Analysis of Water-Lubricated Journal Bearings Assisted by a Small Quantity of Secondary Lubricating Medium with Navier–Stokes Equation and VOF Model
Abstract
:1. Introduction
2. Geometry Description
3. Experimental Verification
4. Methodology
4.1. Governing Equations
4.1.1. Navier–Stokes (N–S) Equation
4.1.2. Volume of Fluid (VOF) Method
4.1.3. Load-Carrying Capacity
4.2. Boundary Conditions
4.3. Mesh Generation
5. Model Verification
6. Results and Discussion
6.1. Different Lubrication Conditions (ω = 100 r/min, vw = 0.03 m/s, Oil Flow Rate = 125 μL/s)
6.2. Different Water Flow Velocity (ω = 100 r/min, Oil Flow Rate = 125 μL/s)
6.3. Different Oil Flow Rate (ω = 100 rpm, vw = 0.03 m/s)
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
C | radial clearance |
E | eccentric distance |
F | load-carrying capacity |
K | number on the edge of the grid |
L | bearing length |
P | pressure |
I | number on the grid |
U | velocity of the flow |
vo | velocity of the oil injection |
vw | velocity of the water flow |
z | axial direction |
ω | shaft rotational speed |
μ | viscosity |
θ | circumferential direction |
θ0 | film rupture position in the circumferential direction |
ρ | density |
φ | normal flux |
α | volume fraction of the phase |
attitude angle |
References
- Gong, J.; Jin, Y.; Liu, Z.; Jiang, H.; Xiao, M. Study on influencing factors of lubrication performance of water-lubricated micro-groove bearing. Tribol. Int. 2019, 129, 390–397. [Google Scholar] [CrossRef]
- Urreta, H.; Aguirre, G.; Kuzhir, P.; de Lacalle, L.N.L. Seals based on magnetic fluids for high precision spindles of machine tools. Int. J. Precis. Eng. Manuf. 2018, 19, 495–503. [Google Scholar] [CrossRef]
- Urreta, H.; Aguirre, G.; Kuzhir, P.; de Lacalle, L.N.L. Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools. J. Intell. Mater. Syst. Struct. 2019, 30, 2257–2271. [Google Scholar] [CrossRef]
- Xie, Z.; Shen, N.; Zhu, W.; Tian, W.; Hao, L. Theoretical and experimental investigation on the influences of misalignment on the lubrication performances and lubrication regimes transition of water-lubricated bearing. Mech. Syst. Signal. Process. 2020, 149, 107211. [Google Scholar] [CrossRef]
- Mallya, R.; Shenoy, S.B.; Pai, R. Static characteristics of misaligned multiple axial groove water-lubricated bearing in the turbulent regime. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 385–398. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Geng, Z.; Xiang, G.; Wang, J.; Zhao, R. A profile design method to improve the wear performance of misaligned water-lubricated bearing. Lubr. Sci. 2021, 33, 215–228. [Google Scholar] [CrossRef]
- Xu, B.; Guo, H.; Wu, X.; He, Y.; Wang, X.; Bai, J. Static and dynamic characteristics and stability analysis of high-velocity water-lubricated hydrodynamic journal bearings. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 236, 1994–1996. [Google Scholar]
- Fedorynenko, D.; Kirigaya, R.; Nakao, Y. Dynamic characteristics of spindle with water-lubricated hydrostatic bearings for ultra-precision machine tools. Precis. Eng. 2020, 63, 187–196. [Google Scholar] [CrossRef]
- Sayed, H.; El-Sayed, T.A. Nonlinear dynamics and bifurcation analysis of journal bearings based on second order stiffness and damping coefficients. Int. J. Non-Linear Mech. 2022, 142, 103972. [Google Scholar] [CrossRef]
- Brunetière, N.; Rouillon, M. Fluid flow regime transition in water lubricated spiral grooved face seals. Tribol. Int. 2021, 153, 106605. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, C.; Guo, Z.; Huang, Q. Effect of the groove parameters on the lubricating performance of the water-lubricated bearing under low speed. Wear 2023, 522, 204708. [Google Scholar] [CrossRef]
- Shinde, A.B.; Chavan, S.P. Parametric investigation of surface texturing on performance characteristics of water-lubricated journal bearing using, FSI approach. SN Appl. Sci. 2019, 2, 36. [Google Scholar] [CrossRef]
- Pai, R.; Hargreaves, D.J. Water-lubricated, Bearings. In Green Tribology; Green Energy and Technology; Nosonovsky, M., Bhushan, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Zhou, G.; Mi, X.; Wang, J.; Hu, R. Experimental comparison between the Stribeck curves of water-lubricated rubber bearing with straight and spiral grooves. Ind. Lubric. Tribol. 2018, 70, 1326–1330. [Google Scholar] [CrossRef]
- Feng, W.; Han, Y.; Xiang, G.; Wang, J. Hydrodynamic lubrication analysis of water-lubricated bearings with partial microgroove considering wall slip. Surf. Topogr. Metrol. Prop. 2021, 9, 015019. [Google Scholar] [CrossRef]
