Reference Gene Selection for Quantitative Gene Expression Analysis in Argynnis hyperbius
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Specimen Collection and Rearing
2.2. Developmental Stage-Specific Sample Preparation
2.3. Sample Collection Under Differential Temperature Regimes
2.4. Selection and Validation of Candidate Housekeeping Genes (HKGs)
2.5. RNA Extraction and cDNA Synthesis
2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis
2.7. Validation and Stability Assessment of Reference Genes
2.8. Data Processing and Statistical Analysis
3. Results
3.1. Screening and Characterization of Candidate HKGs
3.2. Differential Expression Profiles of HKGs Across Experimental Conditions
3.3. Developmental Stage-Specific Stability of HKGs Expression
3.4. Sex-Dimorphic Expression Stability in Adult HKGs
3.5. Thermotolerance-Associated Stability of HKGs Under Temperatures Treatments
3.6. Experimental Validation of Optimal Reference Genes for qRT-PCR Normalization
4. Discussion
5. Conclusions
- I.
- AK and EF1α demonstrated optimal stability across developmental stages
- II.
- ACT and RPL32 exhibited maximal expression stability between sexes
- III.
- EF1α and RPL27 maintained consistent expression under temperature treatments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jozefczuk, J.; Adjaye, J. Quantitative real-time PCR-based analysis of gene expression. Methods Enzymol. 2011, 500, 99–109. [Google Scholar]
- Derveaux, S.; Vandesompele, J.; Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 2010, 50, 227–230. [Google Scholar] [CrossRef]
- Ponton, F.; Chapuis, M.P.; Pernice, M.; Sword, G.A.; Simpson, S.J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect Physiol. 2011, 57, 840–850. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Paepe, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, Research0034. [Google Scholar] [CrossRef]
- Valasek, M.A.; Repa, J.J. The power of real-time PCR. Adv. Physiol. Educ. 2005, 29, 151–159. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Walker, N.J. Tech. Sight. A technique whose time has come. Science 2002, 296, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.M.; Chahad-Ehlers, S.; Lima, A.L.; Taniguti, C.H.; Sobrinho, I.J.; Torres, F.R.; de Brito, R.A. Reference genes for accessing differential expression among developmental stages and analysis of differential expression of OBP genes in Anastrepha obliqua. Sci. Rep. 2016, 6, 17480. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, M.; Rodriguez, A.; Tahir, U.B.; Jin, F. Gene expression studies of reference genes for quantitative real-time PCR: An overview in insects. Biotechnol. Lett. 2018, 40, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Pan, H.; Yuan, L.; Zhou, X. Reference gene selection for RT-qPCR analysis in Harmonia axyridis, a global invasive lady beetle. Sci. Rep. 2018, 8, 2689. [Google Scholar] [CrossRef]
