“Generalist” Aphid Parasitoids Behave as Specialists at the Agroecosystem Scale
Abstract
:1. Introduction
- A correlation exists between the host range described in the literature and the number of aphid species truly parasitized in the agroecosystem by each identified parasitoid species
- Parasitizing a wide range of aphid species actually limits the local risk of extinction of the parasitoid species. As a consequence, the more aphid species a parasitoid species is able to parasitize the longer the parasitoid species remains in the environment with a high population size
- The availability of resources (i.e., aphid abundances), the sampling season, the type of habitats (cultivated or uncultivated) have an impact on the observed host range of the sampled parasitoid species. We hypothesized that because of the unstable nature of cultivated areas, generalist species are more likely to be found in these types of habitat, while specialist species are rather found in uncultivated areas, which are known to be more stable.
2. Materials and Methods
2.1. Experimental Site and Sampling Methods
2.2. DNA Sequencing of the Most Generalist Species
2.3. Statistical Analyses
- The realized host ranges: number of aphid species parasitized in the field for each parasitoid species.
- The potential host ranges: number of aphid species found in our field samples considered as potential hosts for each parasitoid species according to the literature. These potential host ranges (based only on the aphids collected) differ from the theoretical host ranges (which consider all aphid–parasitoid interactions described in the literature). To construct these potential host ranges, we examined all the literature and considered all binary interactions between aphids and Aphidiinae observed in Europe [36] (the list of literature examined can be found in the Supplementary Material of Derocles et al. [36]). We added to this literature the comprehensive aphid–parasitoid interactions list of D. rapae [65].
- The host availability for parasitoid measured by aphid abundance;
- The period of sampling (before or after the harvest of the crop, referred further in the article as “sampling season”);
- The place of sampling (cultivated or uncultivated area, referred further in the article as “type of habitat”).
3. Results
3.1. Sampling Data
3.2. Parasitism Rates
3.3. Parasitoid Host Ranges
3.4. DNA Sequencing of the Most Generalist Parasitoid Species
- -
- Aphidius matricariae: group 1 with a realized host range of 5, group 2 with a realized host range of 2, group 3 with a realized host range of 1
- -
- Diaeretiella rapae: group 1 with a realized host range of 4, group 2 with a realized host range of 1
- -
- Ephedrus plagiator: group 1 with a realized host range of 2, group 2 with a realized host range of 2
- -
- Lysiphlebus fabarum: group 1 with a realized host range of 4, group 2 with a realized host range of 3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loxdale, H.D.; Lushai, G.; Harvey, J.A. The evolutionary improbability of "generalism" in a nature, with special reference to insects. Biol. J. Linn. Soc. 2011, 103, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Rundle, H.D.; Nosil, P. Ecological speciation. Ecol. Lett. 2005, 8, 336–352. [Google Scholar] [CrossRef]
