Surface Laser Micropatterning of Polyethylene (PE) to Increase the Shearing Strength of Adhesive Joints
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pietraszek, J.; Radek, N.; Goroshko, A.V. Challenges for the DOE methodology related to the introduction of Industry 4.0. Prod. Eng. Arch. 2020, 4, 190–194. [Google Scholar] [CrossRef]
- Radek, N.; Szczotok, A.; Gądek-Moszczak, A.; Dwornicka, R.; Bronček, J.; Pietraszek, J. The impact of laser processing parameters on the properties of electrospark deposited coatings. Arch. Metall. Mater. 2018, 63, 809–816. [Google Scholar]
- Kurp, P. Ideas and Assumptions of a New Kind Helical Metal Expansion Joints. Mater. Res. Proc. 2022, 24, 236–242. [Google Scholar]
- Gądek-Moszczak, A.; Radek, N.; Wroński, S.; Tarasiuk, J. Application the 3D image analysis techniques for assessment the quality of material surface layer before and after laser treatment. Adv. Mater. Res. 2014, 874, 133–138. [Google Scholar] [CrossRef]
- Lasagni, A.F.; Roch, T.; Berger, J.; Kunze, T.; Lang, V.; Beyer, E. To use or not to use (direct laser interference patterning), that is the question. Proc. SPIE 2015, 9351, 935115. [Google Scholar]
- Mao, B.; Siddaiah, A.; Liao, Y.; Menezes, P.L. Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. J. Manuf. Process. 2020, 53, 153–173. [Google Scholar] [CrossRef]
- Garcia-Giron, A.; Romano, J.M.; Batal, A.; Dashtbozorg, B.; Dong, H.; Solanas, E.M.; Angos, D.U.; Walker, M.; Penchev, P.; Dimov, S.S. Durability and Wear Resistance of Laser-Textured Hardened Stainless Steel Surfaces with Hydrophobic Properties. Langmuir 2019, 35, 5353–5363. [Google Scholar] [CrossRef]
- Romano, J.-M.; Garcia-Giron, A.; Penchev, P.; Dimov, S. Triangular laser-induced submicron textures for functionalising stainless steel surfaces. Appl. Surf. Sci. 2018, 440, 162–169. [Google Scholar] [CrossRef]
- Krzywicka, M.; Szymańska, J.; Tofil, S.; Malm, A.; Grzegorczyk, A. Surface Properties of Ti6Al7Nb Alloy: Surface Free Energy and Bacteria Adhesion. J. Funct.Biomater. 2022, 13, 26. [Google Scholar] [CrossRef]
- Witkowski, G.; Tofil, S.; Mulczyk, K. Effect of laser beam trajectory on pocket geometry in laser micromachining. Open Eng. 2020, 10, 830–838. [Google Scholar] [CrossRef]
- Antoszewski, B.; Sęk, P. Influence of laser beam intensity on geometry parameters of a single surface texture element. Arch. Met. Mater. 2015, 60, 2215–2219. [Google Scholar] [CrossRef]
- Romano, J.-M.; Gulcur, M.; Garcia-Giron, A.; Martinez-Solanas, E.; Whiteside, B.R.; Dimov, S.S. Mechanical durability of hydrophobic surfaces fabricated by injection molding of laser-induced textures. Appl. Surf. Sci. 2019, 476, 850–860. [Google Scholar] [CrossRef]
- Antoszewski, B.; Tofil, S.; Mulczyk, K. The Efficiency of UV Picosecond Laser Processing in the Shaping of Surface Structures on Elastomers. Polymers 2020, 12, 2041. [Google Scholar] [CrossRef] [PubMed]
- Ravi-Kumar, S.; Lies, B.; Zhang, X.; Lyu, H.; Qin, H. Laser ablation of polymers—A review. Polym. Int. 2019, 68, 1391–1401. [Google Scholar] [CrossRef]
- Prakash, J.C.G.; Prasanth, R. Approaches to design a surface with tunable wettability: A review on surface properties. J. Mater. Sci. 2021, 56, 108–135. [Google Scholar] [CrossRef]
- Milles, S.; Voisiat, B.; Nitschke, M.; Lasagni, A.F. Influence of roughness achieved by periodic structures on the wettability of aluminum using direct laser writing and direct laser interference patterning technology. J. Mater. Process. Technol. 2019, 270, 142–151. [Google Scholar] [CrossRef]
- Shen, M.-X.; Zhang, Z.-X.; Yang, J.-T.; Xiong, G.-Y. Wetting Behavior and Tribological Properties of Polymer Brushes on Laser-Textured Surface. Polymers 2019, 11, 981. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Patel, D.S.; Ramkumar, J.; Balani, K. Single step laser surface texturing for enhancing contact angle and tribological properties. Int. J. Adv. Manuf. Technol. 2019, 100, 1253–1267. [Google Scholar] [CrossRef]
- Ruszaj, A.; Cygnar, M.; Grabowski, M. The state of the art in electrochemical machining process modeling and applications. AIP Conf. Proc. 2018, 2017, 020029. [Google Scholar] [CrossRef]
- Patil, D.; Sharma, A.; Aravindan, S.; Rao, P.V. Development of hot embossing setup and fabrication of ordered nanostructures on large area of polymer surface for antibiofouling application. Micro Nano Lett. 2019, 14, 191–195. [Google Scholar] [CrossRef]
