Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Experiment and Simulation Procedures
2.1. FE Simulation Settings
2.2. CFD Simulation Procedures
2.3. The Procedures of the MQL Cutting Experiment
3. Results and Discussion
3.1. Effects of MQL Injection Parameters on the Flow Characteristics
3.1.1. Establishment of 2D Calculation Model
3.1.2. Analysis of 2D Simulation Results
3.2. Effects of Nozzle Pose Parameters on the Flow Characteristics
3.2.1. Establishment of 3D Calculation Model
3.2.2. Analysis of 3D Simulation Results
3.3. FE and CFD Co-Simulation Method and Verification
3.3.1. FE and CFD Co-Simulation Method
3.3.2. Experimental Verification of FE and CFD Models
4. Conclusions
- Two-dimensional computational models and three-dimensional simulations were, respectively, employed to investigate MQL parameter effects on coolant flow dynamics, focusing on spray configurations and nozzle positioning. Elevated pressure levels were observed to correlate with reduced droplet dimensions and enhanced velocity magnitudes. Conversely, reduced lubricant supply rates were observed to achieve enhanced droplet kinematics, characterized by higher mean velocity magnitudes and reduced particle dimensions. Through the optimization of droplet transport velocity and mid-range droplet density at the tool’s rake interface, the following parameters were established as optimal: a 5 bar injection pressure, 50 mL/h coolant delivery rate, 10 mm spray distance, 45° nozzle inclination angle, and 65° nozzle orientation angle.
- The cutting forces produced in the turning process of Ti-6Al-4V alloy in the MQL condition were predicted accurately using the bidirectional iterative coupling method of FE and CFD, under the optimal MQL parameters. Under the stable convective heat transfer coefficient, the average main cutting forces obtained from the FE models agreed well with those produced in the turning experiments. In comparison to the results obtained from the FE model at the first iteration, the errors between the simulation and experiment under a stable state were reduced to 3.3% and 3.4% at the feed rates of 0.15 mm/rev and 0.20 mm/rev, respectively. The accurate prediction of cutting force proved the effectiveness of the bidirectional iterative coupling method of FE and CFD proposed in this paper.
- Thermal profiles produced during Ti-6Al-4V alloy turning under MQL conditions were effectively predicted through FE-CFD bidirectional iterative coupling with optimized MQL parameters. Upon the stabilization of thermal exchange coefficients, the CFD framework precisely replicated MQL-induced flow fields, enabling accurate thermal mapping. Experimental validation demonstrated strong alignment between CFD-predicted and empirically measured temperature maxima across varied cutting conditions. Predictive accuracy achieved deviations of 1.8% (0.15 mm/rev feed) and 1.5% (0.20 mm/rev feed) relative to experimental benchmarks, confirming the computational methodology’s robustness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upadhyay, C.; Rajput, S.S.; Bera, S.; Ju, H.; Bhide, R.; Gangopadhyay, S. Influence of TiAlN coating thickness in dry machining of AISI 1045 steel using Finite Element simulation and experiments. Surf. Coatings Technol. 2024, 495, 131496. [Google Scholar] [CrossRef]
- Volke, P.; Saelzer, J.; Zabel, A.; Biermann, D. Influence of cutting tool coating on rake and flank face temperatures by operando pyrometric temperature measurement during orthogonal turning of AISI 316L. Wear 2025, 571, 205848. [Google Scholar] [CrossRef]
- Sirtuli, L.J.; Boing, D.; Bushlya, V.; Norgren, S. Study of initial notch wear during turning of stainless steel with CVD Al2O3/Ti(C,N) coated cemented carbide tools. Int. J. Refract. Met. Hard Mater. 2025, 129, 107116. [Google Scholar] [CrossRef]