- Smith, M.A.; Woodley, N.E.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc. Natl. Acad. Sci. USA 2007, 104, 4967–4972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.A.; Rodriguez, J.J.; Whitfield, J.B.; Deans, A.R.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology and collections. Proc. Natl. Acad. Sci. USA 2008, 105, 12359–12364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derocles, S.A.P.; Plantegenest, M.; Rasplus, J.Y.; Marie, A.; Evans, D.M.; Lunt, D.H.; Le Ralec, A. Are generalist Aphidiinae (Hym. Braconidae) mostly cryptic species complexes? Syst. Entomol. 2015, 41, 379–391. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Balog, A.; Harvey, J.A. Generalism in Nature…The Great Misnomer: Aphids and wasp parasitoids as examples. Insects 2019, 10, 314. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.L.H.; Dapporto, L.; Fattorini, S.; Cook, L.M. The generalism-specialism debate: The role of generalists in the life and death of species. Biol. J. Linn. Soc. 2011, 104, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Clarke, C.A. Why so many polyphagous fruit flies (Diptera: Tephritidae)? A further contribution to the ‘generalism’ debate. Biol. J. Linn. Soc. 2016, 120, 245–257. [Google Scholar] [CrossRef]
- Wilson, D.S.; Yoshimura, J. On the coexistence of specialists and generalists. Am. Nat. 1994, 144, 692–707. [Google Scholar] [CrossRef]
- Devictor, V.; Clavel, J.; Julliard, R.; Lavergne, S.; Mouillot, D.; Thuiller, W.; Venail, P.; Villeger, S.; Mouquet, N. Defining and measuring ecological specialization. J. Appl. Entomol. 2010, 47, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Hardy, N.B.; Otto, S.P. Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc. R. Soc. B. 2014, 281, 20132960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, L.R.; Morrow, P.A. Specialization–Species property or local phenomenon. Science 1981, 211, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Futuyma, D.J. Ecological specialization and generalization. In Evolutionary Ecology: Concepts and Case Studies; Fox, C.W., Roff, D.A., Fairbairn, D.J., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 177–189. [Google Scholar]
- Begon, M.; Townsend, C.R.; Harper, J.H. Ecology. From Individuals to Ecosystems, 4th ed.; Blackwell Publishing: Hoboken, NJ, USA, 2006. [Google Scholar]
- Krasnov, B.R.; Poulin, R.; Shenbrot, G.I.; Mouillot, D.; Khokhlova, I.S. Ectoparasitic “Jacks-of-All-Trades”: Relationship between abundance and host specificity in fleas (Siphonaptera) parasitic on small mammals. Am. Nat. 2004, 164, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Straub, C.S.; Ives, A.R.; Gratton, C. Evidence for a trade-off between host-range breadth and host use efficiency in aphid parasitoids. Am. Nat. 2011, 177, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Pyke, G.H.P.; Pulliam, H.R.; Charnov, E.L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 1977, 52, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Futuyma, D.J.; Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 1988, 19, 207–233. [Google Scholar] [CrossRef]
- Tscharntke, T.; Kruess, A. Habitat fragmentation and biological control. In Theoretical Approaches to Biological Control; Hawkins, B.A., Cornell, H.V., Eds.; Cambridge University Press: Cambridge, UK, 1999; pp. 190–205. [Google Scholar]
- Rodriguez, M.A.; Hawkins, B.A. Diversity, function and stability in parasitoid communities. Ecol. Lett. 2000, 3, 35–40. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Luna, J.M. Multi-function agricultural biodiversity: Pest management and other benefits. Basic Appl. Ecol. 2003, 4, 107–116. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Kruess, A. Effects of landscape structure and habitat type on a plant-herbivore-parasitoid community. Ecography 2003, 26, 283–290. [Google Scholar] [CrossRef]
- Thomas, C.D.; Thomas, J.A.; Warren, M.S. Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 1992, 92, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P. Conservation Biological Control; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Raymond, L.; Plantegenest, M.; Gagic, V.; Navasse, Y.; Lavandero, B. Aphid parasitoid generalism: Development, assessment, and implications for biocontrol. J. Pest Sci. 2016, 89, 7–20. [Google Scholar] [CrossRef]
