High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit
Abstract
1. Introduction
2. Materials and Methods
2.1. MoS2 Solid Lubricant Coating
2.2. Friction Force Microscopy
2.3. Environmental Control for FFM
3. Results & Discussion
3.1. Friction Behaviour
3.2. Wear Mechanics
3.3. Run-in Characteristics
3.4. Implication for Mechanisms in LEO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, E.W. Space tribology: Its role in spacecraft mechanisms. J. Phys. D Appl. Phys. 2012, 45, 305001. [Google Scholar] [CrossRef]
- Fusaro, R.L. Lubrication of Space Systems. In Proceedings of the Society of Tribologists and Lubrication Engineers Annual Meeting, Pittsburgh, PA, USA, 1994; Available online: https://ntrs.nasa.gov/search.jsp?R=19940024896 (accessed on 21 April 2020).
- Fusaro, R.L.; Khonsari, M.M. Liquid Lubrication for Space Applications; NASA: Hanover, MD, USA, 1993. [Google Scholar]
- Antoniazzi, J.; Milligan, D. A Review of Lubrication on the Canadarm 2. In Protection of Materials and Structures from Space Environment; Springer: Berlin, Germany, 2004; pp. 291–298. [Google Scholar]
- Jones, W.; Jansen, M. Lubrication for Space Applications. Handb. Lubr. Tribol. 2010, 222, 997–1004. [Google Scholar]
- Godfrey, D.; Nelson, E. Oxidation Characteristics of Molybdenum Disulfide and Effect of Such Oxidation on its Role as a Solid-Film Lubricant; National Advisory Committee for Aeronautics, 1949. Available online: https://ntrs.nasa.gov/search.jsp?R=19930082560 (accessed on 21 April 2020).
- Savan, A.; Pflüger, E.; Voumard, P.; Schröer, A.; Paul, M.S. Modern solid lubrication: Recent developments and applications of MoS2. Lubr. Sci. 2000, 12, 185–203. [Google Scholar] [CrossRef]
- Spalvins, T. A review of recent advances in solid film lubrication. J. Vac. Sci. Technol. A 1987, 5, 212–219. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. A Researcher’s Guide to the International Space Station; NASA: Hanover, MD, USA, 2004. [Google Scholar]
- Brizuela, M.; Oñate, J.I.; Garmendia, I. Tribolab: An Experiment on Space Tribology, In-Orbit Data at the ISS. In Proceedings of the Proc. ‘13th European Space Mechanisms and Tribology Symposium–ESMATS 2009, Vienna, Austria, 23–25 September 2009. [Google Scholar]
- Woods, T. Out of Thin Air. Available online: https://www.nasa.gov/topics/technology/features/atomic_oxygen.html. (accessed on 21 April 2020).
- Banks, B.A.; de Groh, K.K.; Miller, S.K. Low Earth Orbital Atomic Oxygen Interactions With Spacecraft Materials; NASA: Hanover, MD, USA, 2004. [Google Scholar]
- Gao, X.; Hu, M.; Sun, J.; Fu, Y.; Yang, J.; Liu, W.; Weng, L. Changes in the composition, structure and friction property of sputtered MoS 2 films by LEO environment exposure. Appl. Surf. Sci. 2015, 330, 30–38. [Google Scholar] [CrossRef]
- Tagawa, M.; Yokota, K.; Matsumoto, K.; Suzuki, M.; Teraoka, Y.; Kitamura, A.; Belin, M.; Fontaine, J.; Martin, J.M. Space environmental effects on MoS2 and diamond-like carbon lubricating films: Atomic oxygen-induced erosion and its effect on tribological properties. Surf. Coat. Technol. 2007, 202, 1003–1010. [Google Scholar] [CrossRef]
- Argibay, N.; Dugger, M.T.; Krick, B.A.; Curry, J.F.; Nation, B.; Martini, A.; Strandwitz, N.C.; Babuska, T. Highly Oriented MoS2 Coatings: Tribology and Environmental Stability. Tribol. Lett. 2016, 64, 1–9. [Google Scholar]