- Wang, R.; Wei, J.; Fan, Y. Chalcogenide phase-change thin films used as grayscale photolithography materials. Opt. Express 2014, 22, 4973–4984. [Google Scholar] [CrossRef]
- Kim, C.-S.; Ahn, S.-H.; Jang, D.-Y. Review: Developments in micro/nanoscale fabrication by focused ion beams. Vacuum 2012, 86, 1014–1035. [Google Scholar] [CrossRef]
- Gamaly, E.G. The physics of ultrashort laser interaction with solids at nonrelativistic intensities. Phys. Rep. 2011, 508, 91–243. [Google Scholar] [CrossRef]
- Avino, P.; Petrucci, A.; Schulze, D.; Segebade, C.; Activation, A.A.-P.; Worsfold, P.; Poole, C.; Townshend, A.; Miró, M. Encyclopedia of Analytical Science, 3rd ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 25–39. [Google Scholar] [CrossRef]
- Antoszewski, B.; Kurp, P. Effect of Surface Texture on the Sliding Pair Lubrication Efficiency. Lubricants 2022, 10, 80. [Google Scholar] [CrossRef]
- Assaf, Y.; Kietzig, A.-M. Optical and chemical effects governing femtosecond laser-induced structure formation on polymer surfaces. Mater. Today Commun. 2018, 14, 169–179. [Google Scholar] [CrossRef]
- Wood, M.J.; Coady, M.J.; Aristizabal, F.; Nielsen, K.; Ragogna, P.J.; Kietzig, A.-M. Femtosecond laser micromachining of copolymeric urethane materials. Appl. Surf. Sci. 2019, 483, 633–641. [Google Scholar] [CrossRef]
- Ocaña, J.L.; Morales, M.; Porro, J.A.; Díaz, M.; de Lara, L.R.; Correa, C. Laser Plasma Interaction and Shock Material Processing; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B., Eds.; Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 47–74. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, J.; Peng, M.; Yang, Z.; Wan, Y.; Yao, F.; Zhou, J.; Ouyang, C.; Deng, X.; Luo, H. Laser-induced wettability gradient surface on NiTi alloy for improved hemocompatibility and flow resistance. Mater. Sci. Eng. C 2020, 111, 110847. [Google Scholar] [CrossRef]
- Kulander, K.; Lewenstein, M. Multiphoton and Strong-Field Processes; Drake, G., Ed.; Springer Handbook of Atomic, Molecular, and Optical Physics, Springer Handbooks; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Ou, Y.; Yang, Q.; Chen, F.; Deng, Z.; Du, G.; Wang, J.; Bian, H.; Yong, J.; Hou, X. Direct Fabrication of Microlens Arrays on PMMA With Laser-Induced Structural Modification. IEEE Photonics Technol. Lett. 2015, 27, 2253–2256. [Google Scholar] [CrossRef]
- Kallepalli, L.N.D.; Soma, V.R.; Desai, N.R. Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices. Opt. Eng. 2012, 51, 073402. [Google Scholar] [CrossRef]
- Guay, J.-M.; Villafranca, A.; Baset, F.; Popov, K.; Ramunno, L.; Bhardwaj, V.R. Polarization-dependent femtosecond laser ablation of poly-methyl methacrylate. New J. Phys. 2012, 14, 085010. [Google Scholar] [CrossRef]
- Voisiat, B.; Aguilar-Morales, A.I.; Kunze, T.; Lasagni, A.F. Development of an Analytical Model for Optimization of Direct Laser Interference Patterning. Materials 2020, 13, 200. [Google Scholar] [CrossRef]
- Alamri, S.; Lasagni, A. Development of a general model for direct laser interference patterning of polymers. Opt. Express 2017, 25, 9603–9616. [Google Scholar] [CrossRef]
- Lasagni, A.; Manzoni, A.; Mücklich, F. Micro/Nano Fabrication of Periodic Hierarchical Structures by Multi-Pulsed Laser Interference Structuring. Adv. Eng. Mater. 2007, 9, 872–875. [Google Scholar] [CrossRef]
- Zhai, T.; Zhang, X.; Pang, Z.; Dou, F. Direct Writing of Polymer Lasers Using Interference Ablation. Adv. Mater. 2011, 23, 1860–1864. [Google Scholar] [CrossRef]
- Stankevičius, E.; Malinauskas, M.; Gedvilas, M.; Voisiat, B.; Račiukaitis, G. Fabrication of periodic microstructures by multiphoton polymerization using the femtosecond laser and four-beam interference. Mater. Sci. 2011, 17, 244–248. [Google Scholar] [CrossRef]
- Nemani, S.K.; Annavarapu, R.K.; Mohammadian, B.; Raiyan, A.; Heil, J.; Haque, M.A.; Abdelaal, A.; Sojoudi, H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces 2018, 5, 1801247. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, X.; Qian, Y.; Zou, Y. Polyethylene plastic production process. Insight-Mater. Sci. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Tofil, S.; Manikandan, M.; Arivazhagan, N. Surface Laser Micropatterning of Polyethylene Terephthalate (PET) to Increase the Shearing Strength of Adhesive Joints. Mater. Res. Proc. 2022, 24, 27–33. [Google Scholar]
- Available online: https://www.armetpolska.pl/pe-polietylen/ (accessed on 14 June 2023).
