Arthropod Pest Management in Strawberry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Strawberry Pests and Their Management
2.1. Thrips
2.2. Mites
2.3. Tarnished Plant Bug
2.4. Beetles
2.5. Spotted Wing Drosophila
2.6. Aphids and Whiteflies
2.7. Seed Bug
2.8. Lepidopteran Pests
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bi, J.L.; Niu, Z.M.; Yu, L.; Toscano, N.C. Resistance status of the carmine spider mite, Tetranychus cinnabarinus and the twospotted spider mite, Tetranychus urticae to selected acaricides on strawberries. Insect Sci. 2016, 23, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Tuovinen, T. Risk of invasive arthropod pests related to climate change in the northernmost small fruit production area in EU. In Proceedings of the Workshop on Berry Production in Changing Climate Conditions Cultivation Systems, Geisenheim, Germany, 29 October 2008; COST-Action 863. Volume 838, pp. 151–154. [Google Scholar]
- Andreazza, F.; Haddi, K.; Oliveira, E.E.; Ferreira, J.A.M. Drosophila suzukii (Diptera: Drosophilidae) arrives at Minas Gerais State, a main strawberry production region in Brazil. Fla. Entomol. 2016, 99, 796–798. [Google Scholar] [CrossRef] [Green Version]
- Lue, C.H.; Mottern, J.L.; Walsh, G.C.; Buffington, M.L. New record for the invasive spotted wing drosophila, Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) in Anillaco, western Argentina. Proc. Entomol. Soc. Wash. 2017, 119, 146–150. [Google Scholar] [CrossRef]
- Panthi, B.R.; Renkema, J.M.; Lahiri, S.; Liburd, O.E. The short-range movement of Scirtothrips dorsalis (Thysanoptera: Thripidae) and rate of spread of feeding injury among strawberry plants. Environ. Entomol. 2021, 50, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Araujo, E.S.; Benatto, A.; Rizzato, F.B.; Poltronieri, A.S.; Poitevin, C.G.; Zawadneak, M.A.C.; Pimentel, I.C. Combining biocontrol agents with different mechanisms of action to control Duponchelia fovealis, an invasive pest in South America. Crop Prot. 2020, 134, 105184. [Google Scholar] [CrossRef]
- FAO. FAOSTAT Agricultural Statistics Database. 2019. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 5 May 2021).
- Strzyzewski, I.L.; Funderburk, J.E.; Renkema, J.M.; Smith, H.A. Characterization of Frankliniella occidentalis and Frankliniella bispinosa (Thysanoptera: Thripidae) injury to strawberry. J. Econ. Entomol. 2021, 114, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Morse, J.G.; Hoddle, M.S. Invasion biology of thrips. Annu. Rev. Entomol. 2006, 51, 67–89. [Google Scholar] [CrossRef] [Green Version]
- Abdelmaksoud, E.M.; Elrefai, S.A.; Mahmoud, K.W.; Mohammed, S.M. The effectiveness of some pesticides in the control of thrips and red spider mites on strawberry plants. Arab. Univ. J. Agric. Sci. 2020, 28, 329–335. [Google Scholar] [CrossRef]
- Nielsen, H.; Sigsgaard, L.; Kobro, S.; Jensen, N.L.; Jacobsen, S.K. Species composition of thrips (Thysanoptera: Thripidae) in strawberry high tunnels in Denmark. Insects 2021, 12, 208. [Google Scholar] [CrossRef]
- Renkema, J.M.; Evans, B.; Devkota, S. Management of flower thrips in Florida strawberries with Steinernema feltiae (Rhabditida: Steinernematidae) and the insecticide sulfoxaflor. Fla. Entomol. 2018, 101, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Gremo, F.; Bogetti, C.; Scarpelli, F. The thrips damaging to strawberry. L’Inf. Agrar. 1997, 53, 85–89. [Google Scholar]
- Buxton, J.H.; Easterbrook, M.A. Thrips as a probable cause of severe fruit distortion in late-season strawberries. Plant Pathol. 1998, 37, 278–280. [Google Scholar] [CrossRef]
- Steiner, M.Y.; Goodwin, S. Management of thrips (Thysanoptera: Thripidae) in Australian strawberry crops: Within-plant distribution characteristics and action thresholds. Aust. J. Entomol. 2005, 44, 175–185. [Google Scholar] [CrossRef]
- Kumar, V.; Kakkar, G.; Seal, D.R.; McKenzie, C.L.; Colee, J.; Osborne, L.S. Temporal and spatial distribution of an invasive thrips species Scirtothrips dorsalis (Thysanoptera: Thripidae). Crop Prot. 2014, 55, 80–90. [Google Scholar] [CrossRef]
