J. Agron. 2018, 2018, 1829160. [Google Scholar] [CrossRef]
- Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Krishnan, M.; Sivaperumal, S. Intrinsic studies of Euphorbia antiquorum L. latex extracts against human bacterial pathogens and mosquito vectors. Biocatal. Agric. Biotechnol. 2017, 10, 75–82. [Google Scholar] [CrossRef]
- Rahuman, A.A.; Gopalakrishnan, G.; Ghouse, B.S.; Arumugam, S.; Himalayan, B. Effect of Feronia limonia on mosquito larvae. Fitoterapia 2000, 71, 553–555. [Google Scholar] [CrossRef]
- Wagan, T.A.; Cai, W.; Hua, H. Repellency, toxicity, and anti-oviposition of essential oil of Gardenia jasminoides and its four major components against whiteflies and mites. Sci. Rep. 2018, 8, 9375. [Google Scholar] [CrossRef]
- Ling, W.; Kaliaperumal, K.; Huang, M.; Liang, Y.; Ouyang, Z.; Zhou, Z.; Jiang, Y.; Zhang, J. Pomelo seed oil: Natural insecticide against cowpea aphid. Front. Plant Sci. 2022, 13, 1048814. [Google Scholar] [CrossRef]
- Chen, Y.; Bertrand, C.; Dai, G.; Yuan, J. Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus. J. Pest Sci. 2018, 91, 405–419. [Google Scholar] [CrossRef]
- Chen, X.; Tu, Q.; Zhao, W.; Lin, X.; Chen, Z.; Li, B.; Zhang, Y. 5-Hydroxymethylfurfural mediated developmental toxicity in Drosophila melanogaster. Food Chem. Toxicol. 2024, 189, 114738. [Google Scholar] [CrossRef]
| Dose (g/Adult) | Exposure Time (h) | % Mortality (Mean ± S.E.) | Regression Equation | LD50 (95% CL, g/Adult) | LD90 (95% CL, g/Adult) | |
|---|---|---|---|---|---|---|
| 150 | 73.33 ± 3.33 a | 0.487 | 81.14 (62.47–114.80) | 306.37 (188.26–826.73) | ||
| 75 | 43.33 ± 3.33 b | |||||
| 37.5 | 26.67 ± 3.33 b | |||||
| 18.75 | 6.67 ± 3.33 c | |||||
| 0 | 24 h | 0.00 ± 0.00 c | ||||
| F | 52.9 | |||||
| d.f. | 4 | |||||
| p | <0.001 | |||||
| 150 | 76.67 ± 3.33 a | 0.315 | 75.68 (59.06–102.96) | 264.08 (170.50–619.14) | ||
| 75 | 46.67 ± 6.67 ab | |||||
| 37.5 | 26.67 ± 3.33 b | |||||
| 18.75 | 6.67 ± 3.33 c | |||||
| 0 | 48 h | 0.00 ± 0.00 c | ||||
| F | 57.5 | |||||
| d.f. | 4 | |||||
| p | <0.001 |
| Dose (g/Adult) | Exposure Time (h) | % Mortality (Mean ± S.E.) | Regression Equation | LD50 (95% CL, g/Adult) | LD90 (95% CL, g/Adult) | |
|---|---|---|---|---|---|---|
| 150 | 76.67 ± 8.82 a | 0.938 | 76.93 (60.95–102.14) | 231.76 (161.52–243.08) | ||
| 75 | 46.67 ± 12.02 ab | |||||
| 37.5 | 26.67 ± 8.82 b | |||||
| 18.75 | 3.33 ± 3.33 c | |||||
| 0 | 24 h | 0.00 ± 0.00 c | ||||
| F | 25.6 | |||||
| d.f. | 4 | |||||
| p | <0.001 | |||||
| 150 | 83.33 ± 6.67 a | 0.362 | 65.31 (51.87–84.35) | 202.45 (140.44–392.09) | ||
| 75 | 53.33 ± 8.82 ab | |||||
| 37.5 | 30.00 ± 5.77 bc | |||||
| 18.75 | 6.67 ± 3.33 cd | |||||
| 0 | 48 h | 0.00 ± 0.00 d | ||||
| F | 34.7 | |||||
| d.f. | 4 | |||||
| p | <0.001 |
| Dose (g/Adult) | Exposure Time (h) | % Mortality (Mean ± S.E.) | Regression Equation | LD50 (95% CL, g/Adult) | LD90 (95% CL, g/Adult) | |
