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Abstract: Lubricant additive plays an important role in reducing the friction and wear for base oil.
MAX phase ceramics may have superior advantages for additive application due to their unique
nanolayered structure. In this paper, Ti2SnC ceramic is prepared by sintering the elemental mixtures
at 1250 ◦C. In addition, Cu-coated Ti2SnC ceramic is successfully prepared using a chemical plating
method for the first time. It is confirmed that the Ti2SnC ceramic has good self-catalytic activity, and
a layer of stacking Cu nano-particles can be deposited on the Ti2SnC surface without pretreatment.
When the Cu-coated Ti2SnC ceramic powder is doped into PAO10 base oil, the oil can exhibit excellent
lubrication properties, where the friction coefficient is as low as 0.095. A layer of tribo-film can be
formed during the sliding process when the Cu-coated Ti2SnC ceramic is incorporated into PAO10
base oil, which can reduce the friction coefficient. The superior lubrication properties can be attributed
to the synergistic lubrication effect of Ti2SnC ceramic and Cu nano-particles.

Keywords: Cu coated Ti2SnC ceramic; additive; chemical plating; microstructure; wear; tribology

1. Introduction

MAX phases are a family of ternary layered compounds, where M is a class of early-
transition metal, A is a IIIA or IVA group element, and X is a C or N element [1]. It is well
known that MAX phases have combination properties of ceramic and metal, such as a
superior damage tolerance, high electrical conductivity, excellent thermal shock resistance,
and good machinability [2]. Therefore, MAX phases have been widely studied in high-
temperature, structure, catalysis, and electrical contacts fields [3,4].

The tribological behaviors of MAX phases have also attracted increasing attention due
to their unique laminate structure [5,6]. It is well known that MAX phases can exhibit better
lubrication properties only under several certain conditions, such as at high speeds [7,8],
under a low load [9], at a micro-scale [10], against some certain counterparts [11], in a
vacuum environment [12], or under a water environment [13]. Furthermore, it has been
reported that MAX phases could play lubricating roles in reducing friction and wear
when doped into a NiAl or TiAl matrix, due to their tribo-oxidation effect [14,15]. It has
also been confirmed that MAX and MXene phases can be used as a lubricant additive
to improve the friction and wear properties of base oil [16–18]. However, the existing
reports, in which MAX phases without modification are used as a lubricant additive in
oil, are mostly focused on Ti3AlC2 and Ti3SiC2 ceramics [18–21]. For example, it was
reported that HVI500 base oil with Ti3SiC2 crystals had a good anti-wear capability in
comparison to pure HVI500 base oil [19,20]. Xue et al. [21] also found that 100SN base
oil containing Ti3AlC2 samples exhibited good tribological behaviors with a load of 15 N.
However, the tribological properties of MAX phases used as additives for base oil still need
more investigation.
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It has been reported that some additives modified by Cu nano-particles could exhibit
an excellent anti-friction ability when incorporated into base oil [22,23]. In the present study,
different from the other tribological applications of MAX phases, the tribological properties
of Cu-coated MAX phases used as an additive are studied. For the first time, ternary layered
Ti2SnC ceramic powder is selected as a lubricant additive for poly-alpha-olefin (PAO10)
base oil. In order to improve the lubrication properties of the Ti2SnC ceramic particles,
novel nano-Cu-coated Ti2SnC ceramic particles are synthesized via a chemical plating
route, in which the chemical plating method is highly efficient and controllable [24,25]. The
tribological behaviors of Ti2SnC and nano-Cu-coated Ti2SnC ceramic used as a lubricant
additive for PAO10 base oil are studied as well. It is worth noting that the Cu-coated Ti2SnC
ceramic can evidently reduce the friction coefficient of PAO10 base oil. The lubricating
mechanism is also proposed.

2. Materials and Methods

An experiment schema of Cu-coated Ti2SnC ceramic is presented in Figure 1. Here,
Ti (400 mesh, 99.5 wt.% pure), Sn (300 mesh, 99.8 wt.% pure), and graphite (400 mesh,
99.5 wt.% pure) powders were chosen as the starting materials to prepare the Ti2SnC
ceramic. Briefly, the above three powders were uniformly mixed with a molar ratio of
2:1.1:1. Then, the mixed powders were first heated at a heating rate of 10 ◦C/min from room
temperature to 1250 ◦C, and then sintered at 1250 ◦C for 1 h under an argon atmosphere
in a tube furnace. At last, the as-sintered Ti2SnC specimen was ground into powders in a
milling machine and sieved using a sifter (800 mesh).
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Figure 1. Schematic illustration of synthesis process of Cu coated Ti2SnC ceramic.

The Cu-coated Ti2SnC ceramic was prepared using a chemical plating method, where
the chemical compositions of the plating solution can be found elsewhere [25]. Briefly, the
chemical plating solution was magnetically stirred and heated to 60 ◦C in a water bath.
During the stirring process, 10 g of Ti2SnC powder was poured into the chemical plating
solution (1 L). The pH of the chemical plating solution was controlled at 13 by dropping
NaOH solution. The chemical compositions of the plating solution are listed in Table 1.
The plating mechanism can be described as follows:

2HCHO + Cu2+ + 4OH− → 2HCOO− + Cu↓ + H2↑ + 2H2O. (1)

Table 1. Chemical compositions of the plating solution.

Chemical Composition Content

Deionized water 1 L
CuSO4·5H2O 8 g/L

EDTA-2Na 31 g/L
NaOH 10 g/L
HCHO 15 mL/L
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The plating process was finished as the solution became clear. Then, the as-prepared
Cu-coated Ti2SnC ceramic powder was washed repeatedly using deionized water until
the pH of the filtrate reached around 7. At last, the obtained wet powder was dried in a
vacuum freeze-drying machine.