- Hansen, E.A.; Funderburk, J.E.; Reitz, S.R.; Ramachandran, S.; Eger, J.E.; McAuslane, H. Within-plant distribution of Frankliniella species (Thysanoptera: Thripidae) and Orius insidiosus (Heteroptera: Anthocoridae) in field pepper. Environ. Entomol. 2003, 32, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Kakkar, G.; McKenzie, C.L.; Seal, D.R.; Osborne, L.S. An overview of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) biology, distribution and management. In Weed and Pest Control-Conventional and New Challenges; Soloneski, S., Larramendy, M., Eds.; IntechOpen Limited: London, UK, 2013; pp. 53–77. [Google Scholar]
- Sampson, C.; Bennison, J.; Kirk, W.D. Overwintering of the western flower thrips in outdoor strawberry crops. J. Pest Sci. 2001, 94, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Arthurs, S.; McKenzie, C.L.; Chen, J.; Dogramaci, M.; Brennan, M.; Houben, K.; Osborne, L. Evaluation of Neoseiulus cucumeris and Amblyseius swirskii (Acari: Phytoseiidae) as biological control agents of chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) on pepper. Biol. Control 2009, 49, 91–96. [Google Scholar] [CrossRef]
- Lahiri, S.; Panthi, B. Insecticide efficacy for chilli thrips management in Strawberry, 2019. Arthropod Manag. Tests 2020, 45, tsaa046. [Google Scholar] [CrossRef]
- Monteon-Ojeda, A.; Damian-Nava, A.; Hernandez-Castro, E.; Cruz-Lagunas, B.; Romero-Rosales, T.; San, J.L.J.; Ibarra-Cortes, K.H. Biorational and conventional insecticides efficacy to control thrips (Frankliniella occidentalis Perg.) on strawberries (Fragaria X ananassa Duch.) at Morelos state, Mexico. AGRO Product. 2021, 14, 59–68. [Google Scholar]
- Zhao, G.; Liu, W.; Brown, J.M.; Knowles, C.O. Insecticide resistance in field and laboratory strains of western flower thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 1995, 88, 1164–1170. [Google Scholar] [CrossRef]
- Jensen, S.E. Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integr. Pest Manag. Rev. 2000, 5, 131–146. [Google Scholar] [CrossRef]
- Renkema, J.M.; LeFors, J.A.; Johnson, D.T. First report of broad mite (Acari: Tarsonemidae) on commercial strawberry in Florida. Fla. Entomol. 2017, 100, 804–806. [Google Scholar] [CrossRef] [Green Version]
- Liburd, O.; Rhodes, E. Management of strawberry insect and mite pests in greenhouse and field crops. In Strawberry-Pre-and Post-Harvest Management Techniques for Higher Fruit Quality; Asao, T., Asaduzzaman, M., Eds.; IntechOpen Limited: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Easterbrook, M.A.; Fitzgerald, J.D.; Solomon, M. Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Exp. Appl. Acarol. 2001, 25, 25–36. [Google Scholar] [CrossRef]
- Vacante, V. The Handbook of Mites of Economic plants: Identification, Bio-Ecology and Control; CABI: Oxfordshire, UK, 2016; pp. 1–865. [Google Scholar]
- Sato, M.E.; Da Silva, M.Z.; De Souza Filho, M.F.; Matioli, A.L.; Raga, A. Management of Tetranychus urticae (Acari: Tetranychidae) in strawberry fields with Neoseiulus californicus (Acari: Phytoseiidae) and acaricides. Exp. Appl. Acarol. 2007, 42, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Bensoussan, N.; Zhurov, V.; Yamakawa, S.; O’Neil, C.H.; Suzuki, T.; Grbić, M.; Grbić, V. The digestive system of the two-spotted spider mite, Tetranychus urticae Koch, in the context of the mite-plant interaction. Front. Plant Sci. 2018, 9, 1206. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lin, Y.H.; Yang, C.M.; Atlihan, R.; Saska, P.; Chi, H. Survival and reproductive strategies in two-spotted spider mites: Demographic analysis of arrhenotokous parthenogenesis of Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 2016, 109, 502–509. [Google Scholar] [CrossRef]
- Renkema, J.; Dubon, F.; Peres, N.; Evans, B. Twospotted spider mites (Tetranychus urticae) on strawberry (Fragaria × ananassa) transplants, and the potential to eliminate them with steam treatment. Int. J. Fruit Sci. 2020, 20, 978–991. [Google Scholar] [CrossRef]