- Dong, C.; Yuan, C.; Xu, A.; Bai, X.; Tian, Y. Rippled polymer surface generated by stick-slip friction. Langmuir 2019, 35, 2878–2884. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A. The Development of Computer Programme to Calculate the Hydrodynamic Lubrication Performance of a Ship Journal Bearing; UniKL MIMET: Lumut, Malaysia, 2020. [Google Scholar]
- Yang, Z.; Guo, Z.; Yuan, C. Effects of, MoS2 microencapsulation on the tribological properties of a composite material in a water-lubricated condition. Wear 2019, 432–433, 102919. [Google Scholar] [CrossRef]
- Liang, X.; Guo, Z.; Tian, J.; Yuan, C. Development of modified polyacrylonitrile fibers for improving tribological performance characteristics of thermoplastic polyurethane material in water-lubricated sliding bearings. Polym. Adv. Technol. 2020, 31, 3258–3271. [Google Scholar] [CrossRef]
- Feng, H.; Jiang, S.; Ji, A. Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol. Int. 2019, 130, 245–260. [Google Scholar] [CrossRef]
- Narwat, K.; Kumar, V.; Singh, S.J.; Kumar, A.; Sharma, S.C. Performance of rough surface hydrodynamic circular and multi-lobe journal bearings in turbulent regimes. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2023, 237, 860–880. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T.; Guo, F.; Liang, P. Analysis of the Influence of Small Quantity secondary lubricant on Water Lubrication. Tribol. Int. 2021, 159, 106998. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Zhang, X.; Ji, H.; Duan, W.; Liang, P. Water Lubrication Assisted by Small-quantity Silicone Oil. Tribol. Int. 2022, 173, 107619. [Google Scholar] [CrossRef]
- Katopodes, N. Volume of fluid method. In Free-Surface Flow; Katopodes, N., Ed.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 766–802. [Google Scholar]
- Wu, Y.; Sun, T.; He, Z.; Zeng, X.; Ren, T.; de Vries, E.; van der Heide, E. Study on the relationship between the tribological properties and oxidation degree of graphene derivatives in O/W emulsion. Tribol. Int. 2021, 157, 106875. [Google Scholar] [CrossRef]
- Kumar, D.; Rajabi, H. Effect of lubrication on a surface parameter of strip in cold rolling with oil in water emulsion. Int. J. Appl. Eng. Res. 2019, 14, 3261–3267. [Google Scholar]
- Yu, T.; Zhang, X.; Guo, F.; Jin, W.; Liang, P. Enhancing water lubrication by secondary assistant lubricant in small quantity. Tribology 2022, 42, 358–365. (In Chinese) [Google Scholar]
- Xie, Z.; Jiao, J.; Wrona, S. The fluid-structure interaction lubrication performances of a novel bearing: Experimental and numerical study. Tribol. Int. 2023, 179, 108151. [Google Scholar] [CrossRef]
- Xie, Z.; Jiao, J.; Zhao, B.; Zhang, J.; Xu, F. Theoretical and experimental research on the effect of bi-directional misalignment on the static and dynamic characteristics of a novel bearing. Mech. Syst. Signal. Process. 2024, 208, 111041. [Google Scholar] [CrossRef]
- Xie, Z.; Jiao, J.; Yang, K. Experimental and numerical study on the mixed lubricant performances of a new bearing. Tribol. Int. 2023, 182, 108334. [Google Scholar] [CrossRef]
Parameters | Values/Comments |
---|---|
Shaft material | 316 stainless steels |
Bushing material | 3606 NBR |
Bushing length | 80 mm |
Bearing inner diameter | 100 mm |
Radial clearance | 0.07 mm |
Oil inlet diameter | 10 mm |
Parameters | Values/Comments |
---|---|
Shaft rotational speed | 100 r/min |
Water density | 1000 kg/m3 |
Water dynamic viscosity | 1 mPa·s |
Emulsifying oil density | 698 kg/m3 |
Emulsifying oil viscosity(@ 21 °C) | 63.79 mPa·s |
Eccentricity ratio | 0.9 |
Radial clearance | 0.07 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yu, T.; Ji, H.; Guo, F.; Duan, W.; Liang, P.; Ma, L. Analysis of Water-Lubricated Journal Bearings Assisted by a Small Quantity of Secondary Lubricating Medium with Navier–Stokes Equation and VOF Model. Lubricants 2024, 12, 16. https://doi.org/10.3390/lubricants12010016
Zhang X, Yu T, Ji H, Guo F, Duan W, Liang P, Ma L. Analysis of Water-Lubricated Journal Bearings Assisted by a Small Quantity of Secondary Lubricating Medium with Navier–Stokes Equation and VOF Model. Lubricants. 2024; 12(1):16. https://doi.org/10.3390/lubricants12010016
Chicago/Turabian StyleZhang, Xiaohan, Tao Yu, Hao Ji, Feng Guo, Wenbin Duan, Peng Liang, and Ling Ma. 2024. "Analysis of Water-Lubricated Journal Bearings Assisted by a Small Quantity of Secondary Lubricating Medium with Navier–Stokes Equation and VOF Model" Lubricants 12, no. 1: 16. https://doi.org/10.3390/lubricants12010016
APA StyleZhang, X., Yu, T., Ji, H., Guo, F., Duan, W., Liang, P., & Ma, L. (2024). Analysis of Water-Lubricated Journal Bearings Assisted by a Small Quantity of Secondary Lubricating Medium with Navier–Stokes Equation and VOF Model. Lubricants, 12(1), 16. https://doi.org/10.3390/lubricants12010016