- Lü, J.; Chen, S.; Guo, M.; Ye, C.; Qiu, B.; Wu, J.; Yang, C.; Pan, H. Selection and Validation of Reference Genes for RT-qPCR Analysis of the Ladybird Beetle Henosepilachna vigintioctomaculata. Front Physiol. 2018, 9, 1614. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Liu, J.J.; Chen, X.L.; Yuan, G.H. Selection and evaluation of reference genes for gene expression using quantitative real-time PCR in Mythimna separata walker (Lepidoptera: Noctuidae). Entomol. Res. 2018, 48, 390–399. [Google Scholar] [CrossRef]
- Shen, C.H.; Tang, M.; Li, X.F.; Zhu, L.; Li, W.; Deng, P.; Zhai, Q.; Wu, G.; Yan, X.H. Evaluation of reference genes for quantitative expression analysis in Mylabris sibirica (Coleoptera, Meloidae). Front. Physiol. 2024, 15, 1345836. [Google Scholar] [CrossRef]
- Shen, C.H.; Peng, L.J.; Zhang, Y.X.; Zeng, H.R.; Yu, H.F.; Jin, L.; Li, G.Q. Reference genes for expression analyses by qRT-PCR in Phthorimaea operculella (Lepidoptera: Gelechiidae). Insects 2022, 13, 140. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Tan, Q.; Shen, C.H.; Wu, J.J.; Wu, Y.K.; Li, W.Z.; Jin, L.; Li, G.Q. Reference gene selection for transcriptional profiling by RT-qPCR in the 28-spotted larger potato ladybird. J. Asia Pac. Entomol. 2022, 25, 101900. [Google Scholar] [CrossRef]
- Radonić, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W.; Nitsche, A. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 2004, 313, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.M.; Guan, Q.X.; Zeng, D.L.; Qin, F.; Li, H.M. Complete mitochondrial genome of Kallima inachus (Lepidoptera: Nymphalidae: Nymphalinae): Comparison of K. inachus and Argynnis hyperbius. Mitochondrial DNA 2012, 23, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.L.; Naik, R.R.; Sowards, L.; Stone, M.O. Biological infrared imaging and sensing. Micron 2002, 33, 211–225. [Google Scholar] [CrossRef]
- Mobeen, G.; Muhammad, F.M.; Mubashar, H.; Razia, I.; Misbah, Y. Diversity and distribution of butterflies in Pakistan: A review. J. Entomol. Zool. Stud. 2016, 4, 115–118. [Google Scholar]
- Winfree, R.; Bartomeus, I.; Cariveau, D.P. Native Pillinators in Anthropogenic Habitats. Annu. Rev. Ecol. Evol. Syst. 2011, 42, 1–22. [Google Scholar] [CrossRef]
- Macdonald, Z.G.; Nielsen, S.E.; Acorn, J.H. Negative relationships between species richness and evenness render common diversity indices inadequate for assessing long-term trends in butterfly diversity. Biodivers. Conserv. 2017, 26, 617–629. [Google Scholar] [CrossRef]
- Hambler, C.; Speight, M.R. Extinction rates and butterflies. Science 2004, 305, 1563–1564. [Google Scholar] [CrossRef]
- Gregory, R.D.; Van Strien, A.J.; Vorisek, P.; Gmelig Meyling, A.W.; Noble, D.G.; Foppen, R.P.; Gibbons, D.W. Developing indicators for European birds. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 269–288. [Google Scholar] [CrossRef]
- European Environment Agency. Halting the Loss of Biodiversity by 2010: Proposal for a First Set of Indicators to Monitor Progress in Europe. In Office for Official Publications of the European Communities; European Environment Agency: Copenhagen, Denmark, 2007. [Google Scholar]
- Hassan, M.A.; Shen, R.; Zhang, L.; Sheikh, T.; Xing, J. Mitogenomic phylogeny of nymphalid subfamilies confirms the basal clade position of Danainae (Insecta: Lepidoptera: Nymphalidae). Ecol. Evol. 2023, 13, e10263. [Google Scholar] [CrossRef]
