The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
Abstract
:1. Introduction
2. Simulation Model and Method
2.1. Simulation Model
2.2. Simulation Method
3. Results and Discussion
3.1. Effect of Slider Configuration
3.2. Effect of Asperity Amount
3.3. Effect of Asperity Depth
3.4. Effect of Asperity Width
4. Conclusions
- The slider configuration has a significant effect on the depletion volume of the lubricant. Compared with the cuboidal asperity slider and the trapezoidal asperity slider, the cylindrical asperity slider was found to be able to reduce the depletion volume of the lubricant at small loads.
- With an increase in the number of cylindrical asperities, the surface contact area between the head and disk increased, and the slider penetration depth decreased. This led to a reduction in the volume of lubricant depletion in the contact state. Therefore, increasing the number of slider asperities is beneficial for reducing friction loss.
- The dimensions of cylindrical asperity, including parameters such as depth and width, play a crucial role in determining the penetration depth and lubricant depletion. As the cylindrical asperity depth increased, the penetration depth gradually increased. And with the increase in cylindrical asperity width, the penetration depth decreased. In addition, the depletion volume of lubricant decreased with the decrease in asperity depth and also decreased with the increase in asperity width.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marchon, B.; Pitchford, T.; Hsia, Y.T.; Gangopadhyay, S. The head-disk interface roadmap to an areal density of Tbit/in2. Adv. Tribol. 2013, 2013, 521086. [Google Scholar] [CrossRef]
- Song, J.; Yeo, C.D. Finite element analysis simulations of thermomechanical head-disk interface contact in thermal flying-height control slider design. Tribol. Int. 2016, 98, 299–305. [Google Scholar] [CrossRef]
- Canchi, S.V.; Bogy, D.B. Experiments on slider lubricant interactions and lubricant transfer using TFC sliders. Microsyst. Technol. 2012, 18, 1517–1523. [Google Scholar] [CrossRef]
- Itoh, J.; Sasaki, Y.; Higashi, K.; Takami, H.; Shikanai, T. An experimental investigation for continuous contact recording technology. IEEE Trans. Magn. 2001, 37, 1806–1808. [Google Scholar] [CrossRef]
- Chen, Y.K.; Peng, J.P.; Bogy, D.B. Experimental and simulation study of thermal protrusion-induced head-disk contact instabilities in hard disk drives. IEEE Trans. Magn. 2014, 50, 1–5. [Google Scholar] [CrossRef]
- Li, N.; Meng, Y.; Bogy, D.B. Effects of PFPE lubricant properties on the critical clearance and rate of the lubricant transfer from disk surface to slider. Tribol. Lett. 2011, 43, 275–286. [Google Scholar] [CrossRef]
- Zeng, Q.; Yang, C.H.; Ka, S.; Cha, E. An experimental and simulation study of touchdown dynamics. IEEE Trans. Magn. 2011, 47, 3433–3436. [Google Scholar] [CrossRef]
- Sarabi, S.; Bogy, D.B. Effect of viscoelasticity on lubricant behavior under heat-assisted magnetic recording conditions. Tribol. Lett. 2018, 66, 33. [Google Scholar] [CrossRef]
- Li, N.; Meng, Y.; Bogy, D.B. Experimental study of the slider-lube/disk contact state and its effect on head-disk interface stability. IEEE Trans. Magn. 2012, 48, 2385–2391. [Google Scholar] [CrossRef]
- Chowdhury, S.; Vakis, A.I.; Polycarpou, A.A. Optimization of molecularly thin lubricant to improve bearing capacity at the head-disk interface. Microsyst. Technol. 2014, 21, 1501–1511. [Google Scholar] [CrossRef]
- Tani, H.; Iwasaki, K.; Maruyama, Y.; Ota, I.; Tagawa, N. Lubricant pickup of ultra-thin PFPE lubricants with different backbone structures. IEEE Trans. Magn. 2011, 47, 1837–1841. [Google Scholar] [CrossRef]
- Waltman, R.J.; Deng, H.; Wang, G.J.; Zhu, H.; Tyndall, G.W. The effect of PFPE film thickness and molecular polarity on the pick-up of lubricant by a low-flying slider. Tribol. Lett. 2010, 39, 211–219. [Google Scholar] [CrossRef]
- Ma, X.; Tang, H.; Stirniman, M.; Gui, J. The effect of slider on lubricant loss and redistribution. IEEE Trans. Magn. 2002, 38, 2144–2146. [Google Scholar]
- Ma, Y.S.; Chen, X.Y.; Zhao, J.M.; Yu, S.K.; Liu, B.; Seet, H.L.; Ng, K.K.; Hu, J.F.; Shi, J.Z. Experimental study of lubricant depletion in heat assisted magnetic recording. IEEE Trans. Magn. 2012, 48, 1813–1818. [Google Scholar] [CrossRef]
- Lin, W.U. Modelling and simulation of the lubricant depletion process induced by laser heating in heat-assisted magnetic recording system. Nanotechnology 2007, 18, 215702. [Google Scholar]
- Norio, T.; Hideki, A.; Hiroshi, T. Study on lubricant depletion induced by laser heating in thermally assisted magnetic recording systems: Effect of lubricant thickness and bonding ratio. Tribol. Lett. 2010, 37, 411–418. [Google Scholar]
- Li, Y.; Wong, C.H.; Li, B.; Yu, S.; Hua, W.; Zhou, W. Lubricant evolution and depletion under laser heating: A molecular dynamics study. Soft Matter 2012, 8, 5649–5657. [Google Scholar] [CrossRef]
