Analysis of Microstructural and Wear Mechanisms for 3D-Printed PET CF15 Using Box–Behnken Design
Abstract
:1. Introduction
1.1. Literature Review
1.2. Bibliometric Analisis
2. Experimental Details
2.1. Design of Experiments
- Surface pattern deposition (A): linear, rectilinear, concentric;
- Deposition speed (B): 30, 40, 50 mm/s;
- Layer height (C): 0.10, 0.15, 0.20 mm.
- Twelve unique combinations of the factors (runs 1–12),
- Three center points (middle level for all factors), which are repeated to assess experimental variability (runs 13–15).
- Y is the predicted response (COF, W),
- β0 is the intercept (constant),
- βi are the linear coefficients for each independent variable Xi (i.e., surface pattern deposition, deposition speed, layer height),
- βii are the quadratic coefficients that account for non-linear effects,
- βij are the interaction coefficients that describe how two factors combined affect the response variable,
- XiXj represent the levels of the independent variables.
- The regression equation captures both the linear effects of the individual factors and the interactions between them. For instance,
- Linear terms (βiXi) show the direct impact of each variable on the response,
- Quadratic terms (βiiXi2) describe non-linear relationships, highlighting how the response changes when increasing or decreasing a variable beyond the center point,
- Interaction terms (βij XiXj) illustrate how combinations of factors influence the response.
- A layer thickness of 0.2 mm,
- Two outer shells,
- Four bottom and top layers,
- A filling percentage of 50%,
- Deposition temperature of 270 °C.
- Deposition patterns for the top and the bottom layers (−1—lines, 0—rectilinear, 1—concentric),
- Deposition speed (30 mm/s, 40 mm/s, 50 mm/s),
- Layer height (0.1 mm, 0.15 mm, 0.2 mm).
2.2. Tribological Test Setup
- σH = Hertzian contact stress or maximum contact pressure (in Pascals, Pa);
- Fn = Normal force applied to the surfaces (in Newtons, N);
- lk = Contact width or length (in meters, m);
- ρ = Equivalent radius of curvature at the contact point (in meters, m); this depends on the curvature of both contacting bodies;
- ν1\ν2 = Poisson’s ratios of the two contacting materials (PET-CF and AISI 4130 alloy steel), dimensionless constants representing the material’s ability to expand or contract laterally when compressed;
- E1/E2 = Young’s moduli of the two contacting materials (in MPa).
2.3. Microstructural Characterization Method
3. Results and Discussions
3.1. Microstructural Characterization Results
3.2. Experimental Tribological Results
3.3. Box–Behnken Statistical Results
- Pattern: 0 (Rectilinear);
- Speed: 40 mm/s;
- Layer height: 0.15 mm.
3.4. Response Optimization and Validation of the BBD
- The predicted CLW is 27.3, with a standard error of the fit (which measures the accuracy of the predicted response) of 17.4, a 95% confidence interval (CI) of (−17.4, 72.0), and a 95% prediction interval (PI) of (−40.1, 94.8).
- The predicted COF is 0.2064, with a standard error of the fit of 0.0640, a 95% CI of (0.0419, 0.3709), and a 95% PI of (−0.0417, 0.4545).
4. Conclusions
- The analysis of the experimental data, conducted through Minitab 19’s Response Surface Design feature, revealed that layer height has the strongest influence on the coefficient of friction (COF), with a high coefficient of determination (94.7%). Initially, a rise in layer height causes COF to increase, but the pronounced quadratic effect shows that further increases lead to a decrease in COF. Deposition speed generally reduces COF, while deposition pattern has a moderate positive impact on its value.
- The SEM image analysis of worn samples revealed the presence of multiple wear mechanisms. Abrasive wear is suggested by the visible grooves and scratches, indicating that harder particles or asperities moved across the surface, removing material. Additionally, some areas showed signs of plastic deformation, where the material was permanently deformed under stress.
