Fundamentals and Advances in Elastohydrodynamics: The Role of Ramsey Gohar
Abstract
:1. Introduction
2. Fundamentals of Elastohydrodynamic Lubrication
2.1. Observation and Measurements of Elastohydrodynamic Conditions
2.2. Numerical Predictions of Contact Mechanics and Elastohydrodynamic Lubrication
2.2.1. Elliptical Point Contacts
2.2.2. Finite Line Contacts
2.2.3. Sub-Surface Stresses and Contact Fatigue
2.3. Tribo-Dynamics of Shaft and Bearing Systems
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gohar, R. The Lubrication of Spheres. Master’s Thesis, Imperial College of Science and Technology, University of London, London, UK, 1959. [Google Scholar]
- Reynolds, O. On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. 1886, 177, 157–234. [Google Scholar]
- Martin, H.M. Lubrication of gear teeth. Engineering 1916, 102, 119. [Google Scholar]
- Peppler, W. Untersuchungen Uber Die Druckubertragung Bei Belasteten und Geschmierten Umlaufenden Achsparallelen Zylindern; Maschinenelemente—Tagung: Aachen, Germany, 1935. [Google Scholar]
- Meldahl, A. Contribution to the theory of the lubrication of gears and the stressing of the lubricated flanks of gear teeth. Brown Boveri Rev. 1941, 28, 374–382. [Google Scholar]
- Ertel, A.M. Hydrodynamic lubrication based on new principles. Akad. Nauk. SSSR Prikadnaya Mathematica i Mekkanika 1939, 3, 41–52. [Google Scholar]
- Grubin, A.N. Contact Stresses in Toothed Gears and Worm Gears. In Book 30 CSRI for Technology and Mechanical Engineering; CSRI (Central Scientific Research Institute): Moscow, Russia, 1949. [Google Scholar]
- Grubin, A.N.; Vinogradova, I.E. Fundamentals of the hydrodynamic theory of lubrication of heavily loaded cylindrical surfaces. In Book 30 CSRI for Technology and Mechanical Engineering; Translation No. 337; CSRI (Central Scientific Research Institute): Moscow, Russia, 1949. [Google Scholar]
- Gohar, R. Oil Film under Elasto-Hydrodynamic Conditions. Ph.D. Thesis, Imperial College of Science and Technology, University of London, London, UK, 1965. [Google Scholar]
- Petrusevich, A.I. Fundamental conclusions from the contact-hydrodynamic theory of lubrication. Izv. Akad. Nauk. SSSR OTN 1951, 2, 209–223. [Google Scholar]
- Dowson, D.; Higginson, G.R. A numerical solution to the elastohydrodynamic problem. J. Mech. Eng. Sci. 1959, 1, 6–15. [Google Scholar] [CrossRef]
- Crook, A.W. The lubrication of rollers, II—Film thickness with respect to viscosity and speed. Philos. Trans. R. Soc. 1961, A254, 223–236. [Google Scholar]
- Sibley, L.B.; Orcutt, F.K. Elasto-hydrodynamic lubrication of rolling-contact surfaces. Trans. ASLE 1961, 4, 234–249. [Google Scholar] [CrossRef]
- Archard, J.F.; Kirk, M.T. Lubrication at point contacts. Proc. R. Soc. 1962, 261, 532–550. [Google Scholar]
- Archard, J.F.; Cowking, E.W. Paper 3: Elastohydrodynamic Lubrication at Point Contacts. Proc. Inst. Mech. Eng. 1965, 180, 47–56. [Google Scholar] [CrossRef]
- Sadeghi, F. Elastohydrodynamic lubrication. In Tribology and Dynamics of Engine and Powertrain; Woodhead Publications: Cambridge, UK, 2010; pp. 171–226. [Google Scholar]
- Morris, N.J.; Johns-Rahnejat, P.M.; Rahnejat, H. Tribology and Dowson. Lubricants 2020, 8, 63. [Google Scholar] [CrossRef]
- Schulz, L.G. An interferometric method for accurate thickness measurements of thin evaporated films. JOSA 1950, 40, 690–692. [Google Scholar] [CrossRef]
- Tolansky, S. The measurement of thin film thickness by interferometry. JOSA 1951, 41, 425–426. [Google Scholar] [CrossRef]