- Wong, C.H.; Li, B.; Yu, S.K.; Hua, W.; Zhou, W.D. Molecular dynamics simulation of lubricant redistribution and transfer at near-contact head-disk interface. Tribol. Lett. 2011, 43, 89–99. [Google Scholar] [CrossRef]
- Li, B.; Wong, C.H.; Chen, Q.B. Evolution of Diffusion-Related Degradation of Polymeric Lubricant under Laser Heating: A Molecular Dynamics Study. IEEE Trans. Magn. 2014, 50, 1–9. [Google Scholar] [CrossRef]
- Li, B.; Wong, C.H. Molecular Dynamics Simulation of Thermal-Induced Local Heating and Depletion of Ultrathin Perfluoropolyether Lubricant under Moving Laser Heating. Tribol. Lett. 2014, 55, 303. [Google Scholar] [CrossRef]
- Seo, Y.W.; Rosenkranz, A.; Talke, F.E. Molecular Dynamics Study of Lubricant Depletion by Pulsed Laser Heating. Appl. Surf. Sci. 2018, 440, 73–83. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Zhang, J.; Hu, Y.; Wang, H.; Ma, T. Suppressing nanoscale wear by graphene/graphene interfacial contact architecture: A molecular dynamics study. ACS Appl. Mater. Interfaces 2017, 9, 40959–40968. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Sorkin, V.; Sha, Z.D.; Pei, Q.X.; Branicio, P.S.; Zhang, Y.W. Molecular dynamics simulations on the frictional behavior of a perfluoropolyether film sandwiched between diamond-like-carbon coatings. Langmuir 2014, 30, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.S.; Park, H. Thermal Diffusion Phenomena of the Functional Polymer Lubricants for the Heat-Assisted Magnetic Recording. IEEE Trans. Magn. 2019, 55, 3300604 . [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Huo, L.; Wang, K.; Sun, K.; Wei, J.; Chen, F. Molecular dynamics simulation of the lubricant conformation changes and energy transfer of the confined thin lubricant film. Chem. Eng. Sci. 2023, 270, 118541. [Google Scholar] [CrossRef]
- Song, J.; Talukder, S.; Rahman, S.M.; Jung, Y.; Yeo, C.-D. Comparison study on surface and thermo-chemical properties of PFPE lubricants on DLC film through MD simulations. Tribol. Int. 2021, 156, 106835. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, D.; Jia, T.; Zhang, X.; Pan, D. Effect of Air Bearing Pressure and Slider/disk Contact on Lubricant Depletion Using Molecular Dynamics Simulation. IEEE Trans. Magn. 2020, 56, 6702804. [Google Scholar] [CrossRef]
- Waltman, R.J.; Pocker, D.J.; Tyndall, G.W. Studies on the interactions between ZDOL perfluoropolyether lubricant and the carbon overcoat of rigid magnetic media. Tribol. Lett. 1998, 4, 267–275. [Google Scholar] [CrossRef]
- Zhao, Z.; Bhushan, B.; Kajdas, C. Tribological performance of PFPE and X-1P lubricants at head-disk interface. Part II. Mechanisms. Tribol. Lett. 1999, 6, 141–148. [Google Scholar] [CrossRef]
- Li, B.; Wong, C.H. Lubricant depletion due to moving laser heating: A molecular dynamics simulation study. Tribol. Int. 2014, 80, 41–48. [Google Scholar] [CrossRef]
- Choi, H.J.; Guo, Q.; Chung, P.S.; Jhon, M.S. Molecular rheology of perfluoropolyether lubricant via nonequilibrium molecular dynamics simulation. IEEE Trans. Magn. 2006, 99, 903–905. [Google Scholar] [CrossRef]
- Guo, Q.; Izumisawa, S.; Phillips, D.M.; Jhon, M.S. Surface Morphology and Molecular Conformation for Ultrathin Lubricant Films with Functional End Groups. J. Appl. Phys. 2003, 93, 8707. [Google Scholar] [CrossRef]
- Pan, D.; Ovcharenko, A.; Tangaraj, R.; Yang, M.; Talke, F.E. Investigation of lubricant transfer between slider and disk using molecular dynamics simulation. Tribol. Lett. 2014, 53, 373–381. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Hsia, Y.T.; Jhon, M. A Spreading Study of Lubricant Films via Optical Surface Analyzer and Molecular Dynamics. IEEE Trans. Magn. 2006, 42, 2528–2530. [Google Scholar] [CrossRef]
- Pan, D.; Ovcharenko, A.; Peng, J.P.; Jiang, H. Effect of lubricant fragments on lubricant transfer: A molecular dynamics simulation. IEEE Trans. Magn. 2014, 50, 3302005. [Google Scholar] [CrossRef]
- Seo, Y.W.; Pan, D.Z.; Ovcharenko, A.; Yang, M.; Talke, F.E. Molecular dynamics simulation of lubricant transfer at the head-disk interface. IEEE Trans. Magn. 2014, 50, 3302904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhou, D.; Tang, Z. The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface. Lubricants 2024, 12, 17. https://doi.org/10.3390/lubricants12010017
Chen Y, Zhou D, Tang Z. The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface. Lubricants. 2024; 12(1):17. https://doi.org/10.3390/lubricants12010017
Chicago/Turabian StyleChen, Yuxin, Dongdong Zhou, and Zhengqiang Tang. 2024. "The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface" Lubricants 12, no. 1: 17. https://doi.org/10.3390/lubricants12010017
APA StyleChen, Y., Zhou, D., & Tang, Z. (2024). The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface. Lubricants, 12(1), 17. https://doi.org/10.3390/lubricants12010017