- Wang, P.; Qiao, L.; Xu, J.; Li, W.; Liu, W. Erosion Mechanism of MoS2-Based Films Exposed to Atomic Oxygen Environments. ACS Appl. Mater. Interfaces 2015, 7, 12943–12950. [Google Scholar] [CrossRef]
- Tagawa, M.; Muromoto, M.; Hachiue, S.; Yokota, K.; Ohmae, N.; Matsumoto, K.; Suzuki, M. Hyperthermal atomic oxygen interaction with MoS2 lubricants and relevance to space environmental effects in low earth orbit—Effects on friction coefficient and wear-life. Tribol. Lett. 2005, 18, 437–443. [Google Scholar] [CrossRef]
- Tagawa, M.; Yokota, K.; Ochi, K.; Akiyama, M.; Matsumoto, K.; Suzuki, M. Comparison of macro and microtribological property of molybdenum disulfide film exposed to LEO space environment. Tribol. Lett. 2012, 45, 349–356. [Google Scholar] [CrossRef]
- Serpini, E.; Rota, A.; Ballestrazzi, A.; Marchetto, D.; Gualtieri, E.; Valeri, S. The role of humidity and oxygen on MoS2 thin films deposited by RF PVD magnetron sputtering. Surf. Coat. Technol. 2017, 319, 345–352. [Google Scholar] [CrossRef]
- Sliney, H.E. Solid lubricant materials for high temperatures—A review. Tribol. Int. 1982, 15, 303–315. [Google Scholar] [CrossRef]
- Yang, J.F.; Jiang, Y.; Hardell, J.; Prakash, B.; Fang, Q.F. Influence of service temperature on tribological characteristics of self-lubricant coatings: A review. Front. Mater. Sci. 2013, 7, 28–39. [Google Scholar] [CrossRef]
- Wright, M.C.; Long, V.L.; McDanels, S. The Evolution of Failure Analysis at NASA’s Kennedy Space Center and the Lessons Learned; NASA: Hanover, MD, USA, 2008. [Google Scholar]
- Gardos, M.N. Anomalous wear behavior of MoS2 films in moderate vacuum and dry nitrogen. Tribol. Lett. 1995, 1, 67–85. [Google Scholar] [CrossRef]
- Serles, P.; Sun, H.; Colas, G.; Tam, J.; Nicholson, E.; Wang, G.; Howe, J.; Saulot, A.; Singh, C.V.; Filleter, T. Structure Dependent Wear and Shear Mechanics of Nanostructured MoS2 Coatings. Adv. Mater. Interfaces 2020, in press. [Google Scholar]
- Sader, J.E.; Chon, J.W.M.; Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999, 70, 3967–3969. [Google Scholar] [CrossRef]
- Green, C.P.; Lioe, H.; Cleveland, J.P.; Proksch, R.; Mulvaney, P.; Sader, J.E. Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 2004, 75, 1988–1996. [Google Scholar] [CrossRef]
- Cannara, R.J.; Eglin, M.; Carpick, R.W. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 2006, 77, 053701. [Google Scholar] [CrossRef]
- Khare, H.S.; Burris, D.L. The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 2013, 52, 485–493. [Google Scholar] [CrossRef]
- Kubart, T.; Polcar, T.; Kopecký, L.; Novák, R.; Nováková, D. Temperature dependence of tribological properties of MoS2 and MoSe2 coatings. Surf. Coat. Technol. 2005, 193, 230–233. [Google Scholar] [CrossRef]
- Arif, T.; Yadav, S.; Colas, G.; Singh, C.V.; Filleter, T. Understanding the Independent and Interdependent Role of Water and Oxidation on the Tribology of Ultrathin Molybdenum Disulfide (MoS2). Adv. Mater. Interfaces 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Levita, G.; Restuccia, P.; Righi, M.C. Graphene and MoS2 interacting with water: A comparison by ab initio calculations. Carbon 2016, 107, 878–884. [Google Scholar] [CrossRef]
- Savan, A.; Simmonds, M.C.; Huang, Y.; Constable, C.P.; Creasey, S.; Gerbig, Y.; Haefke, H.; Lewis, D.B. Effects of temperature on the chemistry and tribology of co-sputtered MoSx-Ti composite thin films. Thin Solid Films 2005, 489, 137–144. [Google Scholar] [CrossRef]