- Howell, A.D.; Daugovish, O. Biological control of Eotetranychus lewisi and Tetranychus urticae (Acari: Tetranychidae) on strawberry by four phytoseiids (Acari: Phytoseiidae). J. Econ. Entomol. 2013, 106, 80–85. [Google Scholar] [CrossRef]
- Wang, Z.; Cang, T.; Wu, S.; Wang, X.; Qi, P.; Wang, X.; Zhao, X. Screening for suitable chemical acaricides against two-spotted spider mites, Tetranychus urticae, on greenhouse strawberries in China. Ecotoxicol. Environ. Saf. 2018, 163, 63–68. [Google Scholar] [CrossRef]
- Bernardi, D.; Botton, M.; da Cunha, U.S.; Bernardi, O.; Malausa, T.; Garcia, M.S.; Nava, D.E. Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag. Sci. 2013, 69, 75–80. [Google Scholar] [CrossRef]
- Whitaker, V.M.; Boyd, N.S.; Peres, N.A.; Desaeger, J.; Lahiri, S. Chapter 16. Strawberry Production. In Vegetable Production Handbook of Florida, 2020–2021 ed.; Dittmar, P.J., Freeman, J.H., Paret, M.L., Smith, H.A., Eds.; University of Florida/Institute of Food and Agricultural Sciences Extension: Gainesville, FL, USA, 2020; pp. 351–374. [Google Scholar]
- Croft, B.A.; Pratt, P.D.; Koskela, G.; Kaufman, D. Predation, reproduction, and impact of phytoseiid mites (Acari: Phytoseiidae) on cyclamen mite (Acari: Tarsonemidae) on strawberry. J. Econ. Entomol. 1998, 91, 1307–1314. [Google Scholar] [CrossRef]
- Fountain, M.T.; Harris, A.L.; Cross, J.V. The use of surfactants to enhance acaricide control of Phytonemus pallidus (Acari: Tarsonemidae) in strawberry. Crop Prot. 2010, 29, 1286–1292. [Google Scholar] [CrossRef]
- Patenaude, S.; Tellier, S.; Fournier, V. Cyclamen mite (Acari: Tarsonemidae) monitoring in eastern Canada strawberry (Rosaceae) fields and its potential control by the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Can. Entomol. 2020, 152, 249–260. [Google Scholar] [CrossRef]
- Hellqvist, S. Heat tolerance of strawberry tarsonemid mite Phytonemus pallidus. Ann. Appl. Biol. 2002, 141, 67–71. [Google Scholar] [CrossRef]
- Dumont, F.; Provost, C. Combining the use of trap crops and insecticide sprays to control the tarnished plant bug (Hemiptera: Miridae) in strawberry (Rosaceae) fields. Can. Entomol. 2019, 151, 251–259. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Foottit, R.G. Revision of the nearctic species of the genus Lygus Hahn, with a review of the palearctic species (Heteroptera: Miridae). Ann. Entomol. Soc. 1998, 91, 895–896. [Google Scholar]
- Udayagiri, S.; Welter, S.C. Escape of Lygus hesperus (Heteroptera: Miridae) eggs from parasitism by Anaphes iole (Hymenoptera: Mymaridae) in strawberries plant structure effects. Biol. Control 2000, 17, 234–242. [Google Scholar] [CrossRef]
- Allen, W.W.; Gaede, S.E. The relationship of lygus bugs and thrips to fruit deformity in strawberry. J. Econ. Entomol. 1963, 56, 823–825. [Google Scholar] [CrossRef]
- Zalom, F.G.; Pickel, C.; Welch, N.C. Recent trends in strawberry arthropod management for coastal areas of the western United States. In Monitoring and Integrated Management of Arthropod Pests of Small Fruit Crops; Bostanian, N.J., Wilson, L.T., Dennehy, T.J., Eds.; Intercept: Andover, NH, USA, 1990; pp. 239–259. [Google Scholar]
- Zalom, F.G.; Pickel, C.; Walsh, D.B.; Welch, N.C. Sampling for Lygus hesperus (Hemiptera: Miridae) in strawberries. J. Econ. Entomol. 1993, 86, 1191–1195. [Google Scholar] [CrossRef]
- Bolda, M.A.; Daugovish, O.; Fennimore, S.A.; Koike, S.T.; Larson, K.D.; Marcum, D.B.; Zalom, F.G. Integrated Pest Management for Strawberries, 2nd ed.; University of California, Division of Agriculture and Natural Resources Publication: Davis, CA, USA, 2008; pp. 1–176. [Google Scholar]
- Zalom, F.; Bi, J.; Thompson, P. Managing Lygus Bugs in Strawberries. California Strawberry Commission, 2011. Available online: https://www.calstrawberry.com/Portals/2/Reports/ResearchReports/ProductionGuidelines/English/ManagingLygusBugsinStrawberries-2011.pdfver=2018-01-12-155446-573 (accessed on 24 March 2021).