The tribological behavior tests were conducted on a UMT-2 rational tribometer. The
tribometer that shows the different parts and location of the different PAO oils is illustrated
in Figure 2. For the sliding tests, 5 wt.% as-prepared Cu-coated Ti2SnC powder and Ti2SnC
powder were added into PAO10 base oil, respectively, and the mixtures were ultrasonically
stirred for 1 h before the sliding tests. The mixed oils were dropped onto the GCr15
(AISI 52100) steel disk surfaces before the sliding tests, in which the GCr15 steel ball
(Φ 6.35 mm) was selected as the counterpart. The applied load, rational speed, and rational
radius were set as 10 N, 300 r/min, and 5 mm, respectively. Based on the Hertz model, the
applied normal pressure can be determined to be approximately 875 MPa. The friction
coefficient versus the sliding time was recorded by the computer automatically. Moreover,
the three-dimension (3D) wear track morphologies were obtained by a Nano Focus µsurf-
expert 3D profilometer.
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Figure 2. Schematic diagram of UMT-2 ball-on-disk tribometer.

The phase compositions of the as-prepared Ti2SnC and Cu-coated Ti2SnC were exam-
ined using a Bruker D8 Advance type X-ray diffractometer (XRD) with Cu Kα radiation.
Both a JSM-7800F type field-emission scanning electron microscope (FESEM) and FEI Tecnai
F30 type transmission electron microscope (TEM) were taken to observe the microstructures
of the as-prepared Ti2SnC and Cu-coated Ti2SnC powders. Energy dispersive spectroscopy
was also taken to obtain the content of the Cu in the Cu-coated Ti2SnC powders. In order
to retain the original wear morphologies, an optical microscope was employed to observe
the wear tracks of the GCr15 disks after the sliding tests. The wear scars of the GCr15 balls
were examined using the optical microscope as well.

3. Results and Discussion

Figure 3 shows the XRD patterns of the as-prepared Ti2SnC and Cu-coated Ti2SnC
powders. As shown in Figure 3, the diffraction peaks at 43.4◦, 50.6◦, and 74.2◦ can be
indexed as Cu (PDF # 99-0034) and the peaks at 36.0◦ and 41.8◦ can be assigned to TiCx
(PDF # 65-8807). Other diffraction peaks, such as 13.05◦, 26.1◦, 32.8◦, 33.5◦, 35.4◦, 38.4◦,
39.6◦, 47.0◦, and 52.3◦ et al., can be associated with the Ti2SnC phase, according to the
Ti2SnC standard peaks (PDF # 89-5590). The diffraction peaks of the Cu can be examined
after the chemical plating process, apart from Ti2SnC and minor TiCx. For the Cu-coated
Ti2SnC ceramic, obviously, the phase constituents mainly consisted of Cu and Ti2SnC
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phases. Based on the XRD results, it is confirmed that the Cu phase can be generated
successfully according to the chemical plating process.

Lubricants 2023, 11, x FOR PEER REVIEW 4 of 11 
 

 

47.0°, and 52.3° et al., can be associated with the Ti2SnC phase, according to the Ti2SnC 
standard peaks (PDF # 89-5590). The diffraction peaks of the Cu can be examined after the 
chemical plating process, apart from Ti2SnC and minor TiCx. For the Cu-coated Ti2SnC 
ceramic, obviously, the phase constituents mainly consisted of Cu and Ti2SnC phases. 
Based on the XRD results, it is confirmed that the Cu phase can be generated successfully 
according to the chemical plating process. 

 
Figure 3. XRD patterns of as-prepared Ti2SnC and Cu-coated Ti2SnC. 

The SEM images of the as-prepared Ti2SnC and Cu-coated Ti2SnC are shown in Fig-
ure 4. Clearly, the sizes of the as-prepared Ti2SnC particles are smaller than 10 µm in 
length, as shown in Figure 4a,b. Like some other MAX phases, the as-prepared Ti2SnC 
ceramic particle exhibits a laminate structure feature as well. For the as-prepared Cu-
coated Ti2SnC ceramic, large stacking Cu particles that are nano-scale cover the Ti2SnC 
ceramic particle, as shown in Figure 4c,d. The laminate structure feature cannot be ob-
served on account of this covering of Cu nano-particles. Some reports have argued that 
MAX phases need to be pretreated before Cu deposition [24]. For the most part, ceramic 
particles should be treated to increase the micro-roughness of the surface before the plat-
ing treatment. The increment in the micro-roughness of the surface contributes to the plat-
ing of the Cu nano-particles. Herein, we found that the Ti2SnC ceramic particles had good 
self-catalytic activity, and the stacking Cu nano-particles layer could be deposited onto 
the Ti2SnC ceramic surface without pretreatment. The Cu content was approximately cal-
culated to be 10 wt.%. An EDS analysis was also conducted to evolute the Cu content in 
the Cu-coated Ti2SnC particles. As shown in the inserts, the atomic ratio of the Ti and Sn 
in the Ti2SnC particles was approximately 2:1, suggesting that the Ti2SnC ceramic was 
successfully prepared. For the Cu-coated Ti2SnC particles, the atomic ratio of Ti and Sn 
still retained about 2:1, and the atomic content of Cu was 7.8 wt.%, which was in agree-
ment with the calculation result. It should be mentioned that it is not possible to quantify 
carbon using an EDS analysis. 

Figure 3. XