Tribological Application of Nanocomposite Additives in Industrial Oils
Abstract
:1. Introduction
2. Tribological Application of Carbon Nanotubes in Oils
- The use of oil with MWCNTs at a concentration of about 0.5% leads to a significant decrease in frictional losses.
- No-engine tribological tests show that adding CNTs to oil can reduce friction both in the boundary lubrication regime and in the elastohydrodynamic regime [19]. Favorable results in terms of reducing friction and fuel consumption obtained at low engine speeds suggest the positive effects of using CNTs in the boundary lubrication regime.
3. Tribological Application of Titanium Oxide Nanotubes in Oils
- With the addition of MWCNT and TiO2 nanoadditives to the pure lubricant, the kinematic viscosity of the nanolubricant, in different percentages of nanoadditives, improves in a given temperature range compared to the pure lubricant.
- The precipitation of additives began after 3 days for TiO2 nanolubricants with 0.05 wt% and after 2 days for TiO2 nanolubricants with 0.4 wt% in oil. However, for MWCNT nanolubricants at 0.05 wt% and 0.4 wt%, precipitation began after 8 h, respectively.
- According to these results, the wear depth increases more with the increase in MWCNT than with the increase in the TiO2 nanoadditive in the base lubricant.
- The average coefficient of friction inside a copper tube when MWCNTs are used as a working fluid in the turbine meter oil is slightly higher than the average coefficient of friction inside a copper tube when TiO2 is used.
- Nanolubricants with 0.4 wt% TiO2 and 0.3 wt% MWCNTs in the oil demonstrated the maximum percentage increase in the average coefficient of friction with an increase of 6.14% and 9.36% compared to the base oil.
4. Tribological Application of Nanotubes of Molybdenum and Other Metals and Non-Metals in Oils
5. Impact of Nanoparticles on the Environment, Human Health, Economic and Cost–Benefit Analysis
5.1. Impact of Nanoparticles on the Environment and Human Health
5.2. Cost Analysis of the Use of Nanoparticles
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chebattina, K.R.R.; Srinivas, V.; Rao, N.M. Effect of Size of Multiwalled Carbon Nanotubes Dispersed in Gear Oils for Improvement of Tribological Properties. Adv. Tribol. 2018, 2018, 1–13. [Google Scholar] [CrossRef]
- Hao, L.; Li, P.; Aljabri, A.; Li, H.; Liu, G.; Xie, Z.; Li, T. Investigation on the tribological performance of functionalized nanoscale silica as an amphiphilic lubricant additive. J. Mater. Res. Technol. 2021, 15, 5507–5515. [Google Scholar] [CrossRef]
- Khalil, W.; Mohamed, A.; Bayoumi, M.; Osman, T.A. Tribological properties of dispersed carbon nanotubes in lubricant. Fullerenes. Nanotub. Carbon Nanostructures 2016, 24, 479–485. [Google Scholar] [CrossRef]
- Мartin, J.M.; Ohmae, N. Nanolubricants, 1st ed.; John Wiley & Sons: New York, NY, USA, 2008; pp. 93–96. [Google Scholar]
- Guzman Borda, F.L.; Ribeiro de Oliveira, S.J.; Seabra Monteiro Lazaro, L.M.; Kalab Leiroz, A.J. Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribol. Int. 2018, 117, 52–58. [Google Scholar] [CrossRef]
- Ghaednia, H.; Jackson, R.L.; Khodadadi, J.M. Experimental analysis of stable CuO nanoparticle enhanced lubricants. J. Exp. Nanosci. 2013, 10, 1–18. [Google Scholar] [CrossRef]
- Gara, L.; Zou, Q. Friction and wear characteristics of oil-based ZnO nanofluids. Tribol. Trans. 2013, 56, 236–244. [Google Scholar] [CrossRef]
- Gara, L.; Zou, Q. Friction and wear characteristics of waterbased ZnO and Al2O3 nanofluids. Tribol. Trans. 2012, 55, 345–350. [Google Scholar] [CrossRef]
- Wu, H.; Johnson, B.; Wang, L.; Dong, G.; Yang, S.; Zhang, J. Highefficiency preparation of oil-dispersible MoS2 nanosheets with superior anti-wear property in ultralow concentration. J. Nanoparticle Res. 2017, 19, 339–349. [Google Scholar] [CrossRef]
- Aralihalli, S.; Biswas, S.K. Grafting of dispersants on MoS2 nanoparticles in base oil lubrication of steel. Tribol. Lett. 2013, 49, 61–76. [Google Scholar] [CrossRef]
- Aldana, P.U.; Vacher, B.; Le Mogne, T.; Belin, M.; Thiebaut, B.; Dassenoy, F. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime. Tribol. Lett. 2014, 56, 249–258. [Google Scholar] [CrossRef]
