Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber
Abstract
:1. Introduction
2. Materials and Methods
2.1. MD Simulations Modeling and Methods
2.2. Materials and Experimental Setup
3. Results and Discussion
3.1. Water-Lubricated Friction Chracteristics
3.2. Dry Wear Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhmedgoraeva, A.R.; Sultanov, A.A.; Galimzyanova, R.Y.; Khakimullin, Y.N. Nonhardening Sealants Based on Modified Nitrile Butadiene Rubber. Polym. Sci. Ser. D 2022, 15, 379–383. [Google Scholar] [CrossRef]
- Porter, C.; Zaman, B.; Pazur, R. A Critical Examination of the Shelf Life of Nitrile Rubber O-Rings Used in Aerospace Sealing Applications. Polym. Degrad. Stab. 2022, 206, 110199. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, K.; Pu, W.; Li, P.; Han, Y. Tribological Modification of Hydrogenated Nitrile Rubber Nanocomposites for Water-Lubricated Bearing of Ship Stern Shaft. Wear 2022, 504–505, 204432. [Google Scholar] [CrossRef]
- Jin, D.; Xiao, K.; Han, Y.; Xiang, G.; Zhou, Z.; Wang, J. A Preparation Method of Porous Surface Nitrile Butadiene Rubber with Low Friction Coefficient under Water Lubrication Condition by Salt Leaching. J. Appl. Polym. Sci. 2021, 138, 50555. [Google Scholar] [CrossRef]
- Guezzout, Z.; Boublia, A.; Haddaoui, N. Enhancing Thermal and Mechanical Properties of Polypropylene-Nitrile Butadiene Rubber Nanocomposites through Graphene Oxide Functionalization. J. Polym. Res. 2023, 30, 207. [Google Scholar] [CrossRef]
- Alhareb, A.; Akil, H.; Ahmad, Z. Poly(Methyl Methacrylate) Denture Base Composites Enhancement by Various Combinations of Nitrile Butadiene Rubber/Treated Ceramic Fillers. J. Thermoplast. Compos. Mater. 2017, 30, 1069–1090. [Google Scholar] [CrossRef]
- Hussain, M.; Yasin, S.; Ali, A.; Li, Z.; Fan, X.; Song, Y.; Zheng, Q.; Wang, W. Synergistic Impact of Ionic Liquid on Interfacial Interaction and Viscoelastic Behaviors of Silica Filled Nitrile Butadiene Rubber Nanocomposites. Compos. Part. A Appl. Sci. Manuf. 2022, 163, 107202. [Google Scholar] [CrossRef]
- Zainal Abidin, Z.; Mamauod, S.N.L.; Romli, A.Z.; Sarkawi, S.S.; Zainal, N.H. Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites. Polymers 2023, 15, 943. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Qian, C.; Zhao, J.; Wang, S. Molecular Dynamics Study of the Mechanical and Tribological Properties of Graphene Oxide-Reinforced Polyamide 66/Nitrile Butadiene Rubber Composites. Appl. Phys. A 2023, 129, 276. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Lorents, D.C. Mechanical and Thermal Properties of Carbon Nanotubes. Carbon 1995, 33, 925–930. [Google Scholar] [CrossRef]
- Makowiec, M.E.; Blanchet, T.A. Improved Wear Resistance of Nanotube- and Other Carbon-Filled PTFE Composites. Wear 2017, 374–375, 77–85. [Google Scholar] [CrossRef]
- Zou, A.; Li, D. Effect of Carbon Nanotube on the Oscillating Wear Behaviour of Metal-PTFE Multilayer Composites. J. Wuhan Univ. Technol. Mater. Sci. 2018, 33, 1271–1274. [Google Scholar] [CrossRef]
- Jansinak, S.; Markpin, T.; Wimolmala, E.; Mahathanabodee, S.; Sombatsompop, N. Tribological Properties of Carbon Nanotube as Co-Reinforcing Additive in Carbon Black/Acrylonitrile Butadiene Rubber Composites for Hydraulic Seal Applications. J. Reinf. Plast. Compos. 2018, 37, 1255–1266. [Google Scholar] [CrossRef]
- Felhös, D.; Karger-Kocsis, J.; Xu, D. Tribological Testing of Peroxide Cured HNBR with Different MWCNT and Silica Contents under Dry Sliding and Rolling Conditions against Steel. J. Appl. Polym. Sci. 2008, 108, 2840–2851. [Google Scholar] [CrossRef]
- Li, F.; Yang, X.; He, L.; Shuai, C.G. Friction Properties of Carbon Nanotubes Reinforced Nitrile Composites under Water Lubricated Condition. AMR 2011, 284–286, 611–614. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Yang, C.; Wang, P.; Xing, S.; Zhong, D.; Zhou, X. Effects of Graphene and CNTs Reinforcement on the Friction Mechanism of Nitrile Butadiene Rubber under Water Lubrication Conditions. Wear 2022, 500–501, 204334. [Google Scholar] [CrossRef]
- Dorri Moghadam, A.; Omrani, E.; Menezes, P.L.; Rohatgi, P.K. Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene—A Review. Compos. Part. B Eng. 2015, 77, 402–420. [Google Scholar] [CrossRef]
- Omrani, E.; Moghadam, A.D.; Kasar, A.K.; Rohatgi, P.; Menezes, P.L. Tribological Performance of Graphite Nanoplatelets Reinforced Al and Al/Al2O3 Self-Lubricating Composites. Materials 2021, 14, 1183. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, X.; Kuang, F.; Zuo, H.; Huang, J. Mechanical and Tribological Properties of Nitrile Rubber Reinforced by Nano-SiO2: Molecular Dynamics Simulation. Tribol. Lett. 2021, 69, 54. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Yang, C.; Xing, S.; Wang, P.; Zhou, X. Molecular Dynamics Simulations Probing the Effects of Interfacial Interactions on the Tribological Properties of Nitrile Butadiene Rubber/Nano-SiO2 under Water Lubrication. Mater. Today Commun. 2022, 32, 104165. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J.; Wang, S.; Li, Y. A Comparative Study on Enhancement of Mechanical and Tribological Properties of Nitrile Rubber Composites Reinforced by Different Functionalized Graphene Sheets: Molecular Dynamics Simulations. Polym. Compos. 2021, 42, 205–219. [Google Scholar] [CrossRef]