- Zalom, F.G.; Bolda, M.P.; Dara, S.K.; Joseph, S.V. Strawberry Pest Management Guidelines. Lygus Bugs (Western Tarnished Plant Bug). 2018. Available online: https://www2.ipm.ucanr.edu/agriculture/strawberry/Lygus-Bug/ (accessed on 25 March 2021).
- Fitzgerald, J.; Jay, C. Chemical control of the European tarnished plant bug, Lygus rugulipennis, on strawberry in the UK. Crop Prot. 2011, 30, 1178–1183. [Google Scholar] [CrossRef]
- Dara, S. Managing strawberry pests with chemical pesticides and non-chemical alternatives. Int. J. Fruit Sci. 2016, 16, 129–141. [Google Scholar] [CrossRef]
- Fountain, M.T.; Deakin, G.; Farman, D.; Hall, D.; Jay, C.; Shaw, B.; Walker, A. An effective ‘push–pull’control strategy for European tarnished plant bug, Lygus rugulipennis (Heteroptera: Miridae), in strawberry using synthetic semiochemicals. Pest Manag. Sci. 2021, 77, 2747–2755. [Google Scholar] [CrossRef] [PubMed]
- Norton, A.P.; Welter, S.C.; Flexner, J.; Jackson, C.G.; Debolt, J.W.; Pickel, C. Parasitism of Lygus hesperus (Miridae) by Anaphes iole (Mymaridae) and Leiophron uniformis (Braconidae) in California strawberry. Biol. Control 1992, 2, 131–137. [Google Scholar] [CrossRef]
- Vincent, C.; Lachance, P. Evaluation of a tractor-propelled vacuum device for management of tarnished plant bug (Heteroptera: Miridae) populations in strawberry plantations. Environ. Entomol. 1993, 22, 1103–1107. [Google Scholar] [CrossRef]
- Pickel, C.; Zalom, F.G.; Walsh, D.B.; Welch, N.C. Efficacy of vacuum machines for Lygus hesperus (Hemiptera: Miridae) control in coastal California strawberries. J. Econ. Entomol. 1994, 87, 1636–1640. [Google Scholar] [CrossRef]
- Joseph, S.V.; Bolda, M. Evaluating the potential utility of an electrostatic sprayer and a tractor-mounted vacuum machine for Lygus hesperus (Hemiptera: Miridae) management in California’s coastal strawberry. Crop Prot. 2018, 113, 104–111. [Google Scholar] [CrossRef]
- Swezey, S.L.; Nieto, D.J.; Bryer, J.A. Control of western tarnished plant bug Lygus hesperus Knight (Hemiptera: Miridae) in California organic strawberries using alfalfa trap crop and tractor-mounted vacuums. Environ. Entomol. 2007, 36, 1457–1465. [Google Scholar] [CrossRef]
- Swezey, S.L.; Nieto, D.J.; Pickett, C.H.; Hagler, J.R.; Bryer, J.A.; Machtley, S.A. Spatial density and movement of Lygus spp. parasitoid Peristenus relictus (Hymenoptera: Braconidae) in organic strawberries with alfalfa trap crops. Environ. Entomol. 2014, 43, 363–369. [Google Scholar] [CrossRef]
- Hagler, J.R.; Nieto, D.J.; Machtley, S.A.; Swezey, S.L. Predator demographics and dispersal in alfalfa trap-cropped strawberry. Entomol. Exp. Appl. 2020, 168, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Potter, M.A.; Price, J.F.; Habeck, D.H.; Schuster, D.J.; McCord Jr., E. A survey of sap beetles (Coleoptera: Nitidulidae) in strawberry fields in west central Florida. Fla. Entomol. 2013, 96, 1188–1189. [Google Scholar] [CrossRef]
- Fornari, R.A.; Junior, R.M.; Bernardi, D.; Botton, M.; Pastori, P.L. Evaluation of damage, food attractants and population dynamics of strawberry sap beetle. Hortic. Bras. 2013, 31, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Loughner, R.L.; Loeb, G.M.; Schloemann, S.; Demchak, K. Evaluation of cultural practices for potential to control strawberry sap beetle (Coleoptera: Nitidulidae). J. Econ. Entomol. 2008, 101, 850–858. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.T.; de Souza, M.T.; Rizzato, F.B.; Zawadneak, M.A.C.; Cuquel, F.L. Feeding of Lobiopa insularis (Coleoptera: Nitidulidae) on strawberries. Crop Prot. 2019, 119, 180–184. [Google Scholar] [CrossRef]