|---|---|---|---|---|---|---|
| 150 | 3.33 ± 3.33 a | 0.831 | 83,757.38 | 9,332,208.94 | ||
| 75 | 3.33 ± 3.33 a | |||||
| 37.5 | 3.33 ± 3.33 a | |||||
| 18.75 | 0.00 ± 0.00 a | |||||
| 0 | 24 h | 0.00 ± 0.00 a | ||||
| F | 0.50 | |||||
| d.f. | 4 | |||||
| p | 0.737 | |||||
| 150 | 10.00 ± 5.77 a | 1.185 | 1212.40 | 12,772.71 | ||
| 75 | 10.00 ± 0.00 a | |||||
| 37.5 | 3.33 ± 3.33 a | |||||
| 18.75 | 0.00 ± 0.00 a | |||||
| 0 | 48 h | 0.00 ± 0.00 a | ||||
| F | 3.63 | |||||
| d.f. | 4 | |||||
| p | 0.045 |
| Concentration (g/Disk) | Mortality (%) | RGR (mg/mg/Day) (Mean ± S.E.) | RCR (mg/mg/Day) (Mean ± S.E.) | ECI (%) (Mean ± S.E.) | FDI (%) (Mean ± S.E.) |
|---|---|---|---|---|---|
| 750.00 | 26.00 a | a | a | a | a |
| 375.00 | 20.00 ab | a | a | a | a |
| 187.50 | 14.00 ab | a | a | a | a |
| 93.75 | 2.00 b | a | a | a | a |
| Control | 0.00 b | a | a | a |
| Concentration (g/Disk) | Mortality (%) | RGR (mg/mg/Day) (Mean ± S.E.) | RCR (mg/mg/Day) (Mean ± S.E.) | ECI (%) (Mean ± S.E.) | FDI (%) (Mean ± S.E.) |
|---|---|---|---|---|---|
| 750.00 | 20.00 a | a | a | a | a |
| 375.00 | 14.00 ab | a | a | a | ab |
| 187.50 | 10.00 ab | a | ab | ab | b |
| 93.75 | 6.00 ab | a | b | bc | c |
| Control | 0.00 b | b | b | c |
| Concentration (g/Disk) | Mortality (%) | RGR (mg/mg/Day) (Mean ± S.E.) | RCR (mg/mg/Day) (Mean ± S.E.) | ECI (%) (Mean ± S.E.) | FDI (%) (Mean ± S.E.) |
|---|---|---|---|---|---|
| 750.00 | 16.00 a | a | a | a | a |
| 375.00 | 22.00 a | a | a | a | a |
| 187.50 | 12.00 ab | a | a | a | a |
| 93.75 | 0.00 b | a | a | a | a |
| Control | 0.00 b | a | a | a |
| Dose (mg/cm2) | Exposure Time | ||||
|---|---|---|---|---|---|
| 10 min | 30 min | 60 min | 120 min | 24 h | |
| 2.98 | a | a | a | a | a |
| 1.49 | ab | ab | a | a | a |
| 0.75 | bc | bc | a | a | a |
| 0.37 | c | b | a | a | a |
| F | 9.9 | 8.7 | 1.5 | 1.7 | 1.8 |
| d.f. | 3 | 3 | 3 | 3 | 3 |
| p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Dose (mg/cm2) | Exposure Time | ||||
|---|---|---|---|---|---|
| 10 min | 30 min | 60 min | 120 min | 24 h | |
| 2.98 | a | a | a | a | a |
| 1.49 | ab | a | ab | a | a |
| 0.75 | bc | a | b | a | a |
| 0.37 | c | b | b | a | a |
| F | 11.13 | 13.20 | 5.70 | 3.00 | 3.00 |
| d.f. | 3 | 3 | 3 | 3 | 3 |
| p | 0.0009 | 0.0004 | 0.0118 | 0.0728 | 0.0728 |
| Dose (mg/cm2) | Exposure Time | ||||
|---|---|---|---|---|---|
| 10 min | 30 min | 60 min | 120 min | 24 h | |
| 2.98 | a | ab | a | a | a |
| 1.49 | bc | a | a | a | a |
| 0.75 | bc | ab | a | a | a |
| 0.37 | c | b | a | a | a |
| F | 1.6 | 4.8 | 0.9 | 1.1 | 0.7 |
| d.f. | 3 | 3 | 3 | 3 | 3 |
| p | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
| Source | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|
| Dose | 3 | 17,258.333 | 15.761 | <0.001 |
| Error | 12 | 1095 | ||