- Bao, Y.; Deng, J.; Cao, S.; Sun, X.; Zhang, Z.; Tang, X. In-situ forming textured cutting tools based on electrohydrodynamic atomization and laser micro-cladding technology. Appl. Surf. Sci. 2024, 684, 161856. [Google Scholar] [CrossRef]
- Maldonado-Cortés, D.; Peña-Parás, L.; Rodríguez-Villalobos, M.; Castillo-Barraza, A.P.; Cruz-Olace, R. Increased performance in CNC drilling process through the application of laser surface texturing. Wear 2025, 570, 205937. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, H.; Bai, Y.; Yao, Y. Adaptive diamond texturing of micro/nano-structured surfaces enabled by hybrid control of 2D tool position and cutting force. J. Mech. Work. Technol. 2025, 337, 118739. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; da Silva, L.R.R.; Machado, A.R.; França, P.H.P.; Pintaude, G.; Unune, D.R.; Kuntoğlu, M.; Krolczyk, G.M. A comprehensive review of machinability of difficult-to-machine alloys with advanced lubricating and cooling techniques. Tribol. Int. 2024, 196, 109677. [Google Scholar] [CrossRef]
- Lindvall, R.; Gayubo, J.C.; Gutnichenko, O.; Auzenat, F.; M’SAoubi, R.; Bushlya, V. Performance and wear mechanisms of TiAlN-NbN coated cemented carbide in milling Ti6Al4V with different cooling and lubrication approaches. Wear 2025, 571, 205846. [Google Scholar] [CrossRef]
- Rauf, A.; Khan, M.A.; Jaffery, S.H.I.; Butt, S.I. Effects of machining parameters, ultrasonic vibrations and cooling conditions on cutting forces and tool wear in meso scale ultrasonic vibrations assisted end-milling (UVAEM) of Ti–6Al–4V under dry, flooded, MQL and cryogenic environments—A statistical analysis. J. Mater. Res. Technol. 2024, 30, 8287–8303. [Google Scholar] [CrossRef]
- Ali, S.H.; Yao, Y.; Wu, B.; Zhao, B.; Ding, W.; Jamil, M.; Khan, A.; Baig, A.; Liu, Q.; Xu, D. Recent developments in MQL machining of aeronautical materials: A comparative review. Chin. J. Aeronaut. 2024, 38, 102918. [Google Scholar] [CrossRef]
- Khatai, S.; Sahoo, A.K.; Kumar, R.; Panda, A. Sustainable hard machining under zirconia nano-cutting fluid: A step towards a green and cleaner manufacturing process. Measurement 2024, 242, 116087. [Google Scholar] [CrossRef]
- García-Martínez, E.; Miguel, V.; Martínez-Martínez, A. Economic analysis of eco-friendly lubrication strategies for the machining of Ti48Al2Cr2Nb aluminide. J. Clean. Prod. 2024, 435, 140541. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Cui, X.; An, Q.; Xu, P.; Wang, W.; Jia, D.; Liu, M.; Dambatta, Y.S.; Li, C. Lubricant activity enhanced technologies for sustainable machining: Mechanisms and processability. Chin. J. Aeronaut. 2024, 38, 103203. [Google Scholar] [CrossRef]
- Revuru, R.S.; Sanjay, K.T.; Srinu, B.; Krishna, P.V. Evaluation of optimum process parameters based on specific cutting energy in turning for sustainability. Int. J. Adv. Manuf. Technol. 2025, 136, 4569–4579. [Google Scholar] [CrossRef]
- Srinivasarao, G.; Tarachand, V.; Nagaraja, T.K.; Hanumanthappa, H.; Kondalarao, D.; Usha, M. Experimental investigation of herbal based Al2O3 nano cutting fluids with minimum quantity lubrication in optimization of turning. Int. J. Interact. Des. Manuf. (IJIDeM) 2025, 1–13. [Google Scholar] [CrossRef]
- Aslantas, K.; Hasçelik, A.; Erçetin, A.; Danish, M.; Alatrushi, L.K.; Rubaiee, S.; Bin Mahfouz, A. Effect of cutting conditions on tool wear and wear mechanism in micro-milling of additively manufactured titanium alloy. Tribol. Int. 2024, 193, 109340. [Google Scholar] [CrossRef]
- Cönger, D.B.; Yapan, Y.F.; Emiroğlu, U.; Uysal, A.; Altan, E. Influence of singular and dual MQL nozzles on sustainable milling of Al6061-T651 in different machining environments. J. Manuf. Process. 2023, 109, 524–536. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Horovistiz, A.; Davim, J. A hybrid numerical and experimental approach towards Ti6Al4V alloy sustainable orthogonal turning. J. Clean. Prod. 2024, 454, 142224. [Google Scholar] [CrossRef]