- Liu, N.; Wang, H.; Fang, L.J.; Zhang, Y.L. Mitogenome of the Doleschallia bisaltide and phylogenetic analysis of Nymphalinae (Lepidoptera, Nymphalidae). Diversity 2023, 15, 558. [Google Scholar] [CrossRef]
- Peng, R.; Zhai, Y.; Ding, H.; Di, T.; Zhang, T.; Li, B.; Shen, W.; Wei, Z. Analysis of reference gene expression for real time PCR based on relative quantitative and dual spike-in strategy in the silkworm Bombyx mori. Acta Biochim. Biophys Sin 2012, 44, 614–622. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiong, M.; Wang, J.; Lei, C.; Zhu, F. Reference gene stability of a synanthropic fly, Chrysomya megacephala. Parasites Vectors 2015, 8, 565. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.C.; Zhang, J.; Huang, C.; Hou, X.J.; Sun, X.L.; Xiao, B. Reference genes selection for quantitative gene expression studies in tea green leafhoppers, Empoasca onukii Matsuda. PLoS ONE 2018, 13, 18. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Szabo, A.; Perou, C.M.; Karaca, M.; Perreard, L.; Bernard, P.S. Statistical modeling for selecting housekeeper genes. Genome Biol. 2008, 9, 405. [Google Scholar] [CrossRef]
- Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Dai, C.; Zhang, C.; He, Y.; Ran, H.; Chen, S. Screening potential reference genes for quantitative realtime PCR analysis in the oriental armyworm, Mythimna separata. PLoS ONE 2018, 13, e0195096. [Google Scholar]
- Nagy, N.A.; Németh, Z.; Juhász, E.; Póliska, S.; Póliska, R.; Kosztolányi, A.; Barta, Z. Evaluation of potential reference genes for real-time qPCR analysis in a biparental beetle, Lethrus apterus (Coleoptera: Geotrupidae). PeerJ 2017, 5, e4047. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genom. 2023, 23, 125. [Google Scholar] [CrossRef]
- Kristensen, R.; Torp, M.; Kosiak, B.; Holst-Jensen, A. Phylogeny and toxigenic potential is correlated in Fusarium species as revealed by partial translation elongation factor 1 alpha gene sequences. Mycol. Res. 2005, 109, 173–186. [Google Scholar] [CrossRef]
- Tatsuka, M.; Mitsui, H.; Wada, M.; Nagata, A.; Nojima, H.; Okayama, H. Elongation factor-1 alpha gene determines susceptibility to transformation. Nature 1992, 359, 333–336. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Q.; Zhu, X.; Sun, S.; Liu, A.; Gao, S.; Liu, A.; Gao, S.; Gou, Y. Identification and evaluation of reference genes for normalization of gene expression in developmental stages, sexes, and tissues of Diaphania caesalis (Lepidoptera, Pyralidae). J. Insect Sci. 2020, 20, 6. [Google Scholar] [CrossRef]
- Pan, H.; Yang, X.; Bidne, K.; Hellmich, R.L.; Siegfried, B.D.; Zhou, X. Selection of Reference Genes for RTqPCR Analysis in the Monarch Butterfly, Danaus plexippus (L.), a Migrating Bio-Indicator. PLoS ONE 2015, 10, e0129482. [Google Scholar]