- Memmott, J.; Godfray, H.C.J.; Gauld, I.D. The structure of a tropical host-parasitoid community. J. Anim. Ecol. 1994, 63, 521–540. [Google Scholar] [CrossRef]
- Symondson, W.O.C.; Sunderland, K.D.; Greenstone, M.H. Can generalist predators be effective biocontrol agents? Annu. Rev. Entomol. 2002, 47, 561–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfadyen, S.; Gibson, R.; Raso, L.; Sint, D.; Traugott, M.; Memmott, J. Parasitoid control of aphids in organic and conventional farming systems. Agric. Ecosyst. Environ. 2009, 133, 14–18. [Google Scholar] [CrossRef]
- Valentini, A.; Pompanon, F.; Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009, 24, 110–117. [Google Scholar] [CrossRef]
- Boreau de Roincé, C.; Lavigne, C.; Ricard, J.M.; Franck, P.; Bouvier, J.C.; Garcin, A.; Symondson, W.O. Predation by generalist predators on the codling moth versus a closely-related emerging pest the oriental fruit moth: A molecular analysis. Agric. For. Entomol. 2012, 14, 260–269. [Google Scholar] [CrossRef]
- Valladares, G.R.; Salvo, A.; Godfray, H.C.J. Quantitative food webs of dipteran leafminers and their parasitoids in Argentina. Ecol. Res. 2001, 16, 925–939. [Google Scholar] [CrossRef]
- Sanchis, A.; Michelena, J.M.; Latorre, A.; Quicke, D.L.J.; Gardenfors, U.; Belshaw, R. The phylogenetic analysis of variable-length sequence data: Elongation Factor–1a Introns in European populations of the parasitoid wasp genus Pauesia (Hymenoptera: Braconidae: Aphidiinae). Mol. Ecol. Res. 2001, 18, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Kavallieratos, N.G.; Tomanović, Ž.; Starý, P.; Athanassiou, C.G.; Sarlis, G.P.; Petrović, O.; Niketić, O.; Veroniki, M.A. A survey of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of southeastern Europe and their aphid-plant associations. Appl. Entomol. Zool. 2004, 39, 527–556. [Google Scholar] [CrossRef] [Green Version]
- Starý, P. Aphid parasitoids of the Czech Republic; Akademie Ved Ceské Republiky: Prague, Czech Republic, 2006. [Google Scholar]
- Derocles, S.A.P.; Le Ralec, A.; Besson, M.M.; Maret, M.; Walton, A.; Evans, D.M.; Plantegenest, M. Molecular analysis reveals high compartmentalisation in aphid-primary parasitoid networks and low parasitoid sharing between crop and non-crop habitats. Mol. Ecol. 2014, 23, 3900–3911. [Google Scholar] [CrossRef] [PubMed]
- Antolin, M.F.; Bjorksten, T.A.; Vaughn, T.T. Host-related fitness trade-offs in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera: Aphidiidae). Ecol. Entomol. 2006, 31, 242–254. [Google Scholar] [CrossRef]
- Le Ralec, A.; Ribule, A.; Barragan, A.; Outreman, Y. Host range limitation caused by incomplete host regulation in an aphid parasitoid. J. Insect Physiol. 2011, 57, 363–371. [Google Scholar] [CrossRef]
- Navasse, Y.; Derocles, S.A.P.; Plantegenest, M.; Le Ralec, A. Ecological specialization in Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) on aphid species from wild and cultivated plants. Bull. Entomol. Res. 2018, 108, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Starý, P.; Delebecque, C.J.; Gariepy, T.D.; Barta, R.J.; Hoelmer, K.A.; Heimpel, G.E. Cryptic species of parasitoids attacking the Soybean Aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae). Ann. Entomol. Soc. Am. 2009, 102, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Barahoei, H.; Madjdzadeh, S.M.; Mehrparvar, M. Morphometric differentiation of five biotypes of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae: Aphidiinae) in Iran. Zootaxa 2011, 2745, 43–52. [Google Scholar] [CrossRef]
- Tomić, M.; Tomanović, Ž.; Kavallieratos, N.G.; Starý, P.; Athanassioud, C.G.; Tomić, V.; Lucic, L. Morphological variability of several biotypes of Ephedrus plagiator (Nees, 1811) (Hymenoptera: Braconidae: Aphidiinae) and description of a new species. Zool. Anz. 2005, 244, 153–162. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Herbaceous Plants and Shrubs; Wiley: Chichester, UK, 2006. [Google Scholar]