- Zhai, W.; Srikanth, N.; Kong, L.B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, L.; Liu, W.; Xue, Q. The effect of LaF3 nanocluster modified with succinimide on the lubricating performance of liquid paraffin for steel-on-steel system. Tribol. Int. 2001, 34, 83–88. [Google Scholar] [CrossRef]
- Kałużny, J.; Merkisz-Guranowska, A.; Giersig, M.; Kempa, K. Lubricating preformance of carbon nanotubes in inernal cobustion engines–engine test results for CNT enriched oil. Int. J. Automot. Technol. 2017, 18, 1047–1059. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon Nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Springer Handbook of Nanotechnology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–32. [Google Scholar]
- Chauveau, V. Le Pouvoir Lubrifiant des Nanotubes de Carbonne. Ph.D. Thesis, L’Ecole Centrale de Lyon, Lyon, France, 2010. [Google Scholar]
- Servantir, J.; Gaspard, P. Rotational dynamics and friction in double-walled carbon nanotubes. Phys. Rev. Lett. 2006, 18, 4–7. [Google Scholar]
- Vander Wall, R.L.; Miyoshi, K.; Street, K.W.; Tomasek, A.J.; Peng, H.; Liu, Y.; Margrave, J.L.; Khabashesku, V.N. Friction properties of surface-fluorinated carbon nanotubes. Wear 2005, 259, 738–743. [Google Scholar] [CrossRef]
- Lucas, M.; Palaci, I.; Riedo, E.; Zhang, X.; Tosatti, E. Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat. Mater. 2009, 8, 876–881. [Google Scholar] [CrossRef]
- Cook, E.H.; Buehler, M.J.; Spakovszky, Z.S. Mechanism of friction in rotating carbon nanotube bearings. J. Mech. Phys. Solids 2013, 61, 652–673. [Google Scholar] [CrossRef]
- Habeeb, J.J.; Bogovic, C.N. Reduced Friction Lubricating Oils Containing Functionalized Nanomaterials. U.S. Patent No. 8435931 B2, 7 May 2013. [Google Scholar]
- Santos, N.D.S.A.; Roso, V.R.; Faria, M.T.C. Review of engine journal bearing tribology in start-stop applications. Eng. Fail. Anal. 2020, 108, 104344. [Google Scholar] [CrossRef]
- Kotnarowski, A. Generation of Protective Low-Friction Layers in Tribological Processes. Solid State Phenom. 2013, 199, 607–612. [Google Scholar] [CrossRef]
- Liu, W.; Qiao, X.; Liu, S.; Chen, P. A Review of Nanomaterials with Different Dimensions as Lubricant Additives. Nanomaterials 2022, 12, 3780. [Google Scholar] [CrossRef] [PubMed]
- Pottuz, L.J.; Dassenoy, F.; Vacher, B.; Martin, J.M.; Mieno, T. Ultralow friction and wear behavior of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribol. Int. 2004, 37, 1013–1018. [Google Scholar] [CrossRef]
- Cursaru, D.L.; Andronescu, C.; Pirvu, C.; Ripeanu, R. The efficiency of Co-based single-wall carbon nanotubes (SWNTs) as an AW/EP additive for mineral base oils. Wear 2012, 290–291, 133–139. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, C.; Choi, Y.; Cheong, S.; Kim, D.; Lee, K.; Lee, J.; Kim, H. Effect of size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mech. Sci. Technol. 2011, 25, 2853–2857. [Google Scholar] [CrossRef]
- Tao, X.; Jiazheng, Z.; Kang, X. The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. D Appl. Phys. 1996, 29, 2932–2937. [Google Scholar] [CrossRef]
- Chaveau, V.; Mazuyer, D.; Dassenoy, F.; Cayer-Barrioz, J. In situ film-forming and friction-reduction mechanisms for carbon-nanotube dispersions in lubrication. Tribol. Lett. 2012, 47, 467–480. [Google Scholar] [CrossRef]
- Ettefaghi, E.; Ahmadi, H.; Rashidi, A.; Nouralishahi, A.; Mohtasebi, S.S. Preparation and properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano—Lubricant. Int. Commun. Heat Mass Transf. 2013, 46, 142–1058. [Google Scholar] [CrossRef]
- Phan, N.M.; Bui, H.T.; Nguyen, M.H.; Phan, H.K. Carbon-nanotube-based liquids: A new class of nanomaterials and their applicatilubricons. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 015014. [Google Scholar] [CrossRef]
- Kogovšek, J.; Remškar, M.; Mrzel, A.; Kalin, M. Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. Tribol. Int. 2013, 61, 40–44. [Google Scholar] [CrossRef]
- Kalin, M.; Kogovsek, J.; Remskar, M. Mechanisms and improvements in the friction and wear behavior using MoS2 nanotubes as potential oil additives. Wear 2012, 280–281, 36–45. [Google Scholar] [CrossRef]