- Fornazier, M.J.; Carmo, C.A.S.D.O.; Teixeira, C.P.; Pereira, E.B. Finding of the strawberry borer Lobiopa insularis in the State of Espirito Santo. EMCAPA Comun. Técnico 1986, 44, 3. [Google Scholar]
- Salles, L.A.B.; Williams, R.N. Broca-Do-Morango (Lobiopa insularis); Embrapa Clima Temperado; Circular Tecnica: Pelotas, Brazil, 1986; p. 17. [Google Scholar]
- Greco, N.; Cluigt, N.; Cline, A.; Liljesthrom, G. Life history traits and life table analysis of Lobiopa insularis (Coleoptera: Nitidulidae) fed on strawberry. PLoS ONE 2017, 12, e0180093. [Google Scholar] [CrossRef] [Green Version]
- Swett, C.L.; Butler, B.B.; Peres, N.A.; Koivunen, E.E.; Hellman, E.M.; Beaulieu, J.R. Using model-based fungicide programing to effectively control botrytis and anthracnose fruit rots in Mid-Atlantic strawberry fields and co-manage strawberry sap beetle (Stelidota geminate). Crop Prot. 2020, 134, 105175. [Google Scholar] [CrossRef]
- Labuschagne, L.; Wainwright, H.; Jennings, D.L. Evidence of variation in susceptibility to vine weevil (Otiorhynchus sulcatus) in strawberry cultivars. Acta Hortic. 1997, 2, 877–880. [Google Scholar] [CrossRef]
- Downes, W. The strawberry root weevil in British Columbia. In The 50th Annual Report of the Entomological Society of Ontario; Entomological Society of Ontario: Toronto, ON, Canada, 1920; Volume 36, pp. 84–88. [Google Scholar]
- Bomford, M.K.; Vernon, R.S. Root weevil (Coleoptera: Curculionidae) and ground beetle (Coleoptera: Carabidae) immigration into strawberry plots protected by fence or portable trench barriers. Environ. Entomol. 2005, 34, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.P. Strawberry. In Sustainable Crop Protection under Protected Cultivation; Springer: Berlin/Heidelberg, Germany, 2016; pp. 245–260. [Google Scholar]
- Krauß, A.; Steen, C.; Zebitz, C.P.W. Phenology of the strawberry blossom weevil and damage in strawberries. In Proceedings of the 16th International Conference on Organic Fruit-Growing. Stuttgart-Hohenheim, Weinsberg, Germany, 17–19 February 2014; pp. 32–236. [Google Scholar]
- Innocenzi, P.J.; Hall, D.R.; Cross, J.V. Components of male aggregation pheromone of strawberry blossom weevil, Anthonomus rubi Herbst (Coleoptera: Curculionidae). J. Chem. Ecol. 2001, 27, 1203–1218. [Google Scholar] [CrossRef]
- Franklin, M.T.; Hueppelsheuser, T.K.; Abram, P.K.; Bouchard, P.; Anderson, R.S.; Gibson, G.A. The Eurasian strawberry blossom weevil, Anthonomus rubi (Herbst, 1795), is established in North America. Can. Entomol. 2021, 153, 579–585. [Google Scholar] [CrossRef]
- Aasen, S.S.; Trandem, N. Strawberry blossom weevil Anthonomus rubi Herbst (Col.: Curculionidae): Relationships between bud damage, weevil density, insecticide use, and yield. J. Pest Sci. 2006, 79, 169–174. [Google Scholar] [CrossRef]