- He, E.; Wang, S.; Tang, L.; Chen, J. A Study on the Enhancement of the Tribological Properties of Nitrile-Butadiene Rubber Reinforced by Nano-ZnO Particles from an Atomic View. Mater. Res. Express 2021, 8, 095009. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Arash, B.; Wang, Q. A Study on Tribology of Nitrile-Butadiene Rubber Composites by Incorporation of Carbon Nanotubes: Molecular Dynamics Simulations. Carbon 2016, 100, 145–150. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Qian, C.; Zhao, J.; Wang, S. Molecular Dynamics Simulations of Defective Carbon Nanotubes on the Aging and Friction Properties of Nitrile Butadiene Rubber Composites. Polym. Compos. 2023, 44, 1228–1239. [Google Scholar] [CrossRef]
- Qian, C.; Li, Y.; Zhao, J.; Wang, S. Effect of Single-Vacancy- and Vacancy-Adsorbed-Atom-Defective CNTs on the Mechanical and Tribological Properties of NBR Composites: Molecular Dynamics Simulations. J. Polym. Res. 2023, 30, 99. [Google Scholar] [CrossRef]
- Cui, J.; Zhao, J.; Wang, S.; Wang, Y.; Li, Y. Effects of Carbon Nanotubes Functionalization on Mechanical and Tribological Properties of Nitrile Rubber Nanocomposites: Molecular Dynamics Simulations. Comput. Mater. Sci. 2021, 196, 110556. [Google Scholar] [CrossRef]
- Qian, C.; Li, Y.; Zhao, J.; Wang, S.; He, E. Thermal-oxidative Aging and Tribological Properties of Carbon Nanotube/Nitrile Butadiene Rubber Composites with Varying Acrylonitrile Content: Molecular Dynamics Simulations. Polym. Eng. Sci. 2023, 63, 1516–1527. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Huo, Y.; Li, F.; Tang, L. Molecular Dynamics Simulation of Mechanical and Tribological Properties of Nitrile Butadiene Rubber with Different Length and Content Carbon Nanotubes. Mater. Today Commun. 2023, 36, 106693. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kordijazi, A.; Rohatgi, P.K.; Nosonovsky, M. Triboinformatic Modeling of Dry Friction and Wear of Aluminum Base Alloys Using Machine Learning Algorithms. Tribol. Int. 2021, 161, 107065. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kordijazi, A.; Rohatgi, P.K.; Nosonovsky, M. Machine Learning Models of the Transition from Solid to Liquid Lubricated Friction and Wear in Aluminum-Graphite Composites. Tribol. Int. 2022, 165, 107326. [Google Scholar] [CrossRef]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Thongkong, N.; Wisunthorn, S.; Pichaiyut, S.; Nakason, C.; Kiatkamjornwong, S. Natural Rubber Nanocomposites Based on Hybrid Filler of Zinc Nanoparticles and Carbon Nanotubes: Electrical Conductivity and Other Related Properties. Express Polym. Lett. 2020, 14, 1137–1154. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Yang, B.; Wang, S.; Song, Z.; Liu, L.; Li, H.; Li, Y. Molecular Dynamics Study on the Reinforcing Effect of Incorporation of Graphene/Carbon Nanotubes on the Mechanical Properties of Swelling Rubber. Polym. Test. 2021, 102, 107337. [Google Scholar] [CrossRef]
- Yang, B.; Li, Y.; Wang, S.; Nie, R.; Wang, Q. Aminosilane Modified Graphene Oxide for Reinforcing Nitrile Butadiene Rubber: Experiments and Molecular Dynamic Simulations. Compos. Sci. Technol. 2023, 235, 109956. [Google Scholar] [CrossRef]
- Siepmann, J.I.; McDonald, I.R. Monte Carlo Simulations of Mixed Monolayers. Mol. Phys. 1992, 75, 255–259. [Google Scholar] [CrossRef]
Structure Component | Parameter Description | Value [mm] | |
---|---|---|---|
Water-lubricated friction test | Copper ring | Outer diameter | 35 |
Inner diameter | 28 | ||
Thickness | 10 | ||
CNT/NBR block | Length | 16.5 | |
Height | 10 | ||
Thickness | 6.5 | ||
Dry wear test | Copper ring | Outer diameter | 49 |
Inner diameter | 42 | ||
Thickness | 12.3 | ||
CNT/NBR block | Length | 19.2 | |
Height | 12.3 | ||
Thickness | 12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, C.; Shuai, C.; Wang, X. Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber. Lubricants 2024, 12, 261. https://doi.org/10.3390/lubricants12070261
Liang C, Shuai C, Wang X. Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber. Lubricants. 2024; 12(7):261. https://doi.org/10.3390/lubricants12070261
Chicago/Turabian StyleLiang, Ce, Changgeng Shuai, and Xin Wang. 2024. "Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber" Lubricants 12, no. 7: 261. https://doi.org/10.3390/lubricants12070261
APA StyleLiang, C., Shuai, C., & Wang, X. (2024). Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber. Lubricants, 12(7), 261. https://doi.org/10.3390/lubricants12070261