- The validation samples’ results, printed with the optimal parameters of BBD analysis, with a coefficient of friction (COF) of 0.2215 and cumulative linear wear (CLW) of 29.2075, closely align with the predicted values. The predicted COF was 0.2064, showing a small percentage error of approximately 7.3%, while the predicted CLW was 27.3, with a percentage error of about 6.5%. Both COF and CLW validation values fall within the 95% confidence intervals of the predictions, confirming the model’s accuracy and reliability within these parameters.
- The micro characterization of the validation samples generally revealed smoother worn surfaces compared to the initial samples, indicating improvements in wear resistance under the same tested conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AM | Additive manufacturing |
PET | Polyethylene terephthalate |
PET CF15 | PET with 15% carbon fiber reinforcement |
PETG | Polyethylene terephthalate glycol |
ABS | Acrylonitrile butadiene styrene |
PLA | Polylactic acid |
CFRPs | Carbon fiber-reinforced polymers |
FDM | Fused deposition modeling |
FFF | Fused filament fabrication |
DOE | Design of experiments |
BBD | Box–Behnken design of experiments |
RSM | Response surface methodology |
COF | Coefficient of friction |
CLW | Cumulative linear wear |
SEM | Scanning electron microscopy |
References
- Nikam, M.; Pawar, P.; Patil, A.; Patil, A.; Mokal, K.; Jadhav, S. Sustainable Fabrication of 3D Printing Filament from Recycled PET Plastic. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Exconde, M.K.J.E.; Co, J.A.A.; Manapat, J.Z.; Magdaluyo, E.R. Materials Selection of 3D Printing Filament and Utilization of Recycled Polyethylene Terephthalate (PET) in a Redesigned Breadboard. Procedia CIRP 2019, 84, 28–32. [Google Scholar] [CrossRef]
- El Mehtedi, M.; Buonadonna, P.; Loi, G.; El Mohtadi, R.; Carta, M.; Aymerich, F. Surface Quality Related to Face Milling Parameters in 3D Printed Carbon Fiber-Reinforced PETG. J. Compos. Sci. 2024, 8, 128. [Google Scholar] [CrossRef]
- Alarifi, I.M. PETG/Carbon Fiber Composites with Different Structures Produced by 3D Printing. Polym. Test. 2023, 120, 107949. [Google Scholar] [CrossRef]
- Tarfaoui, M.; Daly, M.; Kbaier, R.; Chihi, M. Investigation of 3D Printed CF-PETG Composites’ Tensile Behaviors: Synergizing Simulative and Real-World Explorations. Compos. Sci. Technol. 2024, 247, 110385. [Google Scholar] [CrossRef]
- Batista, M.; Lagomazzini, J.M.; Ramirez-Peña, M.; Vazquez-Martinez, J.M. Mechanical and Tribological Performance of Carbon Fiber-Reinforced PETG for FFF Applications. Appl. Sci. 2023, 13, 12701. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A.; Gardner, D.J. Enhancing the Interlayer Tensile Strength of 3D Printed Short Carbon Fiber Reinforced PETG and PLA Composites via Annealing. Addit. Manuf. 2019, 30, 100922. [Google Scholar] [CrossRef]
- Bolat, Ç.; Ergene, B. An Investigation on Dimensional Accuracy of 3D Printed PLA, PET-G and ABS Samples with Different Layer Heights. Çukurova Üniversitesi Mühendislik Fakültesi Derg. 2022, 37, 449–458. [Google Scholar] [CrossRef]
- Tunçel, O. The Influence of the Raster Angle on the Dimensional Accuracy of FDM-Printed PLA, PETG, and ABS Tensile Specimens. Eur. Mech. Sci. 2024, 8, 11–18. [Google Scholar] [CrossRef]
- Hadeeyah, A.; Jamhour, H.; Emhemed, I.; Alhadar, F.; Masmoudi, N.; Wali, M. The Impact Of Carbon Fiber on the Surface Properties of the 3D Printed PEGT Product. JOPAS 2023, 22, 23–27. [Google Scholar] [CrossRef]
- Kadhum, A.H.; Al-Zubaidi, S.; Abdulkareem, S.S. Effect of the Infill Patterns on the Mechanical and Surface Characteristics of 3D Printing of PLA, PLA+ and PETG Materials. ChemEngineering 2023, 7, 46. [Google Scholar] [CrossRef]
- Durgashyam, K.; Indra Reddy, M.; Balakrishna, A.; Satyanarayana, K. Experimental Investigation on Mechanical Properties of PETG Material Processed by Fused Deposition Modeling Method. Mater. Today Proc. 2019, 18, 2052–2059. [Google Scholar] [CrossRef]
- Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polym. -Plast. Technol. Eng. 2018, 57, 1715–1725. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Gao, A.; Gong, L.; Ji, Y.; Zeng, S.; Li, S.; Wang, X. Friction and Wear Performance of Aluminum-Based Self-Lubricating Materials Derived from the 3D Printed Graphite Skeletons with Different Morphologies and Orientations. Tribol. Int. 2024, 195, 109614. [Google Scholar] [CrossRef]
- García-Hernández, C.; Naranjo, J.A.; Castro-Sastre, M.Á.; Berges, C.; Fernandez-Abia, A.I.; Martín-Pedrosa, F.; Herranz, G.; García-Cabezón, C. Enhancing Wear Performance: A Comparative Study of Traditional vs. Additive Manufacturing Techniques for 17–4pH SS. Wear 2024, 540–541, 205258. [Google Scholar] [CrossRef]
- Dhakal, N.; Espejo, C.; Morina, A.; Emami, N. Tribological Performance of 3D Printed Neat and Carbon Fiber Reinforced PEEK Composites. Tribol. Int. 2024, 193, 109356. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Wang, X.; Gao, A.; Gong, L.; Zeng, S.; Li, S.; Liu, M.; Chen, Y. Friction and Wear Performance of 3D-Printed Graphite/SiC Composites with Different Graphite Layer Deflection Angles. Tribol. Int. 2024, 199, 109986. [Google Scholar] [CrossRef]
- Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; Barrera, E.V. Nanofiber-reinforced Polymers Prepared by Fused Deposition Modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Amiruddin, H.; Abdollah, M.F.B.; Norashid, N.A. Comparative Study of the Tribological Behaviour of 3D-Printed and Moulded ABS under Lubricated Condition. Mater. Res. Express 2019, 6, 085328. [Google Scholar] [CrossRef]
- Maguluri, N.; Lakshmi Srinivas, C.; Suresh, G. Assessing the Wear Performance of 3D Printed Polylactic Acid Polymer Parts. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Hanon, M.M.; Zsidai, L. Comprehending the Role of Process Parameters and Filament Color on the Structure and Tribological Performance of 3D Printed PLA. J. Mater. Res. Technol. 2021, 15, 647–660. [Google Scholar] [CrossRef]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Effect of Processing Parameters and Graphite Content on the Tribological Behaviour of 3D Printed Acrylonitrile Butadiene Styrene: Einfluss von Prozessparametern Und Graphitgehalt Auf Das Tribologische Verhalten von 3D-Druck Acrylnitril-Butadien-Styrol Bauteilen. Mat.-Wiss. U. Werkst. 2015, 46, 1185–1195. [Google Scholar] [CrossRef]
- Maries, I.-T.; Vilau, C.; Pustan, M.S.; Dudescu, C.; Crisan, H.G. Determining the Tribological Properties of Different 3D Printing Filaments. IOP Conf. Ser. Mater. Sci. Eng. 2020, 724, 012022. [Google Scholar] [CrossRef]
- Chisiu, G.; Stoica, N.A.; Stoica, A.M. Friction Behavior of 3D-Printed Polymeric Materials Used in Sliding Systems. Mat. Plast 2021, 58, 176–185. [Google Scholar] [CrossRef]
- Portoacă, A.I.; Ripeanu, R.G.; Diniță, A.; Tănase, M. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Polymers 2023, 15, 3419. [Google Scholar] [CrossRef]
- Portoaca, A.I.; Ripeanu, G.R.; Ion, N.A.E.; Tanase, M. Alexandra-Ileana Portoaca, George-Razvan Ripeanu, Ion NAE, Maria Tanase the influence of 3D printing parameters and heat treatment on tribological behavior. Acta Tech. Napoc. 2023, 66, 537–546. [Google Scholar]
- Roy, R.; Mukhopadhyay, A. Tribological Studies of 3D Printed ABS and PLA Plastic Parts. Mater. Today Proc. 2021, 41, 856–862. [Google Scholar] [CrossRef]
- Perepelkina, S.; Kovalenko, P.; Pechenko, R.; Makhmudova, K. Investigation of Friction Coefficient of Various Polymers Used in Rapid Prototyping Technologies with Different Settings of 3D Printing. Tribol. Ind. 2017, 39, 519–526. [Google Scholar] [CrossRef]
- Batista, M.; Tenorio, D.; Del Sol, I.; Vazquez-Martinez, J.M. Tribological Analysis of Fused Filament Fabrication PETG Parts Coated with IGUS. Appl. Sci. 2024, 14, 7161. [Google Scholar] [CrossRef]
- Batista, M.; Blanco, D.; Del Sol, I.; Piñero, D.; Vazquez, J.M. Tribological Characterization of Fused Deposition Modelling Parts. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1193, 012068. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, H.; Saran, C.; Tripathy, T.S.; Sangwan, K.S.; Herrmann, C. A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials. Procedia CIRP 2022, 107, 15–20. [Google Scholar] [CrossRef]
- Khan, I.; Tariq, M.; Abas, M.; Shakeel, M.; Hira, F.; Al Rashid, A.; Koç, M. Parametric Investigation and Optimisation of Mechanical Properties of Thick Tri-Material Based Composite of PLA-PETG-ABS 3D-Printed Using Fused Filament Fabrication. Compos. Part C Open Access 2023, 12, 100392. [Google Scholar] [CrossRef]
- Vaught, L.O.; Polycarpou, A.A. Investigating the Effect of Fused Deposition Modelling on the Tribology of PETG Thermoplastic. Wear 2023, 524–525, 204736. [Google Scholar] [CrossRef]
- Martins Freitas, B.J.; Yuuki Koga, G.; Arneitz, S.; Bolfarini, C.; De Traglia Amancio-Filho, S. Optimizing LPBF-Parameters by Box-Behnken Design for Printing Crack-Free and Dense High-Boron Alloyed Stainless Steel Parts. Addit. Manuf. Lett. 2024, 9, 100206. [Google Scholar] [CrossRef]
- Spahiu, T.; Kitsakis, K.; Kechagias, J.D. Box-Behnken Design to Optimise 3D Printing Parameters in Applications for Fashion Products. IJEDPO 2022, 7, 49–61. [Google Scholar] [CrossRef]
- Vespalec, A.; Podroužek, J.; Koutný, D. DoE Approach to Setting Input Parameters for Digital 3D Printing of Concrete for Coarse Aggregates up to 8 Mm. Materials 2023, 16, 3418. [Google Scholar] [CrossRef]
- Petousis, M.; Spiridaki, M.; Mountakis, N.; Moutsopoulou, A.; Maravelakis, E.; Vidakis, N. Box-Behnken Modeling to Optimize the Engineering Response and the Energy Expenditure in Material Extrusion Additive Manufacturing of Short Carbon Fiber Reinforced Polyamide 6. Int. J. Adv. Manuf. Technol. 2024, 132, 4399–4415. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Figueira, G.; Coelho, R.T.; Bolfarini, C.; Gargarella, P. Application of the Box-Behnken Design in the Optimization of Laser Powder Bed Fusion of H13 Tool Steel. Mat. Res. 2023, 26, e20230250. [Google Scholar] [CrossRef]
- Gabalski, M.A.; Smith, K.R.; Hix, J.; Zinn, K.R. Comparisons of 3D Printed Materials for Biomedical Imaging Applications. Sci. Technol. Adv. Mater. 2023, 24, 2273803. [Google Scholar] [CrossRef]
- Eutionnat-Diffo, P.A.; Chen, Y.; Guan, J.; Cayla, A.; Campagne, C.; Nierstrasz, V. Study of the Wear Resistance of Conductive Poly Lactic Acid Monofilament 3D Printed onto Polyethylene Terephthalate Woven Materials. Materials 2020, 13, 2334. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Sharma, A.; Shrivastava, Y.; Khan, S.A.; Arora, P.K. Optimization of Process Parameters of Pin on Disc Wear Set up for 3D Printed Specimens. JER 2021, 9, 133–145. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Hyde, A.; He, J.; Cui, X.; Lua, J.; Liu, L. Effects of Microvoids on Strength of Unidirectional Fiber-Reinforced Composite Materials. Compos. Part B Eng. 2020, 187, 107844. [Google Scholar] [CrossRef]
- Minitab, Version 19, Statistical Software; Pennsylvania State University: Centre County, PA, USA, 2019.