- Tonina, L.; Zanettin, G.; Miorelli, P.; Puppato, S.; Cuthbertson, A.G.; Grassi, A. Anthonomus rubi on strawberry fruit: Its biology, ecology, damage, and control from an IPM perspective. Insects 2021, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.V.; Hesketh, H.; Jay, C.N.; Hall, D.R.; Innocenzi, P.J.; Farman, D.I.; Burgess, C.M. Exploiting the aggregation pheromone of strawberry blossom weevil Anthonomus rubi Herbst (Coleoptera: Curculionidae): Part 1. Development of lure and trap. Crop Prot. 2006, 25, 144–154. [Google Scholar] [CrossRef]
- LaMondia, J.A.; Elmer, W.H.; Mervosh, T.L.; Cowles, R.S. Integrated management of strawberry pests by rotation and intercropping. Crop Prot. 2002, 21, 837–846. [Google Scholar] [CrossRef]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B 2014, 281, 20132840. [Google Scholar] [CrossRef] [Green Version]
- Boughdad, A.; Haddi, K.; El Bouazzati, A.; Nassiri, A.; Tahiri, A.; El Anbri, C.; Eddaya, T.; Zaid, A.; Biondi, A. First record of the invasive spotted wing Drosophila infesting berry crops in Africa. J. Pest Sci. 2021, 94, 261–271. [Google Scholar] [CrossRef]
- Bolda, M.P.; Goodhue, R.E.; Zalom, F.G. Spotted wing drosophila: Potential economic impact of a newly established pest. Berkeley CA Univ. Calif. 2010, 13, 5–8. [Google Scholar]
- Zhu, E.Y.; Guntur, A.R.; He, R.; Stern, U.; Yang, C.H. Egg-laying demand induces aversion of UV light in Drosophila females. Curr. Biol. 2014, 24, 2797–2804. [Google Scholar] [CrossRef] [Green Version]
- Fountain, M.T.; Badiee, A.; Hemer, S.; Delgado, A.; Mangan, M.; Dowding, C.; Davis, F.; Pearson, A. The use of light spectrum blocking films to reduce populations of Drosophila suzukii Matsumura in fruit crops. Sci. Rep. 2020, 10, 153–158. [Google Scholar] [CrossRef]
- Gong, X.; Bräcker, L.; Bölke, N.; Plata, C.; Zeitlmayr, S.; Metzler, D.; Olbricht, K.; Gompel, N.; Parniske, M. Strawberry accessions with reduced Drosophila suzukii emergence from fruits. Front. Plant Sci. 2016, 7, 1880. [Google Scholar] [CrossRef] [Green Version]
- Renkema, J.M.; Cuthbertson, A.G. Impact of multiple natural enemies on immature Drosophila suzukii in strawberries and blueberries. BioControl 2018, 63, 719–728. [Google Scholar] [CrossRef]
- Ng, J.C.; Perry, K.L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, P.; Brisson, J.D.; Tellier, S.; Fournier, V. Flight phenology and trap selection for monitoring potential viral vector Aphididae and Aleyrodidae (Hemiptera) in strawberry (Rosaceae) fields of Quebec, Canada. Can. Entomol. 2019, 151, 378–390. [Google Scholar] [CrossRef]
- Peña-Martinez, R.; Munoz-Viveros, A.L.; Vanegas-Rico, J.M.; Rodriguez, D.; Hernandez, R.A.T. Presence and distribution of Aphis ruborum with parasitoid Aphidius colemani in Mexico. Southwest. Entomol. 2020, 45, 949–956. [Google Scholar]
- Cho, S.R.; Koo, H.N.; Shin, S.; Kim, H.K.; Park, J.H.; Yoon, Y.S.; Kim, G.H. Gamma-ray irradiation control of whiteflies Bemisia tabaci (Hemiptera: Aleyrodidae) and Trialeurodes vaporariorum in the exportation of fresh strawberries. J. Econ. Entomol. 2019, 112, 1611–1617. [Google Scholar] [CrossRef]
- Cuellar-Sandoval, J.F.; Ortega-Martínez, L.D.; Hernández-Velázquez, V.M.; Cuellar-Zometa, J.F.; Torres-García, G.; Barrales-Cureño, H.J.; Salazar-Magallón, J.A. Agroecological basis for the design of biotechnological traps based on Isaria fumosorosea for the biological control of Bemisia tabaci in strawberry crops. Biocontrol Sci. Technol. 2019, 29, 1–18. [Google Scholar] [CrossRef]
- Brooks, A.N.; Watson, J.M.R.; Mowry, H. Strawberries in Florida: Culture, Disease, and Insects; University of Florida Agricultural Experiment Station: Gainesville, FL, USA, 1929; p. 523. [Google Scholar]
- Dellape, P.M. Biodiversidad, Relationships Genetics and Biogeographic Aspects of Rhyparochromidae (Lygaeoidea: Heteroptera) with Special Reference to the Genus Neopamera Harrington 1980. Master’s Thesis, Facultad de Ciencias Naturales y Museo, National University of La Silver, La Plata, Argentina, 2005. [Google Scholar]
- Kuhn, T.M.; Loeck, A.E.; Zawadneak, M.A.; Garcia, S.; Button, M. Parameters biological and fertility life table of Neopamera bilobata (Hemiptera: Rhyparochromidae) in strawberry. Brasilia 2014, 49, 422–427. [Google Scholar]
- Bernardi, D.; Andreazza, F.; Nava, D.E.; Baronio, C.A.; Botton, M. Duplo Ataque. Cultivar HF 2015, 95, 16–19. [Google Scholar]
- Talton, H.R.; Rhodes, E.M.; Chase, C.A.; Swisher, M.E.; Renkema, J.M.; Liburd, O.E. Effect of cultural practices on Neopamera bilobata in relation to fruit injury and marketable yields in organic strawberries. Insects 2020, 11, 843. [Google Scholar] [CrossRef]
- Hata, F.T.; Ventura, M.U.; Bega, V.L.; Camacho, I.M.; Paula, M.T. Chinese chives and garlic in intercropping in strawberry high tunnels for Neopamera bilobata Say (Hemiptera: Rhyparochromidae) control. Bull. Entomol. Res. 2019, 109, 419–425. [Google Scholar] [CrossRef]
- Asano, S.; Nagaoka, H.; Wada, Y.; Miyamoto, K. Influence of leaves on the biological activity of Bacillus thuringiensis formulation against the common cutworm, Spodoptera litura. Jpn. J. Appl. Entomol. Zool. 2004, 48, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Bortoli, L.C.; Bertin, A.; Efrom, C.F.S.; Botton, M. Biology, fertility life table and effect of insecticides on Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) in strawberry and grape. Rev. Bras. Frutic. Jaboticabal. 2012, 34, 1068–1073. [Google Scholar] [CrossRef] [Green Version]
- Sigsgaard, L.; Naulin, C.; Haukeland, S.; Kristensen, K.; Enkegaard, A.; Jensen, N.L.; Eilenberg, J. The effects of strawberry cropping practices on the strawberry tortricid (Lepidoptera: Tortricidae), its natural enemies, and the presence of nematodes. J. Insect Sci. 2014, 14, 122. [Google Scholar] [CrossRef] [PubMed]
- Ottaviano, M.F.G.; Cédola, C.V.; Sánchez, N.E.; Greco, N.M. Conservation biological control in strawberry: Effect of different pollen on development, survival, and reproduction of Neoseiulus californicus (Acari: Phytoseiidae). Exp. Appl. Acarol. 2015, 67, 507–521. [Google Scholar] [CrossRef] [PubMed]
Strawberry Pest | Management | References |
---|---|---|
Thrips Scirtothrips dorsalis Hood Frankliniella occidentalis Pergande | Biological Control Predators:
Eliminating the alternative host or weeds Chemical Control
| [18,19,20] [16] [10,21] [22] |
Mites Tetranychus urticae Koch Phytonemus pallidus Banks | Physical Control Steam treatment at 48 °C for 2.7 h for adults and 1.9 h for eggs. Biological Control Predators: Phytoseiulus persimilis Athias-Henriot. Neoseiulus californicus McGregor Biopesticides:
Physical Control Steam treatment at 46 °C for 6.5 min Biological Control Predators:
| [32] [26,33,100] [34,35,36] |
Tarnished Plant Bug Lygus lineolaris (Palisot de Beauvois) Lygus rugulipennis Poppius | Physical Control Tractor-mounted suction machines Biological Control
