# Three-Dimensional DEM Modelling of Ball Bearing with Lubrication Regime Prediction

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Three Dimensional Modelling of Radial Ball Bearing Using DEM

#### 2.1. Contact Stiffness and Damping Effect

#### 2.2. Fluid Film Thickness and Fluid Parameters

#### 2.3. Space and Time Discretization of the DEM Ball Bearing Model

## 3. Numerical Prediction of Lubrication Regimes in Operating Radial Ball Bearing

#### 3.1. Effect of Radial Load and Diametral Clearance

#### 3.2. Effect of Angular Speed

## 4. Conclusions and Perspectives

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## Nomenclature

α_{e} | Restitution coefficient of steel |

δ_{r} | Radial shift |

δ_{n,t} | Normal/tangential relative displacement |

η | Dynamic viscosity of the fluid |

Λ_{f} | Fluid number |

μ | Friction coefficient |

v | Poisson’s ratio of steel |

w | Shaft/inner-ring angular speed |

$\overline{\mathcal{E}}$ | Approximate elliptic integral of second kind |

$\overline{\mathcal{F}}$ | Approximate elliptic integral of first kind |

ψ | Azimuth angle |

δ_{a}_{1,2} | Roughness parameter |

ε | Load parameter |

ξ | Viscosity-pressure coefficient of the lubricant |

a | Restitution coefficient of steel |

C_{n,t} | Normal/tangential viscous damping coefficient |

E | Young’s modulus of steel |

E′ | Effective elastic modulus of steel |

F_{r} | Applied radial load |

G | Shear modulus of steel |

h_{min} | Semi-major axis of the Hertz’s elliptical contact |

J_{r} | Radial integral |

k | Ellipticity parameter |

K_{n,t} | Contact normal/tangential stiffness |

P_{d} | Diametral clearance |

Q_{max} | Maximum normal load at ψ = 0 |

R_{b} | Rolling element radius |

R_{c} | Curvature radius of inner/outer raceway |

R_{i} | Inner ring radius |

R_{o} | Outer ring radius |

R_{z} | Cage element radius |

R_{curve} | Curvature sum radius |

U_{r} | Rolling velocity |

v_{t} | Sliding velocity |

Z | Number of rolling elements |

## Appendix A. Normal Load and Radial Deflection in Radial Ball Bearing

**Figure A1.**(

**a**) Radial deflection ${\delta}_{\psi}$ and (

**b**) normal load ${Q}_{\psi}$ distributions under radial load ${F}_{r}=3000\phantom{\rule{3.33333pt}{0ex}}$N.

**Figure A2.**(

**a**) Radial deflection ${\delta}_{\psi}$ and (

**b**) normal load ${Q}_{\psi}$ distributions under several radial load ${F}_{r}$.

## References

- Sapietová, A.; Dekýǎ, V. Dynamic analysis of rotating machines in MSC.ADAMS. Procedia Eng.
**2016**, 136, 143–149. [Google Scholar] [CrossRef] - Zezulka, F.; Marcon, P.; Vesely, I.; Sajdl, O. Industry 4.0—An Introduction in the phenomenon. IFAC-Pap. Online
**2016**, 49, 8–12. [Google Scholar] [CrossRef] - Ahuett-Garza, H.; Kurfess, T. A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manuf. Lett.
**2018**. [Google Scholar] [CrossRef] - Chen, J.; Randall, R.B. Intelligent diagnosis of bearing knock faults in internal combustion engines using vibration simulation. Mech. Mach. Theory
**2016**, 104, 161–176. [Google Scholar] [CrossRef] - Glowacz, A.; Glowacz, W.; Glowacz, Z.; Kozik, J. Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals. Measurement
**2018**, 113, 1–9. [Google Scholar] [CrossRef] - Kompella, K.D.; Rao, M.V.G.; Rao, R.S. Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques. Ain Shams Eng. J.
**2017**. [Google Scholar] [CrossRef] - Júnior, J.J.D.S.; de Farias Maribondo, J. Analysis of lubricating oils in shear friction tests using infrared thermography. Infrared Phys. Technol.
**2018**, 89, 291–298. [Google Scholar] - Hamrock, B.; Dowson, D. Isothermal elastohydrodynamic lubrication of point contacts: Part 1-theoretical formulation. J. Tribol.
**1976**, 98, 223–228. [Google Scholar] [CrossRef] - Hamrock, B.J.; Dowson, D. Ball Bearing Lubrication: Elastohydrodynamics of Elliptical Contacts; John Wiley & Sons Inc.: New York, NY, USA, 1981. [Google Scholar]
- Masjedi, M.; Khonsari, M. On the effect of surface roughness in point-contact EHL: Formulas for film thickness and asperity load. Tribol. Int.