- Wei, Z.H.; Liu, M.; Hu, C.; Yang, X.Q. Overexpression of glutathione s-transferase genes in field lambda-cyhalothrin-resistant population of Cydia pomonella: Reference gene selection and expression analysis. J. Agric. Food Chem. 2020, 68, 5825–5834. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.D.; Zhao, Y.Y.; Li, Y.J.; Sun, J. Silencing the Haak gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int. J. Biol. Sci. 2015, 11, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Fang, Q.; Wang, L.; Hu, C.; Ye, G.Y. Proteomic analysis of the venom from the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Arch. Insect Biochem. 2010, 75, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Mamidala, P.; Rajarapu, S.P.; Jones, S.C.; Mittapalli, O. Identification and Validation of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction in Cimex lectularius. J. Med. Entomol. 2011, 48, 947–951. [Google Scholar] [CrossRef]
- Zhai, Y.; Lin, Q.; Zhou, X.; Zhang, X.; Liu, T.; Yu, Y. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS ONE 2014, 9, e106800. [Google Scholar] [CrossRef]
- Xu, J.; Lu, M.X.; Cui, Y.D.; Du, Y.Z. Selection and evaluation of reference genes for expression analysis using qRT-PCR in Chilo suppressalis (Lepidoptera: Pyralidae). J. Econ. Entomol. 2017, 110, 683–691. [Google Scholar]
- Dai, T.M.; Lü, Z.C.; Liu, W.X.; Wan, F.H. Selection and validation of reference genes for qRT-PCR analysis during biological invasions: The thermal adaptability of Bemisia tabaci MED. PLoS ONE 2017, 12, e0173821. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, T.; Liu, X.; Xiao, H.; Peng, Y.; Zhang, W. Evaluation of candidate reference genes for gene expression analysis in the brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). PLoS ONE 2021, 16, e0251920. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Wang, B.; Wang, C.; Li, M.; Zhang, Y.; Li, X.; Gao, H.; Ju, J.; Zhu, X. Selection and validation of experimental condition-specific reference genes for qRT-PCR in Metopolophium dirhodum (Walker) (Hemiptera: Aphididae). Sci. Rep. 2020, 10, 21951. [Google Scholar] [CrossRef]
- Landry-Voyer, A.M.; Mir Hassani, Z.; Avino, M.; Bachand, F. Ribosomal protein uS5 and friends: Protein-protein interactions involved in ribosome assembly and beyond. Biomolecules 2023, 13, 853. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, W.; Liao, J.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92–104. [Google Scholar] [CrossRef]
- Shi, X.Q.; Guo, W.C.; Wan, P.J.; Zhou, L.T.; Ren, X.L.; Ahmat, T.; Fu, K.Y.; Li, G.Q. Validation of reference genes for expression analysis by quantitative real-time PCR in Leptinotarsa decemlineata (Say). BMC Res. Notes 2013, 6, 93. [Google Scholar] [CrossRef]
- Tan, Q.Q.; Zhu, L.; Li, Y.; Liu, W.; Ma, W.H.; Lei, C.L.; Wang, X.P. A de novo transcriptome and valid reference genes for quantitative Real-Time PCR in Colaphellus bowringi. PLoS ONE 2015, 10, e0118693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; An, S.; Li, Z.; Wu, F.; Yang, Q.; Liu, Y.; Cao, J.; Zhang, H.; Zhang, Q.; Liu, X. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 2015, 555, 393–402. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Liu, Q.; Zhang, X.; Mei, X.; Zhang, T.; Ning, J. Validation and evaluation of reference genes for quantitative real-time PCR analysis in Mythimna loreyi (Lepidoptera: Noctuidae). Insects 2024, 15, 185. [Google Scholar] [CrossRef]
- Waters, E.R. The evolution, function, structure, and expression of the plant shsps. J. Exp. Bot. 2013, 64, 391–403. [Google Scholar] [CrossRef]
- Zheng, H.X.; Gao, Y.L.; Zhang, F.M.; Yang, C.X.; Jiang, J.; Zhu, X.; Zhang, Y.H.; Li, X.R. Cloning of Heat Shock Protein Gene Ld-HSP70 in Leptinotarsa decemlineata and Its Expression Characteristics under Temperature Stress. Agric. Sci. China 2021, 54, 1163–1175. (In Chinese) [Google Scholar]
- Chen, J.; Zhang, D.W.; Yu, Y.Y.; Xu, X.L.; Zhang, Q.; Chen, Y.; Zeng, B.P. Characteristics and temperature induced expression of HSP70 and HSP70 from brown planthopper (Nilaparvata lugens). Biotechnology 2018, 28, 434–440. (In Chinese) [Google Scholar]
- Wang, D.G.; He, P.P.; Ma, G.H.; Xiao, H.B.; Xiong, R.C.; Han, X.; Yang, M.L. Screening of Reference Genes and Analysis of HSP70 and HSP90 Gene Expression of Euzophera pyriella Under Low Temperature Stress. Southwest. China J. Agric. Sci. 2020, 33, 2503–2508. (In Chinese) [Google Scholar]
Gene Name | Primer Sequences (5′ to 3′) | Amplicon Size (bp) | Accession Number |
---|---|---|---|
RPS3 | Forward 5′-GAACTTGCTGAGGATGGG-3 Reverse 5′-CAAGATAATCTAAGCCGTGAC-3 | 654 | PV346079 |
RPL10 | Forward 5′-TTCTTTTGCGAGGTGTCGGT-3 Reverse 5′-TCCTCCAAGAGTCGAGTGGT-3 | 667 | PV346080 |
RPL27 | Forward 5′-CTTGTCGACGGGTTAAGAGT-3 Reverse 5′-ACCACTTGTTCTTTCCGCTCT-3 | 413 | PV346081 |
RPL32 | Forward 5′-TCAAAATGGCTATCAGACCTGT-3 Reverse 5′-TATTCGTTCTCCTGGCTGCG-3 | 409 | PV346082 |
AK | Forward 5′-CCGACCATTCTGCACCTA-3 Reverse 5′-CAGCCAACATCCAATACTT-3 | 1202 | PV346083 |
α-TUB | Forward 5′-ACGATTCCTTCAACACCTT-3 Reverse 5′-AGTATTCCTCAGCACCCTC | 1215 | PV346084 |
ACT | Forward 5′-GCGACGATGATGTTGCTGC-3 Reverse 5′-AGCACTTGCGGTGGACGAT-3 | 1131 | PV346085 |
GAPDH | Forward 5′-AATCTTATGACCCCTCTTTC-3 Reverse 5′-ATACTCCAGCCGTGTCATT-3 | 999 | PV346086 |
EF1α | Forward 5′-TGGTGGTATCGACAAACG-3 Reverse 5′-TTCGGTGAATGAAGTATCG-3 | 1294 | PV346087 |
BTF3 | Forward 5′-CGTGTCACGTGTAAAAATACCAGA-3 Reverse 5′-CAACTTTCTTGTCCGCCGC-3 | 550 | PV346088 |
HSP90 | Forward 5′-ATTCTTCTGACGCTTTGG-3 Reverse 5′-TGCGAGAAGCATGAACCT-3 | 1887 | PV346089 |
Gene | Primer Sequences (5′ to 3′) | Length (bp) | Slope | R2 | Efficiency (%) |
---|---|---|---|---|---|
RPS3 | F- 5′-GGCCTCATGATCCACTCTGG-3 | 136 | −3.320 | 0.993 | 100.08 |
R- 5′-GGCCATTCTTGCCTTGTTGG-3 | |||||
RPL10 | F- 5′-ATGGGGCTTCACCAAGTACG-3 | 85 | −3.405 | 0.997 | 96.66 |
R- 5′-GCGAACATTGCAGCCATCAT-3 | |||||
RPL27 | F- 5′-AGCGCTCCAAAGTAAAGCCT-3 | 133 | −3.462 | 0.999 | 94.46 |
R- 5′-AGCTTCTTACGCTTAGCGGG-3v | |||||
RPL32 | F- 5′-GGTCCTCGTCCACAATGTCA-3 | 121 | −3.486 | 0.996 | 93.59 |
R- 5′-TTGCGCACGCTCAACAATAG-3 | |||||
AK | F- 5′-ATGCAAATGGGTGGTGACCT-3 | 130 | −3.381 | 0.999 | 97.58 |
R- 5′-CCAGGTTGGTAGGGCAGAAG-3 | |||||
α-TUB | F- 5′-GGTCACTACACCATCGGCAA-3 | 132 | −3.480 | 0.999 | 93.82 |
R- 5′-GAACCCTGATCCGGTACCAC-3 | |||||
ACT | F- 5′-ACGAAAGATTCCGTTGCCCT-3 | 146 | −3.509 | 0.999 | 92.75 |
R- 5′-AGACATGACAGTGTTGGCGT-3 | |||||
GADPH | F- 5′-GGCAAAGTTATCCCCGCTCT-3 | 105 | −3.368 | 0.997 | 98.12 |
R- 5′-TGGCTTACCAAGGCGTACAG-3 | |||||
EF1α | F- 5′-TGCGGCTATTGTCATCCTCC-3 | 130 | −3.258 | 0.999 | 102.74 |
R- 5′-GACAGCCTTGATGACACCGA-3 | |||||