- MULTIBOND-1101 Data Sheet. Available online: www.multibond.pl (accessed on 14 June 2023).
- PN-EN ISO 291:2010; Tworzywa sztuczne—Znormalizowane Warunki Klimatyczne Kondycjonowania I Badania, (in English—Plastics—Standardized Climatic Conditioning And Testing). PKN (Polski Komitet Normalizacyjny): Warsaw, Poland, 2010.
- PN-EN ISO 6892-1:2020-05; Próba Rozciągania—Część 1: Metoda Badania W Temperaturze Pokojowej (in English—Tensile test—Part 1: Test Method At Room Temperature). PKN (Polski Komitet Normalizacyjny): Warsaw, Poland, 2022.
- Tofil, S.; Barbucha, R.; Kocik, M.; Kozera, R.; Tański, M.; Arivazhagan, N.; Yao, J.; Zrak, A. Adhesive Joints with Laser Shaped Surface Microstructures. Materials 2021, 14, 24. [Google Scholar] [CrossRef]
Property | Value | Unit |
---|---|---|
Abrasion (sand suspension) | ≥90 | % |
Stress at the yield point | ≥18–20 | MPa |
Elongation | ~300 | % |
Young modulus, E | ~700 | MPa |
Impact strength (Charpy) | >120 | kJ/m2 |
Thermal conductivity at 23 °C | >0.40 | W/m K |
Puncture resistance | ~40 | KV/mm |
Surface resistance | >1012 | Ω |
Property | Value | Unit |
---|---|---|
Viscosity (before it hardens) | 10,600 (component A) 6300 (component B) | mPa·s |
Specific weight in 25 °C (before it hardens) | 1.16 (component A) 0.98 (component B) | g/mL |
Shear strength with tensile strength (after it hardens) | 26.0 (metals) 7.0 (plastics) | N/mm2 |
Peel-off resistance (after it hardens) | 5.0 | N/mm |
Working temperature range | −60–+100 | °C |
Property | Value | Unit |
---|---|---|
Pulse energy | 12.6 | µJ |
Pulse repetition frequency | 200 | kHz |
Laser scanning speed | 1000 | mm/s |
Shielding gas (air) | 12 | nl/min |
PE without Micropattern | PE with Circle Micropattern | PE with Perpendicular Lines Micropattern | |
---|---|---|---|
Measurement 1, N | 55 | 145 | 252 |
Measurement 2, N | 42 | 134 | 235 |
Measurement 3, N | 56 | 140 | 241 |
Measurement 4, N | 48 | 138 | 249 |
Measurement 5, N | 50 | 149 | 255 |
Average, N | 50.2 | 141.2 | 246.4 |
Standard deviation, N | 5.67 | 5.89 | 8.23 |
Min, N | 42 | 134 | 235 |
Max, N | 56 | 149 | 255 |
The average increase in strength, % | - | 281.27 | 490.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofil, S.; Kurp, P.; Manikandan, M. Surface Laser Micropatterning of Polyethylene (PE) to Increase the Shearing Strength of Adhesive Joints. Lubricants 2023, 11, 368. https://doi.org/10.3390/lubricants11090368
Tofil S, Kurp P, Manikandan M. Surface Laser Micropatterning of Polyethylene (PE) to Increase the Shearing Strength of Adhesive Joints. Lubricants. 2023; 11(9):368. https://doi.org/10.3390/lubricants11090368
Chicago/Turabian StyleTofil, Szymon, Piotr Kurp, and Manoharan Manikandan. 2023. "Surface Laser Micropatterning of Polyethylene (PE) to Increase the Shearing Strength of Adhesive Joints" Lubricants 11, no. 9: 368. https://doi.org/10.3390/lubricants11090368
APA StyleTofil, S., Kurp, P., & Manikandan, M. (2023). Surface Laser Micropatterning of Polyethylene (PE) to Increase the Shearing Strength of Adhesive Joints. Lubricants, 11(9), 368. https://doi.org/10.3390/lubricants11090368