**2015**, 82, 228–244. [Google Scholar] [CrossRef] - Stribeck, R. Ball Bearings for Various Loads. Trans. ASME
**1907**, 29, 420–463. [Google Scholar] - Downson, D.; Higginson, G.R. Elasto-Hydrodynamic Lubrication, 2nd ed.; Pergamon Press: Oxford, UK, 1977. [Google Scholar]
- Stachowiak, G.; Batchelor, A. Engineering Tribology, 3rd ed.; Elsevier: New York, NY, USA, 2005. [Google Scholar]
- Fernandes, C.M.; Marques, P.M.; Martins, R.C.; Seabra, J.H. Film thickness and traction curves of wind turbine gear oils. Tribol. Int.
**2015**, 86, 1–9. [Google Scholar] [CrossRef] - Cousseau, T.; Graça, B.; Campos, A.; Seabra, J. Grease Aging Effects on Film Formation under Fully-Flooded and Starved Lubrication. Lubricants
**2015**, 3, 197–221. [Google Scholar] [CrossRef] - Gonçalves, D.; Graça, B.; Campos, A.V.; Seabra, J. Film thickness and friction behaviour of thermally aged lubricating greases. Tribol. Int.
**2016**, 100, 231–241. [Google Scholar] [CrossRef] - Gonçalves, D.; Vieira, A.; Carneiro, A.; Campos, A.V.; Seabra, J.H.O. Film Thickness and Friction Relationship in Grease Lubricated Rough Contacts. Lubricants
**2017**, 5, 34. [Google Scholar] [CrossRef] - Machado, C.; Guessasma, M.; Bellenger, E. An improved 2D modeling of bearing based on DEM for predicting mechanical stresses in dynamic. Mech. Mach. Theory
**2017**, 113, 53–66. [Google Scholar] [CrossRef] - Tadina, M.; Boltezar, M. Improved model of a ball bearing for the simulation of vibration signals due to faults during run-up. J. Sound Vib.
**2011**, 330, 4287–4301. [Google Scholar] [CrossRef] - Machado, C.; Guessasma, M.; Bellenger, E. Electromechanical modeling by DEM for assessing internal ball bearing loading. Mech. Mach. Theory
**2015**, 92, 338–355. [Google Scholar] [CrossRef] - Chevallier, E.; Bourny, V.; Bouzerar, B.; Fortin, J.; Durand-Drouhin, O.; Da Ros, V. Voltage noise across a metal/metal sliding contact as a probe of the surface state. J. Appl. Phys.
**2014**, 115, 1–10. [Google Scholar] [CrossRef] - Rosenkranz, A.; Martin, B.; Bettscheider, S.; Gachot, C.; Kliem, H.; Mücklich, F. Correlation between solid–solid contact ratios and lubrication regimes measured by a refined electrical resistivity circuit. Wear
**2014**, 320, 51–61. [Google Scholar] [CrossRef] - Rosenkranz, A.; Heib, T.; Gachot, C.; Mücklich, F. Oil film lifetime and wear particle analysis of laser-patterned stainless steel surfaces. Wear
**2015**, 334–335, 1–12. [Google Scholar] [CrossRef] - Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process.
**2011**, 25, 485–520. [Google Scholar] [CrossRef] - Bourbatache, K.; Guessasma, M.; Bellenger, E.; Bourny, V.; Fortin, J. DEM ball bearing model and defect diagnosis by electrical measurement. Mech. Syst. Signal Process.
**2013**, 41, 98–112. [Google Scholar] [CrossRef] - Machado, C.; Guessasma, M.; Bellenger, E.; Bourbatache, K.; Bourny, V.; Fortin, J. Diagnosis of faults in the bearings by electrical measures and numerical simulations. Mech. Ind.
**2014**, 15, 383–391. [Google Scholar] [CrossRef] - Cundall, P.; Strack, O. A discrete numerical model for granular assemblies. Geotechnique
**1979**, 29, 47–65. [Google Scholar] [CrossRef] - Thornton, C.; Randall, C.W. Application of theoretical contact mechanics to solid particle system simulation. Micromech. Granul. Mater.
**1988**, 20, 133–142. [Google Scholar] - Farah, S.O.; Guessasma, M.; Bellenger, E.; Machado, C. A 3D modelling of ball bearings by DEM and predictive monitoring method using electrical measurements. In Proceedings of the 6th Algerian Congress of Mechanics, Constantine, Algeria, 21–23 November 2017. [Google Scholar]
- Walford, T.L.H.; Stone, B.J. The sources of damping in rolling element bearings under oscillating conditions. Inst. Mech. Eng.
**1983**, 197, 225–232. [Google Scholar] [CrossRef] - Archard, J.F. Elastic deformation and the laws of friction. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**1957**, 243, 190–205. [Google Scholar] [CrossRef] - Qian, W. Dynamic Simulation of Cylindrical Roller Bearings. Ph.D. Thesis, Technische Hochschule Aachen, Aachen, Germany, 2014. [Google Scholar]
- Archard, J.F.; Kirk, M.T. Lubrication at point contacts. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.
**1962**, 261, 532–550. [Google Scholar] [CrossRef] - Hamrock, B.; Anderson, W. Rolling-Element Bearings; For Sale by the National Technical Information Service: Springfield, VA, USA, 1983. [Google Scholar]
- Mindlin, R.; Deresiewicz, H. Elastic spheres in contact under varying oblique force. ASME J. Appl. Mech.
**1953**, 20, 327–344. [Google Scholar] - Hunt, K.H.; Crossley, F.R.E. Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech.
**1975**, 42, 440–445. [Google Scholar] [CrossRef] - Harnoy, A. Bearing Design in Machinery: Engineering Tribology and Lubrication; Mechanical Engineering; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Mary, C.; Philippon, D.; Devaux, N.; Fillot, N.; Laurent, D.; Bair, S.; Vergne, P. Bridging high pressure rheology and film-forming capacity of polymer-base oil solutions in EHL. Tribol. Int.
**2016**, 93, 502–510. [Google Scholar] [CrossRef] - Tallian, T.E. Paper 14: Rolling Contact Failure Control through Lubrication. Proc. Inst. Mech. Eng. Conf. Proc.
**1967**, 182, 205–236. [Google Scholar] [CrossRef] - Qiu, M.; Chen, L.; Li, Y.; Yan, J. Bearing Tribology: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Higashi, K.; Isa, H.; Kitagawa, T.; Onishi, T.; Ohashii, K. Real-Time Monitoring of the Superfinishing Process; Technical Report, NTN No. 82; NTN Corporation: Kyomachibori, Japan, 2014. [Google Scholar]
- Guegan, J.; Kadiric, A.; Gabelli, A.; Spikes, H. The Relationship Between Friction and Film Thickness in EHD Point Contacts in the Presence of Longitudinal Roughness. Tribol. Lett.
**2016**, 64, 33. [Google Scholar] [CrossRef] - Laurentis, N.D.; Kadiric, A.; Lugt, P.; Cann, P. The influence of bearing grease composition on friction in rolling/sliding concentrated contacts. Tribol. Int.
**2016**, 94, 624–632. [Google Scholar] [CrossRef] - Björling, M.; Habchi, W.; Bair, S.; Larsson, R.; Marklund, P. Towards the true prediction of EHL friction. Tribol. Int.
**2013**, 66, 19–26. [Google Scholar] [CrossRef] - Harris, T.; Kotzalas, M. Advanced Concepts of Bearing Technology, 5th ed.; Rolling Bearing Analysis; Taylor and Francis: Abingdon, UK, 2006. [Google Scholar]
- Dowson, D.; Higginson, G. Elasto-Hydrodynamic Lubrication; International Series on Materials Science and Technology; Elsevier Ltd.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Hamrock, B.; Schmid, S.; Jacobson, B. Fundamentals of Fluid Film Lubrication; Mechanical Engineering Fundamentals of Fluid Film Lubrication; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Lugt, P. Grease Lubrication in Rolling Bearings; Tribology in Practice Series; Wiley: New York, NY, USA, 2012. [Google Scholar]