- Esmaeili, H.; Adibi, H.; Rizvi, R.; Rezaei, S.M. Coupled thermo-mechanical analysis and optimization of the grinding process for Inconel 718 superalloy using single grit approach. Tribol. Int. 2022, 171, 107530. [Google Scholar] [CrossRef]
- Rao, C.M.; Rao, S.S.; Herbert, M.A. An Experimental and Numerical Approach to Study the Performance of Modified Perforated Cutting Tools on Machining of Ti–6Al–4V Alloy. Arab. J. Sci. Eng. 2019, 45, 1191–1206. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Zhao, W.; Gupta, M.K.; Khan, A.M. Novel approach of cutting temperature measurement in sustainable milling of Ti-6Al-4V alloy. Measurement 2023, 214, 112837. [Google Scholar] [CrossRef]
- Laakso, S.V.; Mallipeddi, D.; Krajnik, P. Evaluation of subcooled MQL in cBN hard turning of powder-based Cr-Mo-V tool steel using simulations and experiments. Int. J. Adv. Manuf. Technol. 2021, 118, 511–531. [Google Scholar] [CrossRef]
- Tu, J.; Yeoh, G.H.; Liu, C. Computational Fluid Dynamics: A Practical Approach; Butterworth-Heinemann: Oxford, UK, 2018. [Google Scholar]
- Du, F.; Zhou, T.; Tian, P.; Chen, J.; Zhou, X.; He, L.; Ren, A. Cutting performance and cutting fluid infiltration characteristics into tool-chip interface during MQL milling. Measurement 2023, 225, 113989. [Google Scholar] [CrossRef]
- Qiao, G.; Xiong, X.; Yang, J.; Zhen, D.; Zhang, F.; Wei, Y. Numerical and experimental analysis for the effect of oil mist flow characteristics on the penetration and lubrication performance in MQL milling. J. Manuf. Process. 2025, 134, 603–618. [Google Scholar] [CrossRef]
- Du, F.; He, L.; Zhou, T.; Tian, P.; Zou, Z.; Zhou, X. Analysis of droplet characteristics and cooling lubrication effects in MQL milling of 316L stainless steel. J. Mater. Res. Technol. 2022, 19, 4832–4856. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, V. CFD based study of fluid flow and heat transfer effect for novel turning tool configured with internal cooling channel. J. Manuf. Process. 2022, 73, 164–176. [Google Scholar] [CrossRef]
- Pervaiz, S.; Deiab, I.; Wahba, E.; Rashid, A.; Nicolescu, C.M. A novel numerical modeling approach to determine the temperature distribution in the cutting tool using conjugate heat transfer (CHT) analysis. Int. J. Adv. Manuf. Technol. 2015, 80, 1039–1047. [Google Scholar] [CrossRef]
- Salame, C.; Bejjani, R. A better understanding of the cryogenic environment and the effect of nozzle location on the machinability of low carbon steel. J. Manuf. Process. 2022, 74, 544–556. [Google Scholar] [CrossRef]
- Hegab, H.; Kishawy, H.A.; Umer, U.; Mohany, A. A model for machining with nano-additives based minimum quantity lubrication. Int. J. Adv. Manuf. Technol. 2019, 102, 2013–2028. [Google Scholar] [CrossRef]
- Nouzil, I.; Eltaggaz, A.; Deiab, I.; Pervaiz, S. Numerical CFD-FEM model for machining titanium Ti-6Al-4V with nano minimum quantity lubrication: A step towards digital twin. J. Mech. Work. Technol. 2023, 312, 117867. [Google Scholar] [CrossRef]
- Shi, B.; Elsayed, A.; Damir, A.; Attia, H.; M’SAoubi, R. A Hybrid Modeling Approach for Characterization and Simulation of Cryogenic Machining of Ti–6Al–4V Alloy. J. Manuf. Sci. Eng. 2019, 141, 021021. [Google Scholar] [CrossRef]
- Xu, X.; Outeiro, J.; Zhang, J.; Xu, B.; Zhao, W.; Astakhov, V. Machining simulation of Ti6Al4V using coupled Eulerian-Lagrangian approach and a constitutive model considering the state of stress. Simul. Model. Pr. Theory 2021, 110, 102312. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, J.; Outeiro, J.; Xu, B.; Zhao, W. Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. J. Mech. Work. Technol. 2020, 286, 116816–116834. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Wang, B.; Wang, C.; Cheung, C.F. Friction behaviors in the metal cutting process: State of the art and future perspectives. Int. J. Extreme Manuf. 2022, 5, 012002. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc. Seventh Int. Symp. Ballistic. 1983, 21, 541–547. [Google Scholar]
