Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters
Abstract
:1. Introduction
2. Mathematical Modeling
2.1. Modeling for Tool Vibrations
2.2. Modeling for Power Consumption
2.3. Modeling for Cutting Force
3. Goal Programming Problem Formulation
4. Methodology
4.1. Artificial Bee Colony
4.2. Particle Swarm Optimization
4.3. Teaching–Learning-Based Optimization
5. Results and Discussion
Confirmatory Experiments
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, K.N.; Aravindkumar, N.; Eswaramoorthi, K. Fabrication of AA6016/(Al2O3 + AlN) hybrid surface composite using friction stir processing. Mater. Today Proc. 2020, 33, 315–319. [Google Scholar] [CrossRef]
- Mazaheri, Y.; Heidarpour, A.; Jalilvand, M.M.; Roknian, M. Effect of friction stir processing on the microhardness, wear and corrosion behavior of Al6061 and Al6061/SiO2 nanocomposites. J. Mater. Eng. Perform. 2019, 28, 4826–4837. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Feng, A.H.; Chen, D.L.; Shen, J. Recent advances in friction stir welding/processing of aluminum alloys: Microstructural evolution and mechanical properties. Crit. Rev. Solid State Mater. Sci. 2018, 43, 269–333. [Google Scholar] [CrossRef]
- Sharma, V.; Prakash, U.; Kumar, B.M. Surface composites by friction stir processing: A review. J. Mater. Process. Technol. 2015, 224, 117–134. [Google Scholar] [CrossRef]
- El-Eraki, B.R.; El-Sissi, A.R.; Khafagi, S.M.; Nada, H.S. Process parameters optimization for producing AA6061/(Al2O3,Gr and Al2O3 + Gr) surface composites by friction stir processing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 610, 9–11. [Google Scholar] [CrossRef]
- Simsek, D.; Simsek, I.; Ozyurek, D. Relationship between Al2O3 content and wear behavior of Al + 2% graphite matrix composites. Sci. Eng. Compos. Mater. 2020, 27, 177–185. [Google Scholar] [CrossRef]
- Venkateswarlu, G.; Davidson, M.J.; Tagore, G.R.N. Application of taguchi method on biaxial stretch forming of friction stir processedMgAZ31B alloy. Trans. Indian Inst. Met. 2014, 67, 79–86. [Google Scholar] [CrossRef]
- Rao, D.S.; Ramanaiah, N. Process parameters optimization for producing AA6061/TiB2 composites by friction stir processing. J. Mech. Eng. 2017, 67, 101–117. [Google Scholar]
- Pattanaik, A.; Satpathy, M.P.; Mishra, S.C. Dry sliding wear behavior of epoxy fly ash composite with Taguchi optimization. Eng. Sci. Technol. Int. J. 2016, 19, 706–710. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Heydarzadeh Sohi, M.; Zarei-Hanzaki, A.; Bayazid, S.M.; Saba, M. Taguchi optimization of process parameters in friction stir processing of pure Mg. J. Magnes. Alloys 2015, 3, 168–172. [Google Scholar] [CrossRef]
- Saxena, P.; Bongale, A.; Kumar, S.; Jadhav, P. Investigation of microstructural and wear behavior of Al6061 surface composites fabricated by friction stir process using Taguchi approach. Mater. Res. Express 2022, 9, 016522. [Google Scholar] [CrossRef]
- Adiga, K.; Herbert, M.A.; Rao, S.S.; Shettigar, A.K. Optimization of process parameters for friction stir processing (FSP) of AA8090/boron carbide surface composites. Weld. World 2024, 68, 2683–2700. [Google Scholar] [CrossRef]
- Sathish, T.; Kamaraj, L.; Mohanavel, V.; Jazaa, Y.; Qahtani, F.; Althahban, S. A novel technique implementation to fabricate and analysis of AZ91D with TiN through FSP. Int. J. Adv. Manuf. Technol. 2023, 31, 1–16. [Google Scholar] [CrossRef]
- Li, H.; Paidar, M.; Ojo, O.O.; Vignesh, R.V.; Iswandi, I.; Mehrez, S.; Zain, A.M.; Mohanavel, V. Effect of tool profile on wear and mechanical behaviors of CeO2 and ZrO2-reinforced hybrid magnesium matrix composite developed via FSP technique. J. Manuf. Process. 2023, 94, 297–315. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Seleman MM, E.S.; Eid, R.G.; Zawrah, M.F. Production of AA1050/silica fume composite by bobbin tool-friction stir processing: Microstructure, composition and mechanical properties. CIRP J. Manuf. Sci. Technol. 2022, 38, 801–812. [Google Scholar] [CrossRef]
- Albaijan, I.; Ahmed, M.M.Z.; Seleman, M.M.E.-S.; Touileb, K.; Habba, M.I.A.; Fouad, R.A. Optimization of Bobbin Tool Friction Stir Processing Parameters of AA1050 Using Response Surface Methodology. Materials 2022, 15, 6886. [Google Scholar] [CrossRef]
- Simon, H.A. Models of Man; Social and Rational: New York, NY, USA, 1957. [Google Scholar]
- Jones, D.F.; Tamiz, M. Practical Goal Programming; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kumar, M.; Vrat, P.; Shankar, R. A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput. Ind. Eng. 2003, 46, 69–85. [Google Scholar] [CrossRef]
- da Silva, A.F.; Marins, F.A.S.; Montevechi, J.A.B. Multi-choice mixed integer goal programming optimization for real problems in a sugar and ethanol milling company. Appl. Math. Model. 2013, 37, 6146–6162. [Google Scholar] [CrossRef]
- Zandkarimkhani, S.; Mina, H.; Biuki, M.; Govindan, K. A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design. Ann. Oper. Res. 2020, 295, 425–452. [Google Scholar] [CrossRef]
- Alazzawi, A.K.; Rais, H.M.; Basri SH UI, B. HABC: Hybrid artificial bee colony for generating variable t-way test sets. J. Eng. Sci. Technol. 2020, 15, 746–767. [Google Scholar]
- Le, L.M.; Ly, H.-B.; Pham, B.T.; Le, V.M.; Pham, T.A.; Nguyen, D.-H.; Tran, X.-T.; Le, T.-T. Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression. Materials 2019, 12, 1670. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Balic, J. Teaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems. Eng. Optim. 2012, 44, 1447–1462. [Google Scholar] [CrossRef]
Sr. No. | Cu% | Gr% | Number of Passes | Vibration_Spindle | Current | Load_X | Load_Y | Load_Z | Resultant Force |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 2 | 4.545 | 4.568 | 0.552 | 0.205 | 0.261 | 0.644 |
2 | 1 | 1 | 2 | 4.545 | 4.561 | 0.13 | 2.959 | 0.035 | 2.962 |
3 | 1 | 1 | 2 | 4.261 | 0.231 | 0.093 | 0.005 | 0.001 | 0.094 |
4 | 1 | 2 | 3 | 4.616 | 0.226 | 2.325 | 0.003 | 0.63 | 2.409 |
5 | 1 | 2 | 3 | 4.616 | 0.184 | 0.179 | 2.88 | 0.357 | 2.907 |
6 | 1 | 2 | 3 | 4.617 | 0.206 | 2.333 | 0.003 | 1.002 | 2.539 |
7 | 1 | 3 | 4 | 4.447 | 0.232 | 0.585 | 0.004 | 0.184 | 0.613 |
8 | 1 | 3 | 4 | 4.447 | 0.231 | 1.46 | 1.535 | 0.113 | 2.121 |
9 | 1 | 3 | 4 | 4.448 | 0.232 | 1.071 | 0.02 | 0.248 | 1.1 |
10 | 2 | 1 | 3 | 4.619 | 0.19 | 1.012 | 0.003 | 1.838 | 2.098 |
11 | 2 | 1 | 3 | 4.618 | 0.202 | 0.49 | 2.315 | 0.918 | 2.538 |
12 | 2 | 1 | 3 | 4.617 | 0.207 | 0.56 | 0.004 | 0.749 | 0.935 |
13 | 2 | 2 | 4 | 4.542 | 4.576 | 0.891 | 0.003 | 0.675 | 1.118 |
14 | 2 | 2 | 4 | 4.541 | 4.564 | 0.081 | 2.24 | 0.348 | 2.268 |
15 | 2 | 2 | 4 | 4.543 | 4.572 | 1.413 | 0.012 | 0.496 | 1.498 |
16 | 2 | 3 | 2 | 4.45 | 4.587 | 0.233 | 0.003 | 1.385 | 1.405 |
17 | 2 | 3 | 2 | 4.543 | 4.57 | 0.003 | 0.003 | 0.998 | 0.998 |