- Kirk, M.T. Hydrodynamic lubrication of ‘perspex’. Nature 1962, 194, 965–966. [Google Scholar] [CrossRef]
- Gohar, R.; Cameron, A. Optical measurement of oil film thickness under elasto-hydrodynamic lubrication. Nature 1963, 200, 458–459. [Google Scholar] [CrossRef]
- Gohar, R. Oil film thickness and friction in EHD point contacts. J. Lubr. Tech. 1971, 93, 371–382. [Google Scholar] [CrossRef]
- Gentle, C.R.; Cameron, A. Optical elastohydrodynamics at extreme pressures. Nature 1973, 246, 478–479. [Google Scholar] [CrossRef]
- Thorp, N.; Gohar, R. Oil film thickness and shape for a ball sliding in a grooved raceway. Trans. ASME J. Tribol. 1972, 94, 199–208. [Google Scholar] [CrossRef]
- Cann, P.; Hutchinson, J.; Spikes, H.A. The development of a spacer layer imaging method (SLIM) for EHL contacts. Trib. Trans. 1996, 39, 915–921. [Google Scholar] [CrossRef]
- Gohar, R.; Cameron, A. The mapping of elastohydrodynamic contacts. Trans. ASLE 1967, 10, 215–225. [Google Scholar] [CrossRef]
- Bahadoran, H.; Gohar, R. Oil film thickness in lightly-loaded roller bearings. J. Mech. Eng. Sci. 1974, 16, 386–390. [Google Scholar] [CrossRef]
- Wymer, D.G.; Cameron, A. Elastohydrodynamic lubrication of a line contact. Proc. Inst. Mech. Eng. 1974, 188, 221–238. [Google Scholar] [CrossRef]
- Park, T.J. Effect of roller profile and misalignment in EHL of finite line contacts. In Engineering Systems Design and Analysis; ASME: New York, NY, USA, 2010; pp. 395–401. [Google Scholar]
- Omasta, M.; Adam, J.; Sperka, P.; Krupka, I.; Hartl, M. On the temperature and lubricant film thickness distribution in EHL contacts with arbitrary entrainment. Lubricants 2018, 6, 101. [Google Scholar] [CrossRef] [Green Version]
- Ciulli, E.; Pugliese, G.; Fazzolari, F. Film thickness and shape evaluation in a cam-follower line contact with digital image processing. Lubricants 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Krupka, I.; Hartl, M.; Matsuda, K.; Nishikawa, H.; Wang, J.; Guo, F.; Yang, P.; Kaneta, M. Deformation of Rough Surfaces in Point EHL Contacts. Tribol. Lett. 2019, 67, 33. [Google Scholar] [CrossRef]
- Bridgman, P.W. Physics of High Pressure; Bell & Sons Ltd.: London, UK, 1958. [Google Scholar]
- Kannel, J.W.; Bell, J.C.; Allen, C.M. Methods for determining pressure distributions in lubricated rolling contact. Trans. ASLE 1965, 8, 250–270. [Google Scholar] [CrossRef]
- Kannel, J.W. Paper 11: Measurements of Pressures in Rolling Contact. Proc. Inst. Mech. Eng. 1965, 180, 135–146. [Google Scholar] [CrossRef]
- Kannel, J.W. Comparison between predicted and measured axial pressure distribution between cylinders. J. Lubr. Tech. 1974, 96, 508–514. [Google Scholar] [CrossRef]
- Hamilton, G.M.; Moore, S. Deformation and pressure in an elastohydrodynamic contact. Proc. R. Soc. 1971, 322, 313–330. [Google Scholar]
- Safa, M.M.A.; Leather, J.A.; Anderson, J.C. Thin film microtransducers for elastohydrodynamic lubrication studies. Thin Solid Films 1979, 64, 257–262. [Google Scholar] [CrossRef]
- Safa, M.M.A. Elastohydrodynamic Studies Using Thin Film Transducers. Ph.D. Thesis, Imoerial College of Science & Technology, University of London, London, UK, 1982. [Google Scholar]
- Safa, M.M.A.; Anderson, J.C.; Leather, J.A. Transducers for pressure, temperature and oil film thickness measurement in bearings. Sens. Actuators 1982, 3, 119–128. [Google Scholar] [CrossRef]
- Gohar, R.; Safa, M.M.A. Measurement of contact pressure under elastohydrodynamic lubrication conditions. In Tribology and Dynamics of Engine and Powertrain; Woodhead Publishing: Cambridge, UK, 2010; pp. 222–245. [Google Scholar]
- Johns-Rahnejat, P.M. Pressure and Stress Distribution under Elastohydrodynamic Point Contacts. Ph.D. Thesis, Imperial College of Science and Technology, University of London, London, UK, 1988. [Google Scholar]
- Johns-Rahnejat, P.M.; Gohar, R. Measuring contact pressure distributions under elastohydrodynamic point contacts. Tribotest 1994, 1, 33–53. [Google Scholar] [CrossRef]
- Safa, M.M.A.; Gohar, R. Pressure distribution under a ball impacting a thin lubricant layer. J. Tribol. 1986, 108, 372–376. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Johns-Rahnejat, P.M.; Rahnejat, H.; Gohar, R. Boundary conditions for elastohydrodynamics of circular point contacts. Tribol. Lett. 2014, 53, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Cameron, A.; Gohar, R. Theoretical and experimental studies of the oil film in lubricated point contact. Proc. R. Soc. Series A Math. Phys. Sci. 1966, 291, 520–536. [Google Scholar]
- Hamrock, B.J.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part 1—Theoretical formulation. J. Lubr. Tech. 1976, 98, 223–228. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part II—Ellipticity parameter results. J. Lubr. Tech. 1976, 98, 375–381. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part III—fully flooded results. J. Lubr. Tech. 1977, 99, 264–275. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part IV—starvation results. J. Lubr. Tech. 1977, 99, 15–23. [Google Scholar] [CrossRef]
- Vakilzadeh, A.; Gohar, R. Oil-film starvation in elastohydrodynamic circular contacts. J. Mech. Eng. Sci. 1977, 19, 22–29. [Google Scholar] [CrossRef]
- Mostofi, A.; Gohar, R. Oil film thickness and pressure distribution in elastohydrodynamic point contacts. J. Mech. Eng. Sci. 1982, 24, 173–182. [Google Scholar] [CrossRef]
- Chittenden, R.J.; Dowson, D.; Dunn, J.F.; Taylor, C.M. A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. I. Direction of lubricant entrainment coincident with the major axis of the Hertzian contact ellipse. Proc. R. Soc. 1985, 397, 245–269. [Google Scholar]
- Chittenden, R.J.; Dowson, D.; Dunn, J.F.; Taylor, C.M. Elastohydrodynamic lubrication of concentrated contacts—Part 2: General case, with lubricant entrainment along either principal axis of the Hertzian contact ellipse. Proc. R. Soc. 1985, 397, 271–294. [Google Scholar]
- Evans, H.P.; Snidle, R.W. Analysis of elastohydrodynamic lubrication of elliptical contacts with rolling along the major axis. J. Mech. Eng. Sci. 1983, 197, 209–211. [Google Scholar] [CrossRef]
- Evans, H.P.; Snidle, R.W. The elastohydrodynamic lubrication of point contacts at heavy loads. Proc. R. Soc. 1982, 382, 183–199. [Google Scholar]
- Thorp, N.; Gohar, R. Elastohydrodynamic sliding friction in a low modulus point contact. J. Mech. Eng. Sci. 1973, 15, 109–113. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Elastohydrodynamic lubrication of elliptical contacts for materials of low elastic modulus I—Fully flooded conjunction. J. Lubr. Tech. 1978, 100, 236–245. [Google Scholar] [CrossRef]
- Biswas, S.; Snidle, R.W. Elastohydrodynamic lubrication of spherical surfaces of low elastic modulus. J. Lubr. Tech. 1976, 98, 524–529. [Google Scholar] [CrossRef]
- Karami, G.; Evans, H.P.; Snidle, R.W. Paper VIII (i) Elastohydrodynamic lubrication of grooved rollers. In Tribology Series; Elsevier: Amsterdam, The Netherlands, 1987; Volume 11, pp. 239–246. [Google Scholar]