- Espinel Blanco, E.; Vázquez-Fletes, R.C.; Rudas, J.S.; Ardila Marín, M.I.; Hoyos-Palacio, L.M.; Carlos Cornelio, J.A. Effect of the concentration of carbon nanotubes (CNTs) on the rheological behavior in a lubricating oil of plant-derived lubricant. J. Dispers. Sci. Technol. 2023, 1–11. [Google Scholar] [CrossRef]
- Xie, H.; Lee, H.; Youn, W.; Choi, M. Nanofluid containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 2003, 94, 4967–4971. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Terentjev, E.M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization and composite properties. Polymers 2012, 4, 275–295. [Google Scholar] [CrossRef]
- Dörnenburg, F.; Lades, K.; Kenningley, S. Neue Technik für Höhere Warmfestigkeit von Aluminiumkolben. MTZ—Mot. Z. 2010, 71, 246–249. [Google Scholar] [CrossRef]
- Backhaus, R. Kolben aus Stahl für PkwDieselmotoren. MTZ—Mot. Z. 2009, 70, 902–906. [Google Scholar] [CrossRef]
- Ottliczky, E.; Voigt, M.; Weimar, H.J.; Weiss, E. Stahlkolben für PKW-Dieselmotoren. MTZ—Mot. Z. 2011, 72, 728–735. [Google Scholar] [CrossRef]
- Yijun, S.; Liwen, M.; Xin, F.; Xiaohua, L. Tribological behavior of carbon nanotube and polytetrafluoroethylene filled polyimide composites under different lubricated conditions. J. Appl. Polym. Sci. 2011, 121, 1574–1578. [Google Scholar] [CrossRef]
- Bhaumik, S.; Prabhu, S.; Singh, K.J. Analysis of tribological behavior of carbon nanotube based industrial mineral gear oil 250 cSt viscosity. Adv. Tribol. 2014, 2014, 341365. [Google Scholar] [CrossRef]
- Chuan-Sheng, C.; Xiao-hua, C.; Jing, H.; Hua, Z.; Wen-hua, L.; Long-shan, X.; Zhi, Y. Effect of multi-walled carbon nanotubes on tribological properties of lubricant. Trans. Nonferrous Met. Soc. China 2005, 15, 300–305. [Google Scholar]
- Cornelio, J.A.C.; Cuervo, P.A.; Hoyos-Palacio, L.M.; Lara-Romero, J.; Toro, A. Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel-rail system. J. Mater. Res. Technol. 2016, 5, 68–76. [Google Scholar] [CrossRef]
- Battez, A.H.; González, R.; Felgueroso, D.; Fernández, J.E.; del Rocío Fernández, M.; García, M.A.; Penuelas, I. Wear prevention behaviour of nanoparticle suspension under extreme pressure conditions. Wear 2007, 263, 1568–1574. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, Y.; Wang, H. Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 2006, 25, 247–253. [Google Scholar]
- Joly- Pottuz, L.J.; Vacher, B.; Ohmae, N.; Martin, J.M.; Epicier, T. Anti-wear and friction reducing mechanisms of carbon nanoonions as lubricant additives. Tribol. Lett. 2008, 30, 69–80. [Google Scholar] [CrossRef]
- Lee, J.; Cho, S.; Hwang, Y.; Lee, C.; Kim, S.H. Enhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additives. Tribol. Lett. 2007, 28, 203–208. [Google Scholar] [CrossRef]
- Lee, C.; Hwang, Y.; Choi, Y.; Lee, J.; Choi, C.; Oh, J. A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Manuf. 2009, 10, 85–90. [Google Scholar] [CrossRef]
- Peña-Parás, L.; Taha-Tijerina, J.; García, A.; Maldonado, D.; González, J.A.; Molina, D.; Palacios, E.; Cantú, P. Antiwear and extreme pressure properties of nanofluids for industrial applications. Tribol. Trans. 2014, 57, 1072–1076. [Google Scholar] [CrossRef]
- Puzyr, A.P.; Burov, A.E.; Selyutin, G.E.; Voroshilov, V.A.; Bondar, V.S. Modified nanodiamonds as antiwear additives to commercial oils. Tribol. Trans. 2012, 55, 149–154. [Google Scholar] [CrossRef]
- Sarma, P.K.; Srinivas, V.; Rao, V.D.; Kumar, A.K. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler. Nanoscale Res. Lett. 2011, 6, 233–243. [Google Scholar] [CrossRef]
- Srinivas, V.; Thakur, R.N.; Jain, A.K.; Saratchandra Babu, M. Tribological studies of transmission oil dispersed with molybdenum disulfide and tungsten disulfide nanoparticles. J. Tribol. 2017, 139, 041301–041306. [Google Scholar] [CrossRef]
- Srinivas, V.; Kodanda, R.R.; Mohan Rao, C.N. Lubricating and physico-chemical properties of CI-4plus engine oil dispersed with surface modified multi-walled carbon nanotubes. Tribol. Mater. Surf. Interfaces 2018, 12, 107–114. [Google Scholar] [CrossRef]
- Skulic, A.; Milojevic, S.; Marić, D.; Ivanović, L.; Krstić, B.; Radojković, M.; Stojanović, B. The Impact of Lubricant Viscosity and Materials on Power Losses and Efficiency of Worm Gearbox. Teh. Vjesn. 2022, 29, 1853–1860. [Google Scholar]