BTF3 | F- 5′-TCCCTGGCATCGAGGAAGTA-3 | 138 | −3.367 | 0.999 | 98.15 |
R- 5′-GGCCGAGCTGACTCAAGATT-3 | |||||
HSP90 | F- 5′-TCTCACTGACCCGTCAAAGC-3 R- 5′-GTAAGGGTGCCTTCGCTCTT-3 | 81 | −3.187 | 0.998 | 105.94 |
Conditions | CRGs * | geNorm | NormFinder | BestKeeper | ΔCt | ||||
---|---|---|---|---|---|---|---|---|---|
Stability | Rank | Stability | Rank | Stability | Rank | Stability | Rank | ||
Developmental stages | RPS3 | 1.212 | 6 | 1.304 | 8 | 0.92 | 1 | 1.68 | 8 |
RPL10 | 1.171 | 5 | 1.147 | 6 | 0.99 | 2 | 1.58 | 6 | |
RPL27 | 1.652 | 10 | 1.912 | 10 | 2.47 | 9 | 2.18 | 10 | |
RPL32 | 1.049 | 4 | 0.964 | 4 | 1.16 | 3 | 1.5 | 3 | |
AK | 0.982 | 3 | 0.508 | 1 | 1.46 | 5 | 1.34 | 1 | |
α-TUB | 0.694 | 1 | 1.073 | 5 | 1.69 | 6 | 1.56 | 5 | |
ACT | 1.355 | 8 | 1.202 | 7 | 1.39 | 4 | 1.67 | 7 | |
GADPH | 1.299 | 7 | 0.873 | 3 | 1.81 | 7 | 1.51 | 4 | |
EF1α | 0.694 | 1 | 0.635 | 2 | 1.92 | 8 | 1.37 | 2 | |
BTF3 | 1.519 | 9 | 1.86 | 9 | 2.99 | 10 | 2.13 | 9 | |
Sexes | RPS3 | 0.521 | 9 | 0.799 | 9 | 0.16 | 1 | 0.84 | 9 |
RPL10 | 0.333 | 7 | 0.562 | 7 | 0.97 | 9 | 0.65 | 7 | |
RPL27 | 0.259 | 6 | 0.219 | 6 | 0.71 | 8 | 0.48 | 5 | |
RPL32 | 0.169 | 3 | 0.077 | 2 | 0.61 | 7 | 0.44 | 2 | |
AK | 0.142 | 1 | 0.092 | 4 | 0.55 | 5 | 0.46 | 3 | |
α-TUB | 0.238 | 5 | 0.165 | 5 | 0.34 | 3 | 0.48 | 5 | |
ACT | 0.142 | 1 | 0.071 | 1 | 0.55 | 5 | 0.42 | 1 | |
GADPH | 0.592 | 10 | 0.859 | 10 | 1.21 | 10 | 0.88 | 10 | |
EF1α | 0.455 | 8 | 0.785 | 8 | 0.16 | 1 | 0.82 | 8 | |
BTF3 | 0.224 | 4 | 0.085 | 3 | 0.37 | 4 | 0.46 | 3 | |
Temparature treatment | RPS3 | 0.649 | 5 | 1.123 | 8 | 0.58 | 4 | 1.28 | 8 |
RPL10 | 0.54 | 3 | 0.844 | 5 | 0.55 | 3 | 1.1 | 5 | |
RPL27 | 0.415 | 1 | 0.484 | 3 | 0.49 | 1 | 0.93 | 2 | |
RPL32 | 0.583 | 4 | 0.887 | 6 | 0.53 | 2 | 1.13 | 6 | |
AK | 0.943 | 8 | 0.895 | 7 | 1.14 | 9 | 1.18 | 7 | |
α-TUB | 0.825 | 7 | 0.545 | 4 | 0.86 | 6 | 1.03 | 4 | |
ACT | 1.139 | 10 | 1.294 | 10 | 0.95 | 7 | 1.47 | 10 | |
GADPH | 1.055 | 9 | 1.232 | 9 | 1.55 | 10 | 1.41 | 9 | |
EF1α | 0.415 | 1 | 0.097 | 1 | 0.65 | 5 | 0.87 | 1 | |
BTF3 | 0.729 | 6 | 0.481 | 2 | 1.02 | 8 | 0.99 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, H.-J.; Liu, C.-Y.; Yan, F.; Wang, L.-D.; Zhang, H.-H.; Shen, C.-H.; Zhai, Q. Reference Gene Selection for Quantitative Gene Expression Analysis in Argynnis hyperbius. Insects 2025, 16, 1008. https://doi.org/10.3390/insects16101008
Xin H-J, Liu C-Y, Yan F, Wang L-D, Zhang H-H, Shen C-H, Zhai Q. Reference Gene Selection for Quantitative Gene Expression Analysis in Argynnis hyperbius. Insects. 2025; 16(10):1008. https://doi.org/10.3390/insects16101008
Chicago/Turabian StyleXin, Hong-Juan, Chen-Yang Liu, Feng Yan, Lu-Dan Wang, Huan-Huan Zhang, Chen-Hui Shen, and Qing Zhai. 2025. "Reference Gene Selection for Quantitative Gene Expression Analysis in Argynnis hyperbius" Insects 16, no. 10: 1008. https://doi.org/10.3390/insects16101008
APA StyleXin, H.-J., Liu, C.-Y., Yan, F., Wang, L.-D., Zhang, H.-H., Shen, C.-H., & Zhai, Q. (2025). Reference Gene Selection for Quantitative Gene Expression Analysis in Argynnis hyperbius. Insects, 16(10), 1008. https://doi.org/10.3390/insects16101008