- Karami, G.; Evans, H.P.; Snidle, R.W. Elastohydrodynamic lubrication of circumferentially finished rollers having sinusoidal roughness. J. Mech. Eng. Sci. 1987, 201, 29–36. [Google Scholar] [CrossRef]
- Ehret, P.; Dowson, D.; Taylor, C.M. Waviness orientation in EHL point contact. In Tribology Series; Elsevier: Amsterdam, The Netherlands, 1996; Volume 31, pp. 235–244. [Google Scholar]
- Lubrecht, A.A.; Graille, D.; Venner, C.H.; Greenwood, J.A. Waviness amplitude reduction in EHL line contacts under rolling-sliding. J. Tribol. 1998, 120, 705–709. [Google Scholar] [CrossRef]
- Lubrecht, A.A.; Venner, C.H. Elastohydrodynamic lubrication of rough surfaces. J. Eng. Trib. 1999, 213, 397–404. [Google Scholar] [CrossRef]
- Ehret, P.; Dowson, D.; Taylor, C.M. Transient EHL solutions with interfacial slip. J. Tribol. 1999, 121, 703–710. [Google Scholar] [CrossRef]
- Jalali-Vahid, D.; Rahnejat, H.; Gohar, R.; Jin, Z.M. Prediction of oil-film thickness and shape in elliptical point contacts under combined rolling and sliding motion. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2000, 214, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Vahid, D.J.; Rahnejat, H.; Jin, Z.M.; Downson, D. Transient analysis of isothermal elastohydrodynamic circular point contacts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2001, 215, 1159–1172. [Google Scholar] [CrossRef] [Green Version]
- Venner, C.H. Higher-order multilevel solvers for the EHL line and point contact problem. J. Tribol. 1994, 116, 741–750. [Google Scholar] [CrossRef]
- Jalali-Vahid, D.; Rahnejat, H.; Gohar, R.; Jin, Z.M. Comparison between experiments and numerical solutions for isothermal elastohydrodynamic point contacts. J. Phys. D Appl. Phys. 1998, 31, 2725. [Google Scholar] [CrossRef]
- Venner, C.H.; Lubrecht, A.A. Multigrid techniques: A fast and efficient method for the numerical simulation of elastohydrodynamically lubricated point contact problems. Proc. Inst. Mech. Eng. Part J J. Eng. Trib. 2000, 214, 43–62. [Google Scholar] [CrossRef]
- Wang, J.; Qu, S.; Yang, P. Simplified multigrid technique for the numerical solution to the steady-state and transient EHL line contacts and the arbitrary entrainment EHL point contacts. Tribol. Int. 2001, 34, 191–202. [Google Scholar] [CrossRef]
- Gohar, R. Elastohydrodynamics; World Scientific: London, UK, 2001. [Google Scholar]
- Gohar, R.; Rahnejat, H. Fundamentals of Tribology; Imperial College Press: London, UK, 2008. [Google Scholar]
- Sivayogan, G.; Rahmani, R.; Rahnejat, H. Transient analysis of isothermal elastohydrodynamic point contacts under complex kinematics of combined rolling, spinning and normal approach. Lubricants 2020, 8, 81. [Google Scholar] [CrossRef]
- Al-Samieh, M.F.; Rahnejat, H. Physics of lubricated impact of a sphere on a plate in a narrow continuum to gaps of molecular dimensions. J. Phys. D Appl. Phys. 2002, 35, 2311. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, M.; Yang, P.; Kaneta, M. Non-Newtonian thermal analyses of point EHL contacts using the Eyring model. J. Tribol. 2005, 127, 70–81. [Google Scholar] [CrossRef]
- Spikes, H.A. Sixty years of EHL. Lubr. Sci. 2006, 18, 265–291. [Google Scholar] [CrossRef]
- Kumar, P.; Khonsari, M.M. On the role of lubricant rheology and piezo-viscous properties in line and point contact EHL. Tribol. Int. 2009, 42, 1522–1530. [Google Scholar] [CrossRef]
- Carli, M.; Sharif, K.J.; Ciulli, E.; Evans, H.P.; Snidle, R.W. Thermal point contact EHL analysis of rolling/sliding contacts with experimental comparison showing anomalous film shapes. Tribol. Int. 2009, 42, 517–525. [Google Scholar] [CrossRef]