- Blamey, M.; Grey-Wilson, C. La Flore d’Europe Occidentale: Plus de 2.400 Plantes Décrites et Illustrées en Couleurs; Flammarion: Paris, France, 2003; pp. 1–546. [Google Scholar]
- Starý, P.; Remaudière, G.; Leclant, F. Nouvelles données sur les Aphidiidae de France (Hymenoptera). Ann. Soc. Entomol. Fr. 1973, 9, 309–329. [Google Scholar]
- Gärdenfors, U. Taxonomic and biological revision of Palearctic Ephedrus (Haliday) (Hymenoptera, Braconidae, Aphidiinae). Entomol. Scand. 1986, 27, 1–95. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids of the World’s Crops: An Identification and Information Guide, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2000. [Google Scholar]
- Kavallieratos, N.G.; Lykouressis, D.P.; Sarlis, G.P.; Stathas, G.J.; Segovia, A.S.; Athanassiou, C.G. The Aphidiinae (Hymenoptera: Ichneumonoidea: Braconidae) of Greece. Phytoparasitica 2001, 29, 306–340. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Tomanović, Ž.; Starý, P.; Athanassiou, C.G.; Fasseas, C.; Petrović, O.; Niketić, O.; Stanisavljević, L.Z.; Veroniki, M.A. Praon Haliday (Hymenoptera: Braconidae: Aphidiinae) of southeastern Europe: Key, host range and phylogenetic relationships. Zool. Anz. 2005, 243, 181–209. [Google Scholar] [CrossRef]
- Tomanović, Ž.; Kavallieratos, N.G.; Starý, P.; Athanassiou, C.G.; Žikić, V.; Petrović-Obradović, O.; Sarlis, G.P. Aphidius Nees aphid parasitoids (Hymenoptera, Braconidae, Aphidiinae) in Serbia and Montenegro: Tritrophic associations and key. Acta Entomol. Serbica 2003, 8, 15–39. [Google Scholar]
- Tomanović, Ž.; Rakhshani, E.; Starý, P.; Kavallieratos, N.G.; Stanisavljević, L.Z.; Žikić, V.; Athanassiou, C.G. Phylogenetic relationships between the genera Aphidius and Lysaphidus (Hym. Braconidae: Aphidiinae) with description of Aphidius iranicus sp nov. Can. Entomol. 2007, 139, 297–307. [Google Scholar] [CrossRef]
- Derocles, S.A.P.; Le Ralec, A.; Plantegenest, M.; Chaubet, B.; Cruand, C.; Cruand, A.; Rasplus, J.Y. Identification of molecular markers for DNA barcoding in the Aphidiinae (Hym. Braconidae). Mol. Ecol. Res. 2012, 12, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Traugott, M.; Bell, J.R.; Broad, G.R.; Powell, W.; Van Veen, F.F. Endoparasitism in cereal aphids: Molecular analysis of a whole parasitoid community. Mol. Ecol. 2008, 17, 3928–3938. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.; Fati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Kambhampati, S.; Smith, P.T. PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Mol. Biol. 1995, 5, 233–236. [Google Scholar] [CrossRef]
- Mardulyn, P.; Cameron, S.A. The major opsin in bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetic. Mol. Phylogenet. Evol. 1999, 12, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95⁄98⁄NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2017, bbx108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.T.; Kambhampati, S.; Völk, W.; Mackauer, M. A phylogeny of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) inferred from mitochondrial NADH 1 dehydrogenase gene sequence. Mol. Phylogenet. Evol. 1999, 11, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kambhampati, S.; Volkl, W.; Mackauer, M. Phylogenetic relationships among genera of Aphidiinae (Hymenoptera: Braconidae) based on DNA sequence of the mitochondrial 16S rRNA gene. Syst. Entomol. 2000, 25, 437–445. [Google Scholar] [CrossRef]
- Vaidya, G.; Lohman, D.J.; Meier, R. Sequence Matrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Højsgaard, S.; Haleko, U. doBy: Groupwise Statistics, LSmeans, Linear Contrasts, Utilities. R Package Version 4.6-3. Available online: https://CRAN.R-project.org/package=doBy (accessed on 15 October 2019).
- Singh, R.; Singh, G. Systematics, distribution and host range of Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae, Aphidiinae). Int. J. Res. Stud. Biosci. 2015, 3, 1–36. [Google Scholar]
- Hullé, M.; Turpeau, E.; Chaubet, B. Encyclop’aphid, INRA. 2018. Available online: http:// doi.org/10.15454/1.4333379890530916E12 (accessed on 15 October 2019).
- Stireman, J.O.; Nason, J.D.; Heard, S.B.; Seehawer, J.M. Cascading host-associated genetic differentiation in parasitoids of phytophagous insects. Proc. R. Soc. Lond. B Biol. Sci. 2006, 273, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Abrahamson, W.G.; Blair, C.P. Sequential radiation through host-race formation: Herbivore diversity leads to diversity in natural enemies. In Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects; Tilmon, K.J., Ed.; University of California Press: Berkeley, CA, USA, 2008; pp. 188–202. [Google Scholar]
- Henry, L.M.; Roitbergand, B.D.; Gillespie, D.R. Host-range evolution in Aphidius parasitoids: Fidelity, virulence and fitness tradeoffs on an ancestral host. Int. J. Org. Evol. 2008, 62, 689–699. [Google Scholar] [CrossRef]
- Storeck, A.; Poppy, G.; Van Emden, H.F.; Powell, W. The role of plant chemical cues in determining host preference in the generalist aphid parasitoid Aphidius colemani. Entomol. Exp. Appl. 2000, 97, 41–46. [Google Scholar] [CrossRef]
- Ode, P.J. Plant chemistery and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 2006, 51, 163–185. [Google Scholar] [CrossRef] [Green Version]
- Stilmant, D.; Van Bellinghen, C.; Hance, T.; Boivin, G. Host specialization in habitat specialists and generalists. Oecologia 2008, 156, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Pagani-Nunez, E.; Barnett, C.A.; Gu, H.; Goodale, E. The need for new categorizations of dietary specialism incorporating spatio-temporal variability of individual diet specialization. J. Zool. 2016, 300, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Desneux, N.; Blahnik, R.; Delebecque, C.J.; Heimpel, G.E. Host phylogeny and specialisation in parasitoids. Ecol. Lett. 2012, 15, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Navasse, Y. Spécialisation Parasitaire et Spéciation Chez les Aphidiinae: Existe-t--il des Parasitoïdes de Pucerons Généralistes? Ph.D. Thesis, University of Rennes 1, Rennes, France, 2016. [Google Scholar]
- Gagic, V.; Petrović-Obradović, O.; Fründ, J.; Kavallieratos, N.G.; Athanassiou, C.G.; Starý, P.; Tomanović, Ž. The effects of aphid traits on parasitoid host use and specialist advantage. PLoS ONE 2016, 11, e0157674. [Google Scholar] [CrossRef] [PubMed]
- Tomanović, Ž.; Brajković, M. Aphid parasitoids (Hymenoptera: Aphidiidae) of agroecosystems of the south part of the Pannonian area. Arch. Biol. Sci. 2001, 53, 57–64. [Google Scholar]
- Bilodeau, E.; Simon, J.C.; Guay, J.F.; Turgeon, J.; Cloutier, C. Does variation in host plant association and symbiont infection of pea aphid populations induce genetic and behaviour differentiation of its main parasitoid, Aphidius ervi? Evol. Ecol. 2013, 27, 165–184. [Google Scholar] [CrossRef]
- Petrović, A.; Mitrović, M.; Ivanović, I.; Žikić, V.; Kavallieratos, N.G.; Starý, P.; Mitrovski Bogdanović, A.; Tomanović, Ž.; Vorburger, C. Genetic and morphological variation in sexual and asexual parasitoids of the genus Lysiphlebus—An apparent link between wing shape and reproductive mode. BMC Evol. Biol. 2015, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Tomanović, Ž.; Mitrović, M.; Petrović, A.; Kavallieratos, N.G.; Žikić, V.; Ivanović, A.; Rakhshani, E.; Starý, P.; Vorburger, C. Revision of the European Lysiphlebus species (Hymenoptera: Braconidae: Aphidiinae) on the basis of COI and 28SD2 molecular markers and morphology. Arthropod. Syst. Phylogeny 2018, 76, 179–213. [Google Scholar]