- Shahnazar, S.; Bagheri, S.; Hamid, S.B.A. Enhancing lubricant properties by nanoparticle additives, Review Article, Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building. Int. J. Hydrog. 2016, 41, 3153–3170. [Google Scholar]
- Sun, J.; Du, S. Application of graphene derivatives and their nanocomposites in tribology and lubrication: A review. RSC Adv. 2019, 9, 40642–40661. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Tsui, W.C.; Liu, T.C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Arumugam, S.; Sriram, G. Preliminary study of nano- and microscale TiO2 additives on tribological behavior of chemically modified rapeseed oil. Tribol. Trans. 2013, 56, 797–805. [Google Scholar] [CrossRef]
- Ingole, S.; Charanpahari, A.; Kakade, A.; Umare, S.S.; Bhatt, D.V.; Menghani, J. Tribological behavior of nano TiO2 as an additive in base oil. Wear 2013, 301, 776–785. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Wan, H.; Chen, J.; Zhou, H. Synthesis and tribological properties of stearic acid-modified anatase (TiO2) Nanoparticles. Tribol. Lett. 2011, 41, 409–416. [Google Scholar] [CrossRef]
- Sabareesh, R.K.; Gobinath, N.; Sajith, V.; Das, S.; Sobhan, C.B. Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems e an experimental investigation. Int. J. Refrig. 2012, 35, 1989–1996. [Google Scholar] [CrossRef]
- Ghadimi, A.; Metselaar, I.H. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp. Therm. Fluid Sci. 2013, 51, 1–9. [Google Scholar] [CrossRef]
- Kumar, R.S.; Sharma, T. Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. Colloids Surf. A Physicochem. Eng. Asp. 2018, 539, 171–183. [Google Scholar] [CrossRef]
- Han, Z.; Yang, B.; Qi, Y.; Cumings, J. Synthesis of low-melting-point metallic nanoparticles with an ultrasonic nanoemulsion method. Ultrasonics 2011, 51, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Pourpasha, H.; Heris, S.Z.; Mohammadfam, Y. Comparison between multi-walled carbon nanotubes and titanium dioxide nanoparticles as additives on performance of turbine meter oil nano lubricant. Sci. Rep. 2021, 11, 11064. [Google Scholar] [CrossRef] [PubMed]
- Кao, M.J.; Lin, C.R. Evaluating the role of spherical titanium oxide nanoparticles in reducing friction between two pieces of cast iron. J. Alloys Compd. 2009, 483, 456–459. [Google Scholar] [CrossRef]
- Ali, M.K.A. Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int. 2016, 103, 540–554. [Google Scholar] [CrossRef]
- Alghani, W.; Ab Karim, M.S.; Bagheri, S.; Amran, N.A.M.; Gulzar, M. Enhancing the tribological behavior of lubricating oil by adding TiO2, graphene, and TiO2/graphene nanoparticles. Tribol. Trans. 2019, 62, 452–463. [Google Scholar] [CrossRef]
- Hong, F.T.; Schneider, A.; Sarathy, S.M. Enhanced lubrication by core-shell TiO2 nanoparticles modified with gallic acid ester. Tribol. Int. 2020, 146, 106263. [Google Scholar] [CrossRef]
- Sharma, V.; Timmons, R.B.; Erdemir, A.; Aswath, P.B. Interaction of plasma functionalized TiO2 nanoparticles and ZDDP on friction and wear under boundary lubrication. Appl. Surf. Sci. 2019, 489, 372–383. [Google Scholar] [CrossRef]
- Pourpasha, H.; Heris, S.Z.; Mahian, O.; Wongwises, S. The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants. Powder Technol. 2020, 367, 133–142. [Google Scholar] [CrossRef]
- Pourpasha, H.; Heris, S.Z.; Asadi, A. Experimental investigation of nano-TiO2/turbine meter oil nanofluid. J. Therm. Anal. Calorim. 2019, 138, 57–67. [Google Scholar] [CrossRef]
- Sharma, V.S.; Dogra, M.; Suri, N. Cooling techniques for improved productivity in turning. Int. J. Mach. Tools Manuf. 2009, 49, 435–445. [Google Scholar] [CrossRef]
- Krishna, P.V.; Srikant, R.R.; Padmini, R.; Viswaditya, J.L.P.P. Application of Nanomaterials as Coolants/Lubricants in Machining. In Proceedings of the Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on IEEE, Chennai, India, 24–26 July 2013. [Google Scholar]
- Krajnik, P.; Pusavec, F.; Rashid, A. Nanofluids: Properties, applications and sustainability aspects in materials processing technologies. In Advances in Sustainable Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 107–113. [Google Scholar]
- Skulic, A.; Krsmanovic, D.; Radosavljevic, S.; Ivanović, L.; Stojanović, B. Power Losses of Worm Gear Pairs. Acta Tech. Corviniensis-Bull. Eng. 2017, 10, 39–45. [Google Scholar]
