The Synthesis of Cu-Coated Ti2SnC Ceramic and Its Tribological Behaviors as a Lubricant Additive
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eklund, P.; Beckers, M.; Jansson, U.; Hogberg, H.; Hultman, L. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 2010, 518, 1851–1878. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.M. Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 2011, 56, 143–166. [Google Scholar] [CrossRef]
- Fu, L.; Xia, W. MAX Phases as nanolaminate materials: Chemical composition, microstructure, synthesis, properties, and applications. Adv. Eng. Mater. 2021, 23, 2001191. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-temperature solid lubricants and self-lubricating composites: A critical review. Lubricants 2022, 10, 10080177. [Google Scholar] [CrossRef]
- Gupta, S.; Barsoum, M.W. On the tribology of the MAX phases and their composites during dry sliding: A review. Wear 2011, 271, 1878–1894. [Google Scholar] [CrossRef]
- Malaki, M.; Varma, R.S. Mechanotribological aspects of MXene-reinforced nanocomposites. Adv Mater. 2020, 32, 2003154. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.X.; Huang, Z.Y.; Ai, M.X.; Yang, Z.; Zhang, Z.L.; Li, S.B. Tribophysical properties of polycrystalline disk Ti3AlC2. J. Am. Ceram. Soc. 2005, 88, 3270–3274. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Zhai, H.X.; Guan, M.L.; Liu, X.; Ai, M.X.; Zhou, Y. Oxide-film-dependent tribological behaviors of Ti3SiC2. Wear 2007, 262, 1079–1085. [Google Scholar] [CrossRef]
- Myhra, S.; Summers, J.W.B.; Kisi, E.H. Ti3SiC2-A layered ceramic exhibiting ultra-low friction. Mater. Lett. 1999, 39, 6–11. [Google Scholar] [CrossRef]
- Emmerlich, J.; Gassner, G.; Eklund, P.; Hogberg, H.; Hultman, L. Micro and macroscale tribological behavior of epitaxial Ti3SiC2 thin films. Wear 2008, 264, 914–919. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, G.P.; Zhou, Y.C.; Cai, B.C. Ti3SiC2—A self-lubricating ceramic. Mater. Lett. 2002, 55, 285–289. [Google Scholar] [CrossRef]
- Ma, J.Q.; Hao, J.Y.; Fu, L.C.; Qiao, Z.H.; Yang, J.; Liu, W.M.; Bi, Q.L. Intrinsic self-lubricity of layered Ti3AlC2 under certain vacuum environment. Wear 2013, 297, 824–828. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, J.; Zhu, S.Y.; Qiao, Z.H.; Yang, J. Low friction properties of Ti3AlC2/SiC tribo-pair in sea water environment. Tribol. Int. 2016, 103, 228–235. [Google Scholar] [CrossRef]
- Shi, X.; Wang, M.; Zhai, W.; Xu, Z.; Zhang, Q.; Chen, Y. Influence of Ti3SiC2 content on tribological properties of NiAl matrix self-lubricating composites. Mater. Des. 2013, 45, 179–189. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, X.; Zhang, Q.; Zhai, W.; Yao, J.; Chen, L.; Zhu, Q.; Xiao, Y. High-temperature tribological performance of Ti3SiC2/TiAl self-lubricating composite against Si3N4 in air. J. Mater. Eng. Perform. 2014, 23, 2255–2264. [Google Scholar] [CrossRef]
- Feng, P.; Ren, Y.P.; Li, Y.T.; He, J.F.; Zhao, Z.; Ma, X.L.; Fan, X.Q.; Zhu, M.H. Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive. Friction 2022, 10, 2018–2032. [Google Scholar] [CrossRef]
- Yi, S.; Li, J.J.; Liu, Y.F.; Ge, X.Y.; Zhang, J.; Luo, J.B. In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity. Tribol. Int. 2021, 154, 106695. [Google Scholar] [CrossRef]