Trap crop, Medicago sativa L. Chemical Control
| [54,55,56] [51] [53] [41,58,59] [52] [49,50] |
Beetles Sap Beetles Haptoncus luteolus (Erichson), Lobiopa insularis (Castelnau), Carpophilus fumatus Boheman, Stelidota geminate (Say) Weevils Otiorhynchus sulcatus F., O. ovatus L., O. singularis L., Otiorhynchus cribricollis Gyllenhal, Pantomorus cervinus Boheman, Nemocestes incomptus Horn, Barypeithes pellucidus Boheman, Sciopithes obscurus L. Anthonomus rubi Herbst Popillia japonica Newman, Anomala orientalis Waterhouse, Amphimallon majalis Razoumowsky, Maladera castanea Arrow | Host Plant Resistance Cultivars with ripe fruits not touching the ground Cultural Control Field sanitation by removal of ripe fruits Chemical Control
Biological Control Entomopathogenic nematode, Steinernema kraussei (Steiner, 1923) Host Plant Resistance Cultivar “Symphony” showed lower feeding and oviposition. Cultural Control Strawberry bed sanitation by removal of weeds and grass. Chemical Control
Physical Control
Cultural Control Crop rotation with “Saia” oats, Avena strigosa Schreb and “Garry” oats, Avena sativa L. Chemical Control
| [63] [62] [62] [67] [68,71] [76] [77] [74] [71,78] |
Spotted Wing Drosophila Drosophila suzukii Matsumura | Physical control Utilizing ultraviolet light; blue-green light spectrum (430–565 nm) Biological control Orius insidiosus (Say) along with Heterorhabditis bacteriophora Poinar | [83] [85] |
Aphids and Whiteflies Aphid spp. Trialeurodes vaporariorum Westwood Bemisia tabaci Gennadius | Biological Control
Physical Control Irradiation of boxed fresh fruits with gamma rays (100 Gy) Biological Control
| [88] [89] [90] |
Seed Bug Neopamera bilobata Say | Cultural Control Intercropping with garlic or undercropping with Chinese chives Host plant resistance Traditional plant breeding for varieties with seeds recessed into the fruit | [96] [95] |
Lepidopteran Pests Spodoptera exigua (Hübner) Duponchelia fovealis Zeller Acleris comariana (Lienig and Zeller) | Physical control Deploying pheromone traps Biological control Predator: Hyposoter exiguae (Viereck) Biopesticide: Commercial formulations of Bacillus thuringiensis Biological control Beauveria bassiana (Balsamo-Crivelli) Vuillemin along with Podisus nigrispinus Dallas and Harmonia axyridis Pallas Cultural Control Improve strawberry cropping practices as less pest pressure experienced in organic strawberry and newer fields compared to conventional strawberry and older fields | [26] [71,97] [6] [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lahiri, S.; Smith, H.A.; Gireesh, M.; Kaur, G.; Montemayor, J.D. Arthropod Pest Management in Strawberry. Insects 2022, 13, 475. https://doi.org/10.3390/insects13050475
Lahiri S, Smith HA, Gireesh M, Kaur G, Montemayor JD. Arthropod Pest Management in Strawberry. Insects. 2022; 13(5):475. https://doi.org/10.3390/insects13050475
Chicago/Turabian StyleLahiri, Sriyanka, Hugh A. Smith, Midhula Gireesh, Gagandeep Kaur, and Joseph D. Montemayor. 2022. "Arthropod Pest Management in Strawberry" Insects 13, no. 5: 475. https://doi.org/10.3390/insects13050475
APA StyleLahiri, S., Smith, H. A., Gireesh, M., Kaur, G., & Montemayor, J. D. (2022). Arthropod Pest Management in Strawberry. Insects, 13(5), 475. https://doi.org/10.3390/insects13050475