- Li, Z.; Gao, B.; Chen, G.Z.; Mokaya, R.; Sotiropoulos, S.; Li Puma, G. Carbon nanotube/titanium dioxide (CNT/TiO2) core-shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B Environ. 2011, 110, 50–57. [Google Scholar] [CrossRef]
- Saleh, T.A.; Gondal, M.A.; Drmosh, Q.A.; Yamani, Z.H.; AL-yamani, A. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem. Eng. J. 2011, 166, 407–412. [Google Scholar] [CrossRef]
- An, G.; Ma, W.; Sun, Z. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 2007, 45, 1795–1801. [Google Scholar] [CrossRef]
- Saleh, T.A.; Agarwal, S.; Gupta, V.K. Functionalization of tungsten oxide into MWCNT and its application for sunlightinduced degradation of rhodamine B. J. Colloid Interface Sci. 2011, 362, 337–344. [Google Scholar] [CrossRef]
- Saleh, T.A.; Siddiqui, М.N.; Al-Arfaj, A.A. Synthesis of Multiwalled Carbon Nanotubes-Titania Nanomaterial for Desulfurization of Model Fuel. Hindawi Publ. Corp. J. Nanomater. 2014, 2014, 940639. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, W.; Zhang, Z. Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear 1997, 213, 29–32. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: An experimental investigation. Sci. Rep. 2022, 12, 7–14. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, T.; Guo, L.; Jiang, B. Fretting wear behaviour of microarcoxidation coatings formed on titanium alloy against steel in unlubrication and oil lubrication. Appl. Surf. Sci. 2006, 252, 8113–8120. [Google Scholar] [CrossRef]
- Gupta, G.; Ul Haq, M.I.; Raina, A.; Shafi, W.K. Rheological and tribological behavior of sunflower oil: Effect of chemical modification and tungsten disulfide nanoparticles. J. Bio-Tribo-Corros. 2021, 7, 2–6. [Google Scholar] [CrossRef]
- Raina, A.; Irfan Ul Haq, M.; Anand, A.; Mohan, S.; Kumar, R.; Jayalakshmi, S.; Arvind Singh, R. Nanodiamond particles as secondary additive for polyalphaolefin oil lubrication of steel-aluminium contact. Nanomaterials 2021, 11, 1438. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.; Raina, A.; Irfan Ul Haq, M.; Mir, M.J.; Gulzar, O.; Wani, M.F. Synergism of TiO2 and graphene as nano-additives in bio-based cutting fluid—An experimental investigation. Tribol. Trans. 2021, 64, 350–366. [Google Scholar] [CrossRef]
- Kerni, L.; Raina, A.; Ul Haq, M.I. Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear 2019, 426–427, 819–827. [Google Scholar] [CrossRef]
- Abdullah, M.I.H.C.; Abdollah, M.F.B.; Amiruddin, H.; Tamaldin, N.; Nuri, N.R.M. The potential of hBN nanoparticles as friction modifier and antiwear additive in engine oil. Mech. Ind. 2016, 17, 104. [Google Scholar] [CrossRef]
- Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Habib, M.A.; Mobarak, H.M. Effect of biolubricant on tribological characteristics of steel. Procedia Eng. 2014, 90, 740–745. [Google Scholar] [CrossRef]
- Ali, M.K.A.; Xianjun, H.; Turkson, R.F.; Peng, Z.; Chen, X. Enhancing the thermophysical properties and tribological behaviour of engine oils using nanolubricant additives. RSC Adv. 2016, 6, 77913–77924. [Google Scholar]
- Masjuki, H.H.; Saifullah, M.G.; Husnawan, M.; Faizul, M.S.; Shaaban, M.G. Flash Temperature Parameter Number Prediction Model by Design of Tribological Experiments for Basestock Mineral Oil Containing Palm Olein and Aminephosphate Additives. In Proceedings of the World Tribology Congress III, Washington, DC, USA, 12–16 September 2005. [Google Scholar]
- Cristea, G.C.; Cazamir, D.; Dima, D.; Georgescu, C.; Deleanu, L. Influence of TiO2 as Nano Additive in Rapeseed Oil. In The 8th International Conference on Advanced Concepts in Mechanical Engineering; Institute of Physics Conference Series: Materials Science and Engineering; Institute of Physics Publishing Ltd.: Bristol, UK, 2018; Volume 444, p. 022011. [Google Scholar]
- Luo, T.; Wei, X.; Zhao, H.; Cai, G.; Zheng, X. Tribology properties of Al2O3/TiO2 nanocomposites as lubricant additives. Ceram. Int. 2014, 40, 10103–10109. [Google Scholar] [CrossRef]
- Ali, M.K.A.; Xianjun, H.; Elagouz, A.; Essa, F.A.; Abdelkareem, M.A.A. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles. J. Nanoparticle Res. 2016, 18, 1–16. [Google Scholar] [CrossRef]
- Binu, K.G.; Shenoy, B.S.; Rao, D.S.; Pai, R. A variable viscosity approach for the evaluation of load carrying capacity of oil lubricated journal bearing with TiO2 nanoparticles as lubricant additives. Procedia Mater. Sci. 2014, 6, 1051–1067. [Google Scholar] [CrossRef]
- Salimi-Yasar, H.; Heris, S.Z.; Shanbedi, M.; Amiri, A.; Kameli, A. Experimental investigation of thermal properties of cutting fluid using soluble oil-based TiO2 nanofluid. Powder Technol. 2017, 310, 213–220. [Google Scholar] [CrossRef]
- Ilie, F.; Covaliu, C. Tribological properties of the lubricant containing titanium dioxide nanoparticles as an additive. Lubricants 2016, 4, 12. [Google Scholar] [CrossRef]
- Srinivas, V.; Rao, C.K.R.; Abyudaya, M.; Jyothi, E.S. Extreme Pressure Properties of 600 N Base Oil Dispersed With Molybdenum Disulphide Nano Particles. Univers. J. Mech. Eng. 2014, 2, 220–225. [Google Scholar] [CrossRef]
- Bakunin, V.N.; Suslov, A.Y.; Kuzmina, G.N.; Parenago, O.P. Synthesis and application of inorganic nanoparticles as lubricant components—A review. J. Nano Part. Res. 2004, 6, 273–284. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Z.; Li, Y. Applications of carbon quantum dots in lubricant additives—A review. J. Mater. Sci. 2021, 56, 12061–12092. [Google Scholar] [CrossRef]
- Sreedhara, M.B.; Matte, H.S.S.R.; Govindaraj, A.; Rao, C.N.R. Synthesis, characterization, and properties of few-layer MoO3. Chem.–Asian J. 2013, 8, 2430–2435. [Google Scholar] [CrossRef]
- Balendhran, S.; Walia, S.; Nili, H.; Ou, J.Z.; Zhuiykov, S.; Kaner, R.B.; Sriram, S.; Bhaskaran, M.; Kalantar-zadeh, K. Two-Dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952–3970. [Google Scholar] [CrossRef]
- Wang, B.B.; Qu, X.L.; Zhu, M.K.; Chen, Y.A.; Zheng, K.; Zhong, X.X.; Cvelbar, U.; Ostrikov, K. Plasma produced photoluminescent molybdenum sub-oxide nanophase materials. J. Alloys Compd. 2018, 765, 1167–1173. [Google Scholar] [CrossRef]
- Song, H.; Wang, Z.; Yang, J.; Jia, X.; Zhang, Z. Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem. Eng. J. 2017, 324, 51–62. [Google Scholar] [CrossRef]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar] [CrossRef]
- Lahouij, I.; Bucholz, E.W.; Vacher, B.; Sinnott, S.B.; Martin, J.M.; Dassenoy, F. Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: Coupling experimental and computational works. Nanotechnology 2012, 23, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Rajendhran, N.; Palanisamy, S.; Periyasamy, P.; Venkatachalam, R. Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS2 nanosheets as nano-additives. Tribol. Int. 2018, 118, 314–328. [Google Scholar] [CrossRef]
- Vazirisereshk, M.R.; Martini, A.; Strubbe, D.A.; Baykara, M.Z. Solid lubrication with MoS2: A Review. Lubricants 2019, 7, 57. [Google Scholar] [CrossRef]
- Bhushan, B. Introduction to Tribology, 2nd ed.; A John Wiley and Sons, Ltd., Publication: New York, NY, USA, 2013; pp. 56–82. [Google Scholar]
- Donnet, C.; Martin, J.M.; LeMogne, T.; Belin, M. Super-low friction of MoS2 Coatings in various environments. Tribol. Int. 1996, 29, 123–128. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 2005, 65, 741–748. [Google Scholar] [CrossRef]
- Wang, Q.J.; Chung, Y.W. Encyclopedia of Tribology; Springer: Boston, MA, USA, 2013; pp. 96–107. [Google Scholar]
- Khare, H.S.; Burris, D.L. The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 2013, 52, 485–493. [Google Scholar] [CrossRef]
- Kubart, T.; Polcar, T.; Kopecký, L.; Novák, R.; Nováková, D. Temperature dependence of tribological properties of MoS2 and MoSe2 coatings. Surf. Coat. Technol. 2005, 193, 230–233. [Google Scholar] [CrossRef]
- Colbert, R.S.; Sawyer, W.G. Thermal dependence of the wear of molybdenum disulphide coatings. Wear 2010, 269, 719–723. [Google Scholar] [CrossRef]
- Curry, J.F.; Babuska, T.F.; Brumbach, M.T.; Argibay, N. Temperature-dependent friction and wear of MoS2/Sb2O3/Au nanocomposites. Tribol. Lett. 2016, 64, 2–5. [Google Scholar] [CrossRef]
- Babuska, T.F.; Pitenis, A.A.; Jones, M.R.; Nation, B.L.; Sawyer, W.G.; Argibay, N. Temperature-dependent friction and wear behavior of PTFE and MoS2. Tribol. Lett. 2016, 63, 12–15. [Google Scholar] [CrossRef]
- Dunckle, C.G.; Aggleton, M.; Glassman, J.; Tabore, P. Friction of molybdenum disulfide-titanium films under cryogenic vacuum conditions. Tribol. Int. 2011, 44, 1819–1826. [Google Scholar] [CrossRef]