18 | 2 | 3 | 2 | 4.543 | 4.57 | 0.494 | 2.339 | 0.445 | 2.432 |
19 | 3 | 1 | 4 | 4.624 | 4.643 | 0.35 | 0.52 | 0.431 | 0.761 |
20 | 3 | 1 | 4 | 4.624 | 4.651 | 0.3 | 2.238 | 0.213 | 2.268 |
21 | 3 | 1 | 4 | 4.624 | 4.645 | 1.063 | 0.003 | 0.662 | 1.252 |
22 | 3 | 2 | 2 | 4.45 | 4.53 | 0.556 | 1.141 | 0.713 | 1.456 |
23 | 3 | 2 | 2 | 4.51 | 4.531 | 0.003 | 0.045 | 1.524 | 1.525 |
24 | 3 | 2 | 2 | 4.499 | 4.531 | 0.153 | 3.024 | 0.267 | 3.039 |
25 | 3 | 3 | 3 | 4.62 | 0.192 | 0.087 | 0.003 | 0.722 | 0.727 |
26 | 3 | 3 | 3 | 4.621 | 0.198 | 2.4 | 1.337 | 0.635 | 2.82 |
27 | 3 | 3 | 3 | 4.546 | 4.577 | 2.85 | 1.197 | 0.842 | 3.204 |
Solution Technique | Parameters | Termination |
---|---|---|
ABC | Population size (colony size) = 5 | Max generations reached or function value less than |
Max number of iterations = 50 | ||
Number of onlooker bees = 5 | ||
Abandonment limit parameter = based on population size, number of variables | ||
PSO | Population size = 100 | |
Generations = 25 | ||
Inertia weight = 1 | ||
Inertia weight damping ratio = 0.90 | ||
Personal learning coefficient = 1.00 | ||
Global learning coefficient = 2.00 | ||
TLBO | Population size = 100 | |
Generations = 25 |
Solution Techniques | ABC | PSO | TLBO | |
---|---|---|---|---|
Variables/Goals | ||||
Best | Z | 847.2 | 1064.2 | 847.2 |
Mean | Z | 980.3218 | 1064.2 | 847.2 |
SD | 0.5467 | 0.0000 | 0.0000 | |
Average Run Time (Seconds) | 0.06 | 0.03 | 0.38 |
Solution Techniques | ABC | PSO | TLBO | |
---|---|---|---|---|
Variables/Goals | ||||
Best | Tool Vibrations | 4.51 | 4.58 | 4.49 |
Power Consumption | 0.09 | 0.31 | 0.35 | |
Cutting Force | 1.42 | 1.46 | 1.36 | |
1.1647 | 2.411 | 1 | ||
3 | 3 | 3 | ||
4 | 4 | 4 | ||
Mean | Tool Vibrations | 4.52 | 4.58 | 4.49 |
Power Consumption | 0.28 | 0.31 | 0.35 | |
Cutting Force | 1.43 | 1.46 | 1.36 | |
1.3282 | 2.411 | 1 | ||
2.9439 | 3 | 3 | ||
4 | 4 | 4 | ||
SD | 0.5467 | 0.0000 | 0.0000 | |
Average Run Time (Seconds) | 0.06 | 0.03 | 0.38 |
Solution Techniques | Experimental Results | ABC | PSO | TLBO | |
---|---|---|---|---|---|
Variables/Goals | |||||
Mean | Tool Vibrations | 4.543 | 4.52 | 4.58 | 4.49 |
Power Consumption | 2.637 | 0.28 | 0.31 | 0.35 | |
Cutting Force | 1.767 | 1.43 | 1.46 | 1.36 | |
2 | 1.3282 | 2.411 | 1 | ||
2 | 2.9439 | 3 | 3 | ||
3 | 4 | 4 | 4 | ||
SD | NA | 0.5467 | 0.0000 | 0.0000 | |
Average Run Time (Seconds) | NA | 0.06 | 0.03 | 0.38 |
TLBO Algorithm Results | Confirmatory Results | Deviation | |
---|---|---|---|
Tool Vibrations | 4.49 | 5.02 | 12% |
Power Consumption | 0.35 | 0.37 | 8% |
Cutting Force | 1.36 | 1.60 | 18% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nargundkar, A.; Kumar, S.; Bongale, A. Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters. Lubricants 2024, 12, 428. https://doi.org/10.3390/lubricants12120428
Nargundkar A, Kumar S, Bongale A. Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters. Lubricants. 2024; 12(12):428. https://doi.org/10.3390/lubricants12120428
Chicago/Turabian StyleNargundkar, Aniket, Satish Kumar, and Arunkumar Bongale. 2024. "Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters" Lubricants 12, no. 12: 428. https://doi.org/10.3390/lubricants12120428
APA StyleNargundkar, A., Kumar, S., & Bongale, A. (2024). Multi-Objective Optimization of Friction Stir Processing Tool with Composite Material Parameters. Lubricants, 12(12), 428. https://doi.org/10.3390/lubricants12120428