- Karthikeyan, B.K.; Teodorescu, M.; Rahnejat, H.; Rothberg, S.J. Thermoelastohydrodynamics of grease-lubricated concentrated point contacts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 683–695. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kahraman, A. A transient mixed elastohydrodynamic lubrication model for spur gear pairs. J. Tribol. 2010, 132, 011501. [Google Scholar] [CrossRef]
- Habchi, W.; Bair, S.; Qureshi, F.; Covitch, M. A film thickness correction formula for double-Newtonian shear-thinning in rolling EHL circular contacts. Tribol. Lett. 2013, 50, 59–66. [Google Scholar] [CrossRef]
- Paouris, L.; Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Hunt, G.; Barton, W. An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation. Tribol. Lett. 2016, 64, 10. [Google Scholar] [CrossRef] [Green Version]
- Mohammadpour, M.; Theodossiades, S.; Rahnejat, H.; Dowson, D. Non-Newtonian mixed thermo-elastohydrodynamics of hypoid gear pairs. Proc. Inst. Mech. Eng. Part J J. Eng. Trib. 2018, 232, 1105–1125. [Google Scholar] [CrossRef]
- Sivayogan, G.; Rahmani, R.; Rahnejat, H. Lubricated loaded tooth contact analysis and non-Newtonian thermoelastohydrodynamics of high-performance spur gear transmission systems. Lubricants 2020, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Hajishafiee, A.; Kadiric, A.; Ioannides, S.; Dini, D. A coupled finite-volume CFD solver for two-dimensional elasto-hydrodynamic lubrication problems with particular application to rolling element bearings. Tribol. Int. 2017, 109, 258–273. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Sadeghi, F.; Russell, T.; Lorenz, S.J.; Peterson, W.; Villarreal, J.; Jinmon, T. Fluid–Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts. J. Tribol. 2021, 143, 091602. [Google Scholar] [CrossRef]
- Zhao, Y.; Wong, P.L.; Guo, L. Linear complementarity solution of 2D boundary slip EHL contact. Tribol. Int. 2020, 145, 106178. [Google Scholar] [CrossRef]
- Peterson, W.; Russell, T.; Sadeghi, F.; Berhan, M.T.; Stacke, L.E.; Ståhl, J. A CFD investigation of lubricant flow in deep groove ball bearings. Tribol. Int. 2021, 154, 106735. [Google Scholar] [CrossRef]
- Chan, R.T.; Martinez-Botas, R.F.; Gohar, R. Isoviscous flow past a rigid sphere partially immersed in a thin oil film. Lubr. Sci. 2007, 19, 197–212. [Google Scholar] [CrossRef]
- Hertz, H. Uber die Berührung fester elastischer Körper. J. Für Die Reine Und Angew. Math. 1882, 92, 156–171. [Google Scholar]
- Harris, T.A. Rolling Bearing Analysis; Wiley: Hoboken, NJ, USA, 1966. [Google Scholar]
- Palmgren, A. Ball and Roller Bearing Engineering; SKF Industries Inc.: Philadelphia, PA, USA, 1959. [Google Scholar]
- Lundberg, G. Elastic Contact between Two Semi-infinite Bodies. Forsch. Auf Den Geb. Ing. 1961, 10, 165–174. [Google Scholar]
- Kannel, J.W.; Walowit, J.A.; Bell, J.C.; Allen, C.M. The Determination of Stresses in Rolling-Contact Elements. ASME J. Lubn. Tech. 1967, 89, 453–463. [Google Scholar] [CrossRef]
- Hartnell, M.J. The Analysis of Contact Stresses in Rolling Element Bearings. J. Lubr. Tech. 1979, 101, 105–109. [Google Scholar] [CrossRef]
- Nikpur, K.; Gohar, R. Deflexion of a roller compressed between platens. Tribol. Int. 1975, 8, 2–8. [Google Scholar] [CrossRef]
- Heydari, M.; Gohar, R. The Influence of the Axial Profile on Pressure Distribution in Radially Loaded Rollers. J. Mech. Eng. Sci. 1979, 21, 381–388. [Google Scholar] [CrossRef]
- Mostofi, A.; Gohar, R. Pressure distribution between closely contacting surfaces. J. Mech. Eng. Sci. 1980, 22, 251–259. [Google Scholar] [CrossRef]