- Khare, H.S.; Burris, D.L. Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 2014, 53, 329–336. [Google Scholar] [CrossRef]
- Curry, J.F.; Hinkle, A.R.; Babuska, T.F.; Wilson, M.A.; Dugger, M.T.; Krick, B.A.; Argibay, N.; Chandross, M. Atomistic Origins of Temperature-Dependent Shear Strength in 2D Materials. ACS Appl. Nano Mater. 2018, 1, 5401–5407. [Google Scholar] [CrossRef]
- Bandaru, N.; Kumar, R.S.; Sneed, D.; Tschauner, O.; Baker, J.; Antonio, D.; Luo, S.N.; Hartmann, T.; Zhao, Y.; Venkat, R. Effect of pressure and temperature on structural stability of MoS 2. J. Phys. Chem. C 2014, 118, 3230–3235. [Google Scholar] [CrossRef]
- Colbert, R.S.; Sawyer, G.W. Thermal dependence of the wear of molybdenum disulphide coatings. Wear 2010, 269, 719–723. [Google Scholar] [CrossRef]
- Babuska, T.F.; Pitenis, A.A.; Jones, M.R.; Nation, B.L.; Sawyer, W.G.; Argibay, N. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS2. Tribol. Lett. 2016, 63, 1–7. [Google Scholar] [CrossRef]
- Kazachenko, V.P.; Popov, V.V.; Dubravin, A.M.; Ahn, H.-S.; Chizhik, S.A. Application of phase contrast imaging atomic force microscopy to tribofilms on DLC coatings. Wear 2002, 249, 617–625. [Google Scholar]
- Ye, J.; Kano, M.; Yasuda, Y. Determination of nanostructures and mechanical properties on the surface of molybdenum dithiocarbamate and zinc dialkyl-dithiophosphate tribochemical reacted films using atomic force microscope phase imaging technique. J. Appl. Phys. 2003, 93, 5113–5117. [Google Scholar] [CrossRef]
- Blau, P.J. On the nature of running-in. Tribol. Int. 2005, 38, 1007–1012. [Google Scholar] [CrossRef]
- Fleischauer, P.D. Effects of crystallite orientation on environmental stability and lubrication properties of sputtered moS. ASLE Trans. 1984, 27, 82–88. [Google Scholar] [CrossRef]
- Moser, J.; Levy, F. Growth Mechanisms and Near-Interface Structure in Relation To Orientation of Mos2 Sputtered Thin-Films. J. Mater. Res. 1992, 7, 734–740. [Google Scholar] [CrossRef]
- Furlan, K.P.; de Mello, J.D.B.; Klein, A.N. Self-lubricating composites containing MoS2: A review. Tribol. Int. 2018, 120, 280–298. [Google Scholar] [CrossRef]
- Cowen, R. The wheels come off Kepler. Nature 2013, 497, 417–418. [Google Scholar] [CrossRef][Green Version]
- Aldridge, D.; Gentilhomme, M.; Gibson, A.; Cameron, P.; Mccolgan, A. Cryogenic Motor Enhancement for the Niriss Instrument on the James Webb Space Telescope. In Proceedings of the 16th European Space Mechanisms and Tribology Symposium, Bilbao, Spain, 23–25 September 2015. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serles, P.; Gaber, K.; Pajovic, S.; Colas, G.; Filleter, T. High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit. Lubricants 2020, 8, 49. https://doi.org/10.3390/lubricants8040049
Serles P, Gaber K, Pajovic S, Colas G, Filleter T. High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit. Lubricants. 2020; 8(4):49. https://doi.org/10.3390/lubricants8040049
Chicago/Turabian StyleSerles, Peter, Khaled Gaber, Simo Pajovic, Guillaume Colas, and Tobin Filleter. 2020. "High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit" Lubricants 8, no. 4: 49. https://doi.org/10.3390/lubricants8040049
APA StyleSerles, P., Gaber, K., Pajovic, S., Colas, G., & Filleter, T. (2020). High Temperature Microtribological Studies of MoS2 Lubrication for Low Earth Orbit. Lubricants, 8(4), 49. https://doi.org/10.3390/lubricants8040049