- Le Ralec, A.; Anselme, C.; Outreman, Y.; Poirié, M.; Van Baaren, J.; Le Lann, C.; Jacques, J.M. Evolutionary ecology of the interactions between aphids and their parasitoids. C. R. Biol. 2010, 333, 554–565. [Google Scholar] [CrossRef]
- Le Guigo, P.; Maingeneau, A.; Le Corff, J. Performance of an aphid Myzus persicae and its parasitoid Diaeretiella rapae on wild and cultivated Brassicae. J. Plant Interact. 2012, 7, 326–332. [Google Scholar] [CrossRef]
- Le Guigo, P.; Rolier, A.; Le Corff, J. Plant neighborhood influences colonization of Brassicaceae by specialist and generalist aphids. Oecologia 2012, 169, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Van Baaren, J.; Héterier, V.; Hance, T.; Krespi, L.; Cortesero, A.M.; Poinsot, D.; Le Ralec, A.; Outreman, Y. Playing the hare or the tortoise in parasitoids: Could different oviposition strategies have an influence in host partitioning in two Aphidius species? Ethol. Ecol. Evol. 2004, 16, 231–242. [Google Scholar] [CrossRef]
- Trojelsgaard, K.; Olesen, J.M. Ecological networks in motion: Micro- and macroscopic variability across scales. Funct. Ecol. 2016, 30, 1926–1935. [Google Scholar] [CrossRef] [Green Version]
- Derocles, S.A.P.; Plantegenest, M.; Turpeau, E.; Chaubet, B.; Dedryver, C.A.; Le Ralec, A. Larval hitch-hicking and adult fly are two ways of Aphidiinae parasitoids long-range dispersal. Environ. Entomol. 2014, 43, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
Primer | Gene Amplified | PCR Product | Sequences | References |
---|---|---|---|---|
LCO1490 | COI | 620 bp | 5’-GGTCAACAAATCATAAAGATATTGG-3’ | [53] |
HCO2198 | COI | 620 bp | 5’-TAAACTTCAGGGTGACCAAAAAATCA-3’ | [53] |
16S-F | 16S | 380 bp | 5’-CGC CGT TTT ATC AAA AAC ATG T-3’ | [54] |
16S-R | 16S | 380 bp | 5’-TTA CGC TGT TAT CCC TAA-3’ | [55] |
LWRhF | LWRh | 650 bp | 5’-AAT TGC TAT TAY GAR CAN TGG GT-3’ | [56] |
LWRhR | LWRh | 650 bp | 5’-ATA TGG AGT CCA NGC CAT RAA CCA-3’ | [56] |
Parasitoids Species | Hosts Not Described in the Literature | Main Host (Number of Samples) | Presence in the Agroecosystem | Month(s) of Presence | Number of Samples | Number of Individuals | Potential Host Range | Realized Host Range |
---|---|---|---|---|---|---|---|---|
Adialytus salicaphis | Chaitophorus leucomelas (2) | June, July | 2 | 2 | 36 | 4 | 2 | |
Aphidius absinthii | Macrosiphoniella sp. (1) | June | 1 | 1 | 1 | 2 | 1 | |
Aphidius avenae | Aphis fabae | Sitobion avenae (12) | April to July | 4 | 16 | 50 | 9 | 4 |
Aphidius eadyi | Acyrthosiphon pisum (1) | Avril | 1 | 1 | 1 | 1 | 1 | |
Aphidius ervi | Cavariella aegopodii and Hyperomyzus picridis | Acyrthosiphon pisum (8) | April to June, September, October | 5 | 12 | 40 | 17 | 5 |
Aphidius funebris | Uroleucon sp. (Uromelan sp.) | Uroleucon sp. (10) | June, July, September, October | 4 | 15 | 36 | 2 | 3 |
Aphidius matricariae | Hyperomyzus picridis and Uroleucon sp. | Myzus persicae (3) | May to July, October | 4 | 11 | 23 | 13 | 8 |
Aphidius rhopalosiphi | Sitobion avenae (2) | April, May | 2 | 3 | 5 | 2 | 2 | |
Aphidius rosae | Macrosiphum funestum (1) | June | 1 | 1 | 1 | 2 | 1 | |
Aphidius salicis | Cavariella aegopodii (1) | June | 1 | 2 | 22 | 5 | 2 | |
Aphidius sonchi | Aphis fabae, Cavariella pastinaceae and Uroleucon sp. | Hyperomyzus picridis (2) | Mai, June | 2 | 6 | 92 | 3 | 6 |
Aphidius urticae | Acyrthosiphon pisum (1) | April | 1 | 1 | 1 | 8 | 1 | |
Binodoxys acalephae | Cavariella aegopodii, Macrosiphoniella sp. and Uroleucon sp. | Aphis sp. (2) | June, July | 2 | 5 | 20 | 3 | 4 |
Binodoxys angelicae | Cavariella theobaldii and Hyadaphis foeniculi | Aphis sp. (7) | May at July, September | 4 | 18 | 75 | 12 | 5 |