- Mostofi, A.; Gohar, R. The use of various types of pressure element in some elastic contact problems. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1984, 198, 189–196. [Google Scholar] [CrossRef]
- Johns, P.M.; Gohar, R. Roller bearings under radial and eccentric loads. Tribol. Int. 1981, 14, 131–136. [Google Scholar] [CrossRef]
- So, H.; Gohar, R. The elastic distortion of rollers under combined radial and thrust loads. J. Lubr. Tech. 1983, 105, 189–197. [Google Scholar] [CrossRef]
- Nikpur, K.; Gohar, R. Profiled taper rollers. Tribol. Int. 1975, 8, 203–208. [Google Scholar]
- Rahnejat, H.; Gohar, R. Design of profiled taper roller bearings. Tribol. Int. 1979, 12, 269–275. [Google Scholar] [CrossRef]
- Rahnejat, H.; Johns-Rahnejat, P.M.; Teodorescu, M.; Votsios, V.; Kushwaha, M. A review of some tribo-dynamics phenomena from micro-to nano-scale conjunctions. Tribol. Int. 2009, 42, 1531–1541. [Google Scholar] [CrossRef] [Green Version]
- Gohar, R.; Thorp, N. Keeping the bearings rolling (ball and roller bearing fabrication and performance). New Sci. 1977, 74, 124–126. [Google Scholar]
- Fergusson, B.; Ross, D.; Ismail, M.A.; Gohar, R. Report 13: Pressure Developed in the Lubricant Film between Two Contacting Surfaces in Relative Motion. Proc. Inst. Mech. Eng. 1967, 182, 79–82. [Google Scholar] [CrossRef]
- Bahadoran, H.; Gohar, R. Research note: End closure in elastohydrodynamic line contact. Proc. Inst. Mech. Eng. J. Mech. Eng. Sci. 1974, 16, 276–278. [Google Scholar] [CrossRef]
- Mostofi, A.; Gohar, R. Elastohydrodynamic lubrication of finite line contacts. J. Lubr. Tech. 1983, 105, 598–604. [Google Scholar] [CrossRef]
- Kushwaha, M.; Rahnejat, H.; Gohar, R. Aligned and misaligned contacts of rollers to races in elastohydrodynamic finite line conjunctions. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2002, 216, 1051–1070. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, M.; Rahnejat, H. Transient elastohydrodynamic lubrication of finite line conjunction of cam to follower concentrated contact. J. Phys. D Appl. Phys. 2002, 35, 2872. [Google Scholar] [CrossRef]
- Kushwaha, M.; Rahnejat, H. Transient concentrated finite line roller-to-race contact under combined entraining, tilting and squeeze film motions. J. Phys. D Appl. Phys. 2004, 37, 2018. [Google Scholar] [CrossRef]
- Sun, H.; Chen, X. Thermal EHL analysis of cylindrical roller under heavy load. In IUTAM Symposium on Elastohydrodynamics and Micro-Elastohydrodynamics; Springer: Dordrecht, The Netherlands, 2006; pp. 107–120. [Google Scholar]
- Liu, X.; Yang, P. Numerical analysis of the oil-supply condition in isothermal elastohydrodynamic lubrication of finite line contacts. Trib. Lett. 2010, 38, 115–124. [Google Scholar] [CrossRef]
- Mihailidis, A.; Agouridas, K.; Panagiotidis, K. Non-Newtonian starved thermal-elastohydrodynamic lubrication of finite line contacts. Trib. Trans. 2013, 56, 88–100. [Google Scholar] [CrossRef]
- Hultqvist, T.; Shirzadegan, M.; Vrcek, A.; Baubet, Y.; Prakash, B.; Marklund, P.; Larsson, R. Elastohydrodynamic lubrication for the finite line contact under transient loading conditions. Tribol. Int. 2018, 127, 489–499. [Google Scholar] [CrossRef]
- Tsuha, N.A.; Cavalca, K.L. Finite line contact stiffness under elastohydrodynamic lubrication considering linear and nonlinear force models. Tribol. Int. 2020, 146, 106219. [Google Scholar] [CrossRef]
- Huber, M.T.; Fuchs, S. Spannungverleitung bei der beruhrung zweier elastischer zylinder. Phys. Z. 1914, 15, 298–303. [Google Scholar]