| Exposure time | 4 | 2542.500 | 6.239 | <0.001 |
| Error | 12 | 311.667 | ||
| Dose × Exposure time | 12 | 495.833 | 1.217 | 0.300 |
| Error | 48 | 407.500 |
| Source | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|
| Dose | 3 | 9773.333 | 5.046 | 0.017 |
| Error | 12 | 1936.667 | ||
| Exposure time | 4 | 607.500 | 0.948 | 0.445 |
| Error | 12 | 1305 | ||
| Dose × Exposure time | 12 | 527.500 | 0.823 | 0.626 |
| Error | 48 | 640.833 |
| Source | df | Mean Square | F-Value | p-Value |
|---|---|---|---|---|
| Dose | 3 | 3885 | 1.366 | 0.300 |
| Error | 12 | 2845 | ||
| Exposure time | 4 | 129.167 | 0.298 | 0.827 |
| Error | 12 | 434.167 | ||
| Dose × Exposure time | 12 | 739.167 | 1.573 | 0.132 |
| Error | 48 | 470 |
| Peak No. | Compound | 1 R.T. (min) | 2 RIExp | 3 RILit | Area (%) |
|---|---|---|---|---|---|
| Hydrocarbons and Terpenes | |||||
| 2 | Tetradecene | 10.92 | 1423 | 1425 | 0.63 |
| 3 | trans--Bergamotene | 11.94 | 1586 | 1584 | 0.44 |
| 5 | (3E)-Elisocene | 15.30 | 2022 | 2020 | 0.51 |
| Total Hydrocarbons and Terpenes | 1.58 | ||||
| Lipids | |||||
| 6 | Hexadecanoic acid | 22.11 | 1966 | 1964 | 12.29 |
| 7 | 9,12-Octadecadienoic acid | 24.84 | 2089 | 2086 | 25.14 |
| 8 | Squalene | 33.68 | 2818 | 2820 | 3.63 |
| 9 | -Tocopherol | 37.49 | 3132 | 3130 | 9.82 |
| 10 | Sitosterols (isomeric mixture) | 40.72 | 3200 | 3203 | 34.46 |
| Total Lipids | 85.34 | ||||
| Others | |||||
| 1 | 5-Hydroxymethylfurfural | 7.38 | 1235 | 1233 | 7.34 |
| 4 | 2,4-Di-tert-butylphenol | 13.74 | 1602 | 1605 | 0.77 |
| Total Others | 8.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Muzio, F.; Pistillo, O.M.; D’Isita, I.; Iadarola, G.; Di Palma, A.; De Cristofaro, A.; Rotundo, G.; Germinara, G.S. Insecticidal and Repellent Activity of Different Pomegranate Peel Extracts Against Granary Weevil Adults. Insects 2025, 16, 1222. https://doi.org/10.3390/insects16121222
Lo Muzio F, Pistillo OM, D’Isita I, Iadarola G, Di Palma A, De Cristofaro A, Rotundo G, Germinara GS. Insecticidal and Repellent Activity of Different Pomegranate Peel Extracts Against Granary Weevil Adults. Insects. 2025; 16(12):1222. https://doi.org/10.3390/insects16121222
Chicago/Turabian StyleLo Muzio, Federica, Onofrio Marco Pistillo, Ilaria D’Isita, Giovanni Iadarola, Antonella Di Palma, Antonio De Cristofaro, Giuseppe Rotundo, and Giacinto Salvatore Germinara. 2025. "Insecticidal and Repellent Activity of Different Pomegranate Peel Extracts Against Granary Weevil Adults" Insects 16, no. 12: 1222. https://doi.org/10.3390/insects16121222
APA StyleLo Muzio, F., Pistillo, O. M., D’Isita, I., Iadarola, G., Di Palma, A., De Cristofaro, A., Rotundo, G., & Germinara, G. S. (2025). Insecticidal and Repellent Activity of Different Pomegranate Peel Extracts Against Granary Weevil Adults. Insects, 16(12), 1222. https://doi.org/10.3390/insects16121222