- Ji, X.; Yi, Z.; Zhang, D.; Wu, K.; Chang, F.; Li, C.; Tang, H.; Song, H. Synthesis, characterization and tribological properties of high purity Ti3SiC2 nanolamellas. Ceram. Int. 2014, 40, 6219–6224. [Google Scholar] [CrossRef]
- Wu, Q.O.; Li, C.S.; Tang, H. Synthesis and tribological properties of laminated Ti3SiC2 crystals. Cryst. Res. Technol. 2010, 45, 851–855. [Google Scholar] [CrossRef]
- Wu, Q.O.; Tang, H.; Li, C.S.; Yang, X.F.; Song, H.J.; Chen, K.M. Synthesis and tribological properties of hexagonal titanium silicon carbide crystals. Cryst. Res. Technol. 2011, 46, 178–182. [Google Scholar] [CrossRef]
- Xue, M.; Tang, H.; Li, C.S. Preparation and tribological behaviour of laminated Ti3AlC2 crystals as additive in base oil. Adv. Appl. Ceram. 2014, 113, 245–250. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.B.; Liu, W.M.; Fu, X.S. Performance and anti-wear mechanism of Cu nanoparticles as lubricating oil additives. Ind. Lubr. Tribol. 2009, 61, 311–318. [Google Scholar] [CrossRef]
- Shafi, W.K.; Raina, A.; Ul Haq, M.I. Performance evaluation of hazelnut oil with copper nanoparticles-a new entrant for sustainable lubrication. Ind. Lubr. Tribol. 2019, 71, 749–757. [Google Scholar] [CrossRef]
- Wang, X.J.; Feng, Y.; Qian, G.; Zhang, J.C.; Zhang, Q.; Ding, F. A new core-shell Ti3AlC2/Cu composite powder prepared by electroless plating method. Surf. Coat. Technol. 2014, 240, 261–268. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, S.Y.; Cheng, J.; Qiao, Z.H.; Yang, J.; Liu, W.M. Microstructural, mechanical and tribological properties of Al matrix composites reinforced with Cu coated Ti3AlC2. J. Alloys Compd. 2017, 690, 612–620. [Google Scholar] [CrossRef]
- Davis, D.; Shah, A.F.; Panigrahi, B.B.; Singh, S. Effect of Cr2AlC nanolamella addition on tribological properties of 5W-30 engine oil. Appl. Surf. Sci. 2019, 493, 1098–1105. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Zhang, Y.; Zhang, P.; Zhang, S. Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants. Ind. Lubr. Tribol. 2018, 70, 519–526. [Google Scholar] [CrossRef]
Chemical Composition | Content |
---|---|
Deionized water | 1 L |
CuSO4∙5H2O | 8 g/L |
EDTA-2Na | 31 g/L |
NaOH | 10 g/L |
HCHO | 15 mL/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Jiang, P.; Liao, Z.; Li, C.; Li, L.; Jia, X.; Pang, X.; Zhang, Y. The Synthesis of Cu-Coated Ti2SnC Ceramic and Its Tribological Behaviors as a Lubricant Additive. Lubricants 2023, 11, 318. https://doi.org/10.3390/lubricants11080318
Wang S, Jiang P, Liao Z, Li C, Li L, Jia X, Pang X, Zhang Y. The Synthesis of Cu-Coated Ti2SnC Ceramic and Its Tribological Behaviors as a Lubricant Additive. Lubricants. 2023; 11(8):318. https://doi.org/10.3390/lubricants11080318
Chicago/Turabian StyleWang, Shuai, Peng Jiang, Zhiqian Liao, Chong Li, Longteng Li, Xiangya Jia, Xianjuan Pang, and Yongzhen Zhang. 2023. "The Synthesis of Cu-Coated Ti2SnC Ceramic and Its Tribological Behaviors as a Lubricant Additive" Lubricants 11, no. 8: 318. https://doi.org/10.3390/lubricants11080318
APA StyleWang, S., Jiang, P., Liao, Z., Li, C., Li, L., Jia, X., Pang, X., & Zhang, Y. (2023). The Synthesis of Cu-Coated Ti2SnC Ceramic and Its Tribological Behaviors as a Lubricant Additive. Lubricants, 11(8), 318. https://doi.org/10.3390/lubricants11080318