- Ioannides, E.; Harris, T.A. A new fatigue life model for rolling bearings. J. Tribol. 1985, 107, 367–378. [Google Scholar] [CrossRef]
- Lyman, J. Reversing normal strains produced by rolling contact load. J. Lubr. Tech. 1967, 89, 76–80. [Google Scholar] [CrossRef]
- Poritsky, H. Stresses and deflections of cylindrical bodies in contact with application to contact of gears and locomotive wheels. J. Appl. Mech. 1950, 18, 191–201. [Google Scholar] [CrossRef]
- Johns-Rahnejat, P.M.; Gohar, R. Point contact elastohydrodynamic pressure distribution and sub-surface stress field. In Proceedings of the Tri-annual Conference on Multi-body Dynamics: Monitoring and Simulation Techniques, Bradford, UK, 25–27 March 1997; pp. 161–179. [Google Scholar]
- Johnson, K.L. One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 1982, 196, 363–378. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Johns-Rahnejat, P.M.; Dolatabadi, N.; Rahnejat, H. Analytical elastostatic contact mechanics of highly-loaded contacts of varying conformity. Lubricants 2020, 8, 89. [Google Scholar] [CrossRef]
- Muskhelishvili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity; Noordhoff: Groningen, The Netherlands, 1963; p. 17404. [Google Scholar]
- Jaffar, M.J. Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid foundation. Int. J. Mech. Sci. 1989, 31, 229. [Google Scholar] [CrossRef]
- Barber, J.R. Contact problems for the thin elastic layer. Int. J. Mech. Sci. 1990, 32, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Naghieh, G.R.; Rahnejat, H.; Jin, Z.M. Characteristics of frictionless contact of bonded elastic and viscoelastic layered solids. Wear 1998, 232, 243–249. [Google Scholar] [CrossRef]
- Teodorescu, M.; Rahnejat, H.; Gohar, R.; Dowson, D. Harmonic decomposition analysis of contact mechanics of bonded layered elastic solids. Appl. Math. Model. 2009, 33, 467–485. [Google Scholar] [CrossRef]
- Teodorescu, M.; Votsios, V.; Johns-Rahnejat, P.M.; Rahnejat, H. Fundamentals of impact dynamics of semi-infinite and layered solids. In Tribology and Dynamics of Engine and Powertrain; Woodhead Publishing: Cambridge, UK, 2010; pp. 105–132. [Google Scholar]
- Mostofi, A. Oil Film Thickness and Pressure Distribution in Elastohydrodynamic Elliptical Contacts. Ph.D. Thesis, Imperial College of Science and Technology, University of London, London, UK, 1981. [Google Scholar]
- Rahnejat, H. Influence of Vibrations on the Oil Film in Concentrated Contacts. Ph.D. Thesis, Imperial College of Science and Technology, University of London, London, UK, 1984. [Google Scholar]
- Rahnejat, H.; Gohar, R. The vibrations of radial ball bearings. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1985, 199, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Newmark, N.M. A method of computation for structural dynamics. J. Eng. Mech. Div. 1959, 85, 67–94. [Google Scholar] [CrossRef]
- Rahnejat, H. Computational modelling of problems in contact dynamics. Eng. Anal. 1985, 2, 192–197. [Google Scholar] [CrossRef]
- Gupta, P.K. Dynamics of rolling-element bearings—Part I: Cylindrical roller bearing analysis. J. Lubr. Tech. 1979, 101, 293–302. [Google Scholar] [CrossRef]
- Gupta, P.K. Dynamics of rolling-element bearings—Part III: Ball bearing analysis. J. Lubr. Tech. 1979, 101, 312–318. [Google Scholar] [CrossRef]
- Yhland, E. A linear theory of vibrations caused by ball bearings with form errors operating at moderate speed. J. Tribol. 1992, 114, 348–359. [Google Scholar] [CrossRef]