- Cockcroft, M.G.; Latham, D. Ductility Work. Metals 1968, 96, 33–39. [Google Scholar]
- El-Bouri, W.; Deiab, I.; Khanafer, K.; Wahba, E. Numerical and experimental analysis of turbulent flow and heat transfer of minimum quantity lubrication in a turning process using discrete phase model. Int. Commun. Heat Mass Transf. 2019, 104, 23–32. [Google Scholar] [CrossRef]
- Jadhav, P.; Deivanathan, R. Numerical modelling and experimental study of MQL spray parameters in machining of Ti-6Al-4V. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 18, 3247–3258. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Feldshtein, E.; Pusavec, F.; Szydlowski, M.; Legutko, S.; Sobczak-Kupiec, A. A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). Int. J. Mach. Tools Manuf. 2016, 100, 81–92. [Google Scholar] [CrossRef]
- Maruda, R.W.; Krolczyk, G.M.; Feldshtein, E.; Nieslony, P.; Tyliszczak, B.; Pusavec, F. Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear 2017, 372–373, 54–67. [Google Scholar] [CrossRef]
- Dixit, U.S.; Kant, R. Simulations for Design and Manufacturing; Springer: Singapore, 2018. [Google Scholar]
- Peng, R.; Jiang, H.; Tang, X.; Huang, X.; Xu, Y.; Hu, Y. Design and performance of an internal-cooling turning tool with micro-channel structures. J. Manuf. Process. 2019, 45, 690–701. [Google Scholar] [CrossRef]
Modulus of Elasticity (MPa) | Density (kg/m3) | Yield Strength (MPa) | Thermal Conductivity (W/(m·K)) | Poisson Ratio | Thermal Expansion (mm/(mm·K)) | Specific Heat (N/(mm2·K)) |
---|---|---|---|---|---|---|
4430 | 738.9 | 0.31 |
Density (kg/m3) | Dynamic Viscosity (Pa·s) | Thermal Conductivity (W/(m·K)) | Initial Temperature (K)) | Specific Heat (J/(kg·K)) |
---|---|---|---|---|
920 | 0.07068 | 0.185 | 300 | 2223 |
Level Coding | Factors | ||
---|---|---|---|
dn (mm) | αn (°) | βn (°) | |
1 | 10 | 25 | 20 |
2 | 15 | 35 | 35 |
3 | 20 | 45 | 50 |
4 | 25 | 55 | 65 |
No. | Spray Distance dn (mm) | Nozzle Pitch Angle αn (°) | Nozzle Deflection Angle βn (°) | Number of Medium Particle Diameters |
---|---|---|---|---|
1 | 10 | 25 | 20 | 12,216 |
2 | 10 | 35 | 35 | 17,655 |
3 | 10 | 45 | 50 | 17,775 |
4 | 10 | 55 | 65 | 19,954 |
5 | 15 | 25 | 35 | 10,296 |
6 | 15 | 35 | 20 | 9533 |
7 | 15 | 45 | 65 | 13,280 |
8 | 15 | 55 | 50 | 10,048 |
9 | 20 | 25 | 50 | 7533 |
10 | 20 | 35 | 65 | 9222 |
11 | 20 | 45 | 20 | 4869 |
12 | 20 | 55 | 35 | 6254 |
13 | 25 | 25 | 65 | 9388 |
14 | 25 | 35 | 50 | 2495 |
15 | 25 | 45 | 35 | 5498 |
16 | 25 | 55 | 20 | 4149 |
Analysis Result | Influencing Factor | ||
---|---|---|---|
A-dn (mm) | B-αn (°) | C-βn (°) | |
k1 | 16,900 | 9858 | 7692 |
k2 | 10,789 | 9726 | 9926 |
k3 | 6970 | 10,356 | 9463 |
k4 | 5383 | 10,101 | 12,961 |
Range | 11,517 | 630 | 5269 |
Factor significance | A > C > B | ||
Optimal scheme | A1C4B3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; He, L.; Yuan, S.; Jiang, H.; Deng, J.; Du, F.; Yang, J.; Su, Z. Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy. Lubricants 2025, 13, 274. https://doi.org/10.3390/lubricants13060274
Zhou X, He L, Yuan S, Jiang H, Deng J, Du F, Yang J, Su Z. Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy. Lubricants. 2025; 13(6):274. https://doi.org/10.3390/lubricants13060274
Chicago/Turabian StyleZhou, Xiaorong, Lin He, Sen Yuan, Hongwan Jiang, Jing Deng, Feilong Du, Jingdou Yang, and Zebin Su. 2025. "Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy" Lubricants 13, no. 6: 274. https://doi.org/10.3390/lubricants13060274
APA StyleZhou, X., He, L., Yuan, S., Jiang, H., Deng, J., Du, F., Yang, J., & Su, Z. (2025). Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy. Lubricants, 13(6), 274. https://doi.org/10.3390/lubricants13060274