Binodoxys centaureae | Aphis sp and Uroleucon sp. (Uromelan sp.) | Uroleucon sp. (4) | June, July | 2 | 7 | 36 | 4 | 3 |
Diaeretiella rapae | Brevicoryne brassicae (9) | May, June, September, October | 4 | 19 | 320 | 21 | 5 | |
Ephedrus nacheri | Hayhurstia atriplicis (3) | September, October | 2 | 3 | 6 | 3 | 1 | |
Ephedrus niger | Uroleucon sp. (1) | July | 1 | 1 | 2 | 4 | 1 | |
Ephedrus plagiator | Uroleucon sp. | Uroleucon sp. (6) | June, October, November | 3 | 10 | 24 | 18 | 4 |
Lysiphlebus confusus | Aphis sp. (1) | June | 1 | 1 | 5 | 7 | 1 | |
Lysiphlebus fabarum | Metopolophium sp. | Aphis sp. (14) | June, July, October | 3 | 23 | 696 | 13 | 6 |
Lysiphlebus testraceipes | Macrosiphum sp. | Macrosiphum sp. (1) | June | 1 | 1 | 19 | 5 | 1 |
Monoctonus crepidis | Uroleucon sp. | Uroleucon sp. (2) | June | 1 | 2 | 19 | 1 | 1 |
Praon barbatum | Acyrthosiphon pisum (2) | June, September | 2 | 2 | 2 | 1 | 1 | |
Praon sp. | Uroleucon sp. (1) | July | 1 | 1 | 7 | NA | 1 | |
Praon uroleucon | Uroleucon sp. (2) | June, July | 2 | 2 | 2 | 1 | 1 | |
Praon volucre | Uroleucon sp. (2) | June, July | 2 | 3 | 9 | 23 | 2 | |
Praon yomenae | Uroleucon sp. (2) | June | 1 | 2 | 4 | 4 | 1 | |
Trioxys auctus | Sitobion avenae | Sitobion avenae (1) | July | 1 | 1 | 1 | 1 | 1 |
Factors Tested | Months of Presence | Samples Collected | Parasitoids Collected | ||||||
---|---|---|---|---|---|---|---|---|---|
LR Chi-Square | Df | p-Value | LR Chi-Square | Df | p-Value | LR Chi-Square | Df | p-Value | |
Realized host range | 5.168 | 1 | 0.023 | 26.357 | 1 | <0.001 | 30.039 | 1 | <0.001 |
Potential host range | 0.893 | 1 | 0.345 | 0.765 | 1 | 0.382 | 0.444 | 1 | 0.505 |
Potential host range:Realized host range | 0.031 | 1 | 0.86 | 0.083 | 1 | 0.773 | 0.2 | 1 | 0.655 |
Factors Tested | Realized Host Range | Potential Host Range | ||||
---|---|---|---|---|---|---|
LR Chi-Square | Df | p-Value | LR Chi-Square | Df | p-Value | |
Aphid abundance | 1.35 | 1 | 0.245 | 0.024 | 1 | 0.876 |
Sampling season (i.e., before/after harvest) | 2.47 | 1 | 0.116 | 4.086 | 1 | 0.043 |
Type of habitat (i.e., uncultivated/cultivated) | 0.063 | 1 | 0.802 | 5.952 | 1 | 0.015 |
Aphid abundance:season | 0.175 | 1 | 0.676 | 1.275 | 1 | 0.259 |
Aphid abundance:type of habitat | 3.165 | 1 | 0.075 | 5.86 | 1 | 0.015 |
Season:habitat | 1.054 | 1 | 0.305 | 2.038 | 1 | 0.153 |
Aphid abundance:season:habitat | 5.588 | 1 | 0.018 | 0.616 | 1 | 0.433 |
Factors Tested | LR Chi-Square | Df | p-Value |
---|---|---|---|
Aphid abundance | 0.298 | 1 | 0.585 |
Sampling season (i.e., before/after harvest) | 15.727 | 1 | <0.001 |
Type of habitat (i.e., uncultivated/cultivated) | 0.33 | 1 | 0.566 |
Aphid abundance:season | 0.047 | 1 | 0.828 |
Aphid abundance:type of habitat | 0.513 | 1 | 0.4740 |
Season:habitat | 3.999 | 1 | 0.046 |
Aphid abundance:season:habitat | 1.615 | 1 | 0.204 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derocles, S.A.P.; Navasse, Y.; Buchard, C.; Plantegenest, M.; Le Ralec, A. “Generalist” Aphid Parasitoids Behave as Specialists at the Agroecosystem Scale. Insects 2020, 11, 6. https://doi.org/10.3390/insects11010006
Derocles SAP, Navasse Y, Buchard C, Plantegenest M, Le Ralec A. “Generalist” Aphid Parasitoids Behave as Specialists at the Agroecosystem Scale. Insects. 2020; 11(1):6. https://doi.org/10.3390/insects11010006
Chicago/Turabian StyleDerocles, Stéphane A.P., Yoann Navasse, Christelle Buchard, Manuel Plantegenest, and Anne Le Ralec. 2020. "“Generalist” Aphid Parasitoids Behave as Specialists at the Agroecosystem Scale" Insects 11, no. 1: 6. https://doi.org/10.3390/insects11010006
APA StyleDerocles, S. A. P., Navasse, Y., Buchard, C., Plantegenest, M., & Le Ralec, A. (2020). “Generalist” Aphid Parasitoids Behave as Specialists at the Agroecosystem Scale. Insects, 11(1), 6. https://doi.org/10.3390/insects11010006