**Figure 1.**(

**a**) Radial ball bearing of 6208 series; (

**b**) DEM modelling using MULTICOR-3D software; (

**c**) Exploded view.

**Figure 3.**Curvatures in contact in two orthogonal cross sections of a ball bearing: (

**a**) x–z plane ; (

**b**) y–z plane.

**Figure 5.**Schematic representation of Stribeck curve: friction coefficient and fluid film thickness as function of fluid parameter.

**Figure 7.**(

**a**) Imposed shaft angular speed $\omega $ and simulated angular speed ${\omega}_{ball}$ of rolling element and (

**b**) SRR for a single rolling element.

**Figure 8.**(

**a**) Film fluid thickness ${h}_{min}^{out}$ and (

**b**) fluid parameter ${\mathrm{\Lambda}}_{f}^{out}$ with respect to azimuth angle $\psi $ of the ball-outer-raceway contact.

**Figure 9.**(

**a**) Fluid parameter ${\mathrm{\Lambda}}_{f}^{out}$ as function of azimuth angle $\psi $; (

**b**) Fluid parameter ${\mathrm{\Lambda}}_{f}^{out}$ and maximum normal load ${Q}_{max}$ in the loaded zone at $\psi =0$.

**Figure 10.**(

**a**) Fluid parameter ${\mathrm{\Lambda}}_{f}^{out}$ as a function of azimuth angle $\psi $; (

**b**) Fluid parameter ${\mathrm{\Lambda}}_{f}^{out}$ and load parameter $\epsilon $ as function of normal load ${Q}_{max}$ at $\psi =0$.

**Figure 11.**Fluid parameter as function of azimuth angle $\psi $: (

**a**) ${\mathrm{\Lambda}}_{f}^{out}$ for ball-outer-raceway contact; (

**b**) ${\mathrm{\Lambda}}_{f}^{inn}$ for ball-inner-raceway contact.

**Figure 12.**(

**a**) Fluid parameter and maximum contact pressure at $\psi =0$ as function of angular speed $\omega $; (

**b**) Minimum fluid film thickness and maximum normal load at $\psi =0$ as function of angular speed $\omega $.

Component | Ball | Inner Ring | Outer Ring | Raceway | Cage |
---|---|---|---|---|---|

Radius | ${R}_{b}$ | ${R}_{i}$ | ${R}_{o}$ | ${R}_{c}$ | ${R}_{z}$ |

Dimension (mm) | 6.3 | 24.0 | 36.6 | 6.552 | 4.19 |

${\mathit{C}}_{\mathit{n}}\left({\mathbf{\Lambda}}_{\mathit{f}}\right)$ | ${\mathit{C}}_{\mathit{hyst}}$ | ${\left(\right)}^{\frac{1}{{\mathit{C}}_{\mathit{hyst}}}}-1$ | ${\mathit{C}}_{\mathit{fluid}}$ |
---|---|---|---|

${h}_{min}$ | $<{\sigma}_{a}$ | $\sim {\sigma}_{a}$ | $>>{\sigma}_{a}$ |

${\mathrm{\Lambda}}_{f}$ | $\le 1$ | ∈]1,3] | ∈]3,5] |

$\mu \left({\mathrm{\Lambda}}_{f}\right)$ | high | moderate | low |

**Table 3.**Lubrication regime in the loaded zone at $\psi =0$ of radial ball bearing with zero clearance $\left(\right)$.

Angular Speed $\left(\right)open="("\; close=")">\mathbf{rad}\xb7{\mathbf{s}}^{-1}$ | Lubrication Regime | |
---|---|---|

Inner Contact | Outer Contact | |

$\omega \le 100$ | ${\mathrm{\Lambda}}_{f}<1$ | |

$100<\omega \le 1100$ | $1<{\mathrm{\Lambda}}_{f}<3$ | $1<{\mathrm{\Lambda}}_{f}<4$ |

$1100<\omega \le 1700$ | $3<{\mathrm{\Lambda}}_{f}\le 4$ | $4<{\mathrm{\Lambda}}_{f}<5$ |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Guessasma, M.; Machado, C.
Three-Dimensional DEM Modelling of Ball Bearing with Lubrication Regime Prediction. *Lubricants* **2018**, *6*, 46.
https://doi.org/10.3390/lubricants6020046

**AMA Style**

Guessasma M, Machado C.
Three-Dimensional DEM Modelling of Ball Bearing with Lubrication Regime Prediction. *Lubricants*. 2018; 6(2):46.
https://doi.org/10.3390/lubricants6020046

**Chicago/Turabian Style**

Guessasma, Mohamed, and Charles Machado.
2018. "Three-Dimensional DEM Modelling of Ball Bearing with Lubrication Regime Prediction" *Lubricants* 6, no. 2: 46.
https://doi.org/10.3390/lubricants6020046