Process Parameter | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Surface pattern deposition | Linear (coded −1) | Rectilinear (coded 0) | Concentric (coded 1) |
Deposition speed [m/s] | 30 | 40 | 50 |
Layer height [mm] | 0.10 | 0.15 | 0.20 |
Std Order | Run Order | Pt Type | Blocks | Pattern | Speed | Layer Height |
---|---|---|---|---|---|---|
14 | 1 | 0 | 1 | 0 | 40 | 0.15 |
4 | 2 | 2 | 1 | 1 | 50 | 0.15 |
12 | 3 | 2 | 1 | 0 | 50 | 0.20 |
15 | 4 | 0 | 1 | 0 | 40 | 0.15 |
9 | 5 | 2 | 1 | 0 | 30 | 0.10 |
5 | 6 | 2 | 1 | −1 | 40 | 0.10 |
2 | 7 | 2 | 1 | 1 | 30 | 0.15 |
7 | 8 | 2 | 1 | −1 | 40 | 0.20 |
3 | 9 | 2 | 1 | −1 | 50 | 0.15 |
1 | 10 | 2 | 1 | −1 | 30 | 0.15 |
8 | 11 | 2 | 1 | 1 | 40 | 0.20 |
6 | 12 | 2 | 1 | 1 | 40 | 0.10 |
13 | 13 | 0 | 1 | 0 | 40 | 0.15 |
11 | 14 | 2 | 1 | 0 | 30 | 0.20 |
10 | 15 | 2 | 1 | 0 | 50 | 0.10 |
Geometric Parameters | Values |
---|---|
Number of teeth | 41 |
Module | 1.25 mm |
Pressure angle | 20° |
Type of gearing | External |
Tip diameter | 53.750 mm |
Pitch diameter | 51.250 mm |
Pressure angle | 20° mm |
Width | 13 mm |
Shaft mounting diameter | 10 mm |
SEM Images | Defined Parameters | ||
---|---|---|---|
RunOrder 1 PtType 0 Blocks 1 Pattern 1 Speed 40 Layer height 0.15 | |||
RunOrder 2 PtType 2 Blocks 1 Pattern 1 Speed 50 Layer height 0.15 | |||
RunOrder 3 PtType 2 Blocks 1 Pattern 0 Speed 50 Layer height 0.20 | |||
RunOrder 5 PtType 2 Blocks 1 Pattern 0 Speed 30 Layer height 0.10 | |||
RunOrder 6 PtType 2 Blocks 1 Pattern -1 Speed 40 Layer height 0.10 | |||
RunOrder 7 PtType 2 Blocks 1 Pattern 1 Speed 30 Layer height 0.15 | |||
RunOrder 11 PtType 2 Blocks 1 Pattern 1 Speed 40 Layer height 0.20 |
Sem Images | Defined Parameters | ||
---|---|---|---|
RunOrder 1 PtType 0 Blocks 1 Pattern 1 Speed 40 Layer height 0.15 | |||
RunOrder 2 PtType 2 Blocks 1 Pattern 1 Speed 50 Layer height 0.15 | |||
RunOrder 3 PtType 2 Blocks 1 Pattern 0 Speed 50 Layer height 0.20 | |||
RunOrder 5 PtType 2 Blocks 1 Pattern 0 Speed 30 Layer height 0.10 |
SEM Images | Optimized Parameters | ||
---|---|---|---|
RunOrder V Pattern 1 Speed 43 Layer height 0.10 |
Run Order | Pattern | Deposition Speed | Layer Height | COF | CLW |
---|---|---|---|---|---|
1 | 0 | 40 | 0.15 | 0.299 | 78.7097 |
2 | 1 | 50 | 0.15 | 0.373 | 32.9287 |
3 | 0 | 50 | 0.20 | 0.321 | 96.0912 |
4 | 0 | 40 | 0.15 | 0.118 | 42.1567 |
5 | 0 | 30 | 0.10 | 0.206 | 63.3729 |
6 | −1 | 40 | 0.10 | 0.177 | 30.4561 |
7 | 1 | 30 | 0.15 | 0.405 | 28.6970 |
8 | −1 | 40 | 0.20 | 0.305 | 70.3184 |
9 | −1 | 50 | 0.15 | 0.320 | 28.7556 |
10 | −1 | 30 | 0.15 | 0.301 | 57.7046 |
11 | 1 | 40 | 0.20 | 0.196 | 41.5728 |
12 | 1 | 40 | 0.10 | 0.181 | 27.3728 |
13 | 0 | 40 | 0.15 | 0.182 | 25.1284 |
14 | 0 | 30 | 0.20 | 0.284 | 40.6397 |
15 | 0 | 50 | 0.10 | 0.191 | 37.7734 |
Response | Box–Behnken Model | R2 |
---|---|---|
COF | COF = 1.327 + 0.142 P − 0.0781 S + 4.89 L + 0.0572 P2 + 0.000929 S2 − 16.8 L2 − 0.00127 P*S − 0.565 P*L + 0.0260 S*L | 94.7% |
CLW | CLW = 365 − 33.3 P − 6.77 S − 2615 L − 12.6 P2 + 0.009 S2 + 3943 L2 + 0.830 P*S − 58 P*L + 40.5 S*L | 91.8% |
Response | Goal | Lower | Target | Upper | Weight | Importance |
---|---|---|---|---|---|---|
Wear | Minimum | 25.1284 | 96.0912 | 1 | 1 | |
COF | Minimum | 0.1180 | 0.4050 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portoaca, A.I.; Dinita, A.; Ripeanu, R.G.; Tănase, M. Analysis of Microstructural and Wear Mechanisms for 3D-Printed PET CF15 Using Box–Behnken Design. Lubricants 2024, 12, 410. https://doi.org/10.3390/lubricants12120410
Portoaca AI, Dinita A, Ripeanu RG, Tănase M. Analysis of Microstructural and Wear Mechanisms for 3D-Printed PET CF15 Using Box–Behnken Design. Lubricants. 2024; 12(12):410. https://doi.org/10.3390/lubricants12120410
Chicago/Turabian StylePortoaca, Alexandra Ileana, Alin Dinita, Razvan George Ripeanu, and Maria Tănase. 2024. "Analysis of Microstructural and Wear Mechanisms for 3D-Printed PET CF15 Using Box–Behnken Design" Lubricants 12, no. 12: 410. https://doi.org/10.3390/lubricants12120410
APA StylePortoaca, A. I., Dinita, A., Ripeanu, R. G., & Tănase, M. (2024). Analysis of Microstructural and Wear Mechanisms for 3D-Printed PET CF15 Using Box–Behnken Design. Lubricants, 12(12), 410. https://doi.org/10.3390/lubricants12120410