- Fukata, S.; Gad, E.H.; Kondou, T.; Ayabe, T.; Tamura, H. On the radial vibration of ball bearings: Computer simulation. Bull. JSME 1985, 28, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Harsha, S.P. The effect of ball size variation on nonlinear vibrations associated with ball bearings. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2004, 218, 191–210. [Google Scholar] [CrossRef]
- Matsubara, M.; Rahnejat, H.; Gohar, R. Computational modelling of precision spindles supported by ball bearings. Int. J. Mach. Tools Manuf. 1988, 28, 429–442. [Google Scholar] [CrossRef]
- Gohar, R.; Akturk, N. Vibrations associated with ball bearings. IMechE Conf. Trans. 1998, 13, 43–64. [Google Scholar]
- Akturk, N.; Gohar, R. The effect of ball size variation on vibrations associated with ball-bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 1998, 212, 101–110. [Google Scholar] [CrossRef]
- Rahman, A.K.; Aini, R.; Gohar, R. On the performance of multi-support spindle-bearing assemblies. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2002, 216, 117–132. [Google Scholar] [CrossRef]
- Rahman, A.K.; Aini, R.; Gohar, R. On the effects of bearing settings on the dynamic performance of a three-bearing machine tool spindle assembly. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2002, 216, 133–141. [Google Scholar] [CrossRef]
- Aini, R.; Rahnejat, H.; Gohar, R. A five degrees of freedom analysis of vibrations in precision spindles. Int. J. Mach. Tools Manuf. 1990, 30, 1–8. [Google Scholar] [CrossRef]
- Stacke, L.E.; Fritzson, D.; Nordling, P. BEAST—A rolling bearing simulation tool. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 1999, 213, 63–71. [Google Scholar] [CrossRef]
- Aini, R.; Rahnejat, H.; Gohar, R. Vibration modeling of rotating spindles supported by lubricated bearings. J. Tribol. 2002, 124, 158–165. [Google Scholar] [CrossRef]
- Savalia, R.; Ghosh, M.K.; Pandey, R.K. Vibration analysis of lubricated angular contact ball bearing of rigid rotor considering waviness of ball and races. Tribol. Online 2008, 3, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Babu, C.K.; Tandon, N.; Pandey, R.K. Vibration modeling of a rigid rotor supported on the lubricated angular contact ball bearings considering six degrees of freedom and waviness on balls and races. J. Vib. Acoust. 2012, 134, 011006. [Google Scholar] [CrossRef]
- Mohammadpour, M.; Johns-Rahnejat, P.M.; Rahnejat, H. Roller bearing dynamics under transient thermal-mixed non-Newtonian elastohydrodynamic regime of lubrication. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2015, 229, 407–423. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johns-Rahnejat, P.M.; Karami, G.; Aini, R.; Rahnejat, H. Fundamentals and Advances in Elastohydrodynamics: The Role of Ramsey Gohar. Lubricants 2021, 9, 120. https://doi.org/10.3390/lubricants9120120
Johns-Rahnejat PM, Karami G, Aini R, Rahnejat H. Fundamentals and Advances in Elastohydrodynamics: The Role of Ramsey Gohar. Lubricants. 2021; 9(12):120. https://doi.org/10.3390/lubricants9120120
Chicago/Turabian StyleJohns-Rahnejat, Patricia M., Ghodrat Karami, Reza Aini, and Homer Rahnejat. 2021. "Fundamentals and Advances in Elastohydrodynamics: The Role of Ramsey Gohar" Lubricants 9, no. 12: 120. https://doi.org/10.3390/lubricants9120120
APA StyleJohns-Rahnejat, P. M., Karami, G., Aini, R., & Rahnejat, H. (2021). Fundamentals and Advances in Elastohydrodynamics: The Role of Ramsey Gohar. Lubricants, 9(12), 120. https://doi.org/10.3390/lubricants9120120