- Zhao, X.; Phillpot, S.R.; Sawyer, W.G.; Sinnott, S.B.; Perry, S.S. Transition from thermal to athermal friction under cryogenic conditions. Phys. Rev. Lett. 2009, 102, 186102. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.A.; Alvarez, L.A.; Mauntler, N.A.; Argibay, N.; Colbert, R.; Burris, D.L.; Muratore, C.; Voevodin, A.A.; Perry, S.S.; Sawyer, W.G. A possible link between macroscopic wear and temperature dependent friction behaviors of MoS2 coatings. Tribol. Lett. 2008, 32, 91–98. [Google Scholar] [CrossRef]
- Curry, J.F.; Hinkle, A.R.; Babuska, T.F.; Wilson, M.A.; Dugger, M.T.; Krick, B.A.; Argibay, N.; Chandross, M. Atomistic origins of temperature-dependent shear strength in 2D materials. ACS Appl. Nano Mater. 2018, 1, 5401–5407. [Google Scholar] [CrossRef]
- Kohli, A.K.; Prakash, B. Contact pressure dependency in frictional behavior of burnished molybdenum disulphide coatings. Tribol. Trans. 2001, 44, 147–151. [Google Scholar] [CrossRef]
- Sajid, M.; Ilyas, M.; Basheer, C.; Tariq, M.; Daud, M.; Baig, N.; Shehzad, F. Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environ. Sci. Pollut. Res. 2015, 22, 4122–4143. [Google Scholar] [CrossRef] [PubMed]
- Dawson, K.A.; Salvati, A.; Lynch, I. Nanoparticles reconstruct lipids. Nat. Nanotechnol. 2009, 4, 84–85. [Google Scholar] [CrossRef]
- Hsiao, I.L.; Huang, Y.J. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 2011, 409, 1219–1228. [Google Scholar] [CrossRef]
- Tarantola, M.; Pietuch, A.; Schneider, D.; Rother, J.; Sunnick, E.; Rosman, C.; Pierrat, S.; Sönnichsen, C.; Wegener, J.; Janshoff, A. Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 2011, 5, 254–268. [Google Scholar] [CrossRef]
- Bar-Ilan, O.; Albrecht, R.M.; Fako, V.E.; Furgeson, D.Y. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 2009, 5, 1897–1910. [Google Scholar] [CrossRef] [PubMed]
- Stark, W.J. Nanoparticles in biological systems. Angew. Chem. Int. Ed. 2011, 50, 1242–1258. [Google Scholar] [CrossRef] [PubMed]
- Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D.A.; Hoffmann, H.J.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 2009, 190, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Bakand, S.; Hayes, A.; Dechsakulthorn, F. Nanoparticles: A review of particle toxicology following inhalation exposure. Inhal. Toxicol. 2012, 24, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Cheraghian, G.; Rostami, S.; Afrand, M. Nanotechnology in enhanced oil recovery. Processes 2020, 8, 1073. [Google Scholar] [CrossRef]
- El-Masry, J.F.; Bou-Hamdan, K.F.; Abbas, A.H.; Martyushev, D.A. A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications. Energies 2023, 16, 691. [Google Scholar] [CrossRef]
- Morshed, A.; Wu, H.; Jiang, Z. A comprehensive review of water-based nanolubricants. Lubricants 2021, 9, 89. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanoparticle Res. 2016, 18, 1–25. [Google Scholar] [CrossRef]
Nanoparticles | The Content/Size of Additives in the Oil | Parametar Improved | Major Findings | Reference |
---|---|---|---|---|
MWCNT | 0.1–2 wt% | friction and load capacity | MWCNTs as an additive in paraffin mineral oil in a proportion of 0.1% to 2% causes a reduction in friction by 50% and an increase in the load capacity up to 100% | [3] |
SWCNT | 0.3–1 wt% | friction coefficient | with a CNT mass fraction of 1% in the range of different unit pressures, achieving the lowest friction coefficient of 0.08 | [28] |
SWCNT | 0.5 wt% | friction coefficient | friction coefficient was obtained at a value of 0.087, where the mass fraction of CNTs in the oil was 0.5%. Oils with additives in the shape of nanotubes show an increasing coefficient of friction compared to oils with additives and spherical nanoparticles | [29] |
MWCNT | 0.1 wt% | friction coefficient | friction coefficient was significantly reduced when using nanospherical particles in mineral oil | [30] |
Nanodiamond (ND) particles | 0.2 wt% | friction coefficient | Decrease in the coefficient of friction by 15% and 33% | [31] |
SWCNT | 0.01–0.1 wt% | thickness of the oil film | Dramatic increase in the thickness of the oil film for the lubricant with CNT concentrations as low as 0.01% to 0.1% | [32] |
MWCNT | 0.1 wt% | thermal conductivity | with nanoparticles in lubricants of 0.1%, thermal conductivity improved by 13.2% | [33] |
MWCNT | 0.1–0.5 wt% | thermal conductivity viscosity | improvement in the thermal conductivity of engines with the addition of CNTs in oils from 0.16 to 0.21 w/mk adding CNT to engine oil can increase viscosity from 0.2228 to 0.58 cPs | [34] |
MoS2 | 0.1 wt% | thermal conductivity | MoS2 nanotubes reduced friction by 40–65% compared to pure mineral oil | [35] |
MWCNT | 0.1–0.6 wt% | wear and bearing capacity | wear decreased by 70–75%, and bearing capacity increased by 20% if MWCNTs dispersed in mineral oil were used instead of graphite dispersed in mineral oil with a concentration of 0.1 to 0.6% for both additives | [40] |
Modified stearic acid MWCNT | 0.45 wt% | friction coefficientand wear | using paraffin oil with dispersed modified stearic acid MWCNTs at 0.45% decreased the coefficient of friction by 10% and caused a decrease in wear by 30–40% | [45] |
SWCNT and MWCNT | 0.01–0.05 wt% | friction coefficient | SWCNT and MWCNT additives from 0.01 to 0.05% by mass lead to lower friction coefficients, even to 0.063 | [46] |
MWCNT | / | wear and friction | significant upgrading in tribological properties with surfactant-modified MWCNTs with a dodecyl sulfate (SDS) aqueous solution compared to unmodified MWCNTs | [48] |
Nanodiamond (ND) particles | 0.01–0.2 wt% | friction coefficient | Decreased the coefficient of friction from 15% to 33%, which was achieved with dispersed nanodiamond (ND) particles as an additive compared to TiO2, Al2O3, and CuO in the proportion of 0.01% to 0.1% in oil | [52] |
Cu and TiO2 | 0.025–0.1 wt% | thermal efficiency | dispersed Cu and TiO2 nanoparticles in a proportion of 0.025% to 0.1% by mass in oil increases the brake thermal efficiency from 4 to 7% | [54] |
WS2 and MoS2 | 0.5 wt% | friction coefficient | Oil with dispersed nanoparticles of WS2 and MoS2 particles can reduce the friction coefficient to 12% | [55] |
TiO2 | 0.5–1 wt% | friction coefficient | TiO2 nanoparticles improve the lubrication properties (15.2% reduction in the friction coefficient) | [61] |
TiO2 | average diameter of 5 nm | load capacity | TiO2 nanoparticles in lubricating oil cause a higher load capacity by approximately 35%, compared with oil without the addition of nanoparticles | [69] |
Graphene and TiO2 | 0.2 wt% and 0.4 wt% | specific wear coefficient and friction coefficient | a nanolubricant containing graphene and TiO2 provides the best performance with a reduction in the specific wear coefficient of 15.78% and the friction coefficient of 38.83% | [72] |
Titanium borate | size of nanoparticles 10–70 nm | wear | nanoparticles of titanium borate significantly reduce wear to 17% | [86] |
TiO2 | 0.15 wt% | mean surface and roughness | the presence of the TiO2 additive in the oil reduces the mean surface roughness value by 80.84%. | [87] |
Al2O3/TiO2 | 0.05–1 wt% | friction coefficient and wear | Al2O3/TiO2 nanoaditive mixture in the oil, at five different amounts, 0%, 0.05%, 0.1%, 0.5%, and 1%, of the mass fraction reduces the friction coefficient and the diameter of wear lines compared to no additive oils | [97] |
MoS3 | 0.1–0.5 wt% | friction and wear | Concentrations of 0.5% and 0.1% by the mass of MoS3 in the oil give the best anti-friction and anti-wear effects, where friction is reduced by 19.8%, and wear is reduced by 55.9% compared to the base oil | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukvić, M.; Gajević, S.; Skulić, A.; Savić, S.; Ašonja, A.; Stojanović, B. Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants 2024, 12, 6. https://doi.org/10.3390/lubricants12010006
Bukvić M, Gajević S, Skulić A, Savić S, Ašonja A, Stojanović B. Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants. 2024; 12(1):6. https://doi.org/10.3390/lubricants12010006
Chicago/Turabian StyleBukvić, Milan, Sandra Gajević, Aleksandar Skulić, Slobodan Savić, Aleksandar Ašonja, and Blaža Stojanović. 2024. "Tribological Application of Nanocomposite Additives in Industrial Oils" Lubricants 12, no. 1: 6. https://doi.org/10.3390/lubricants12010006
APA StyleBukvić, M., Gajević, S., Skulić, A., Savić, S., Ašonja, A., & Stojanović, B. (2024). Tribological Application of Nanocomposite Additives in Industrial Oils. Lubricants, 12(1), 6. https://doi.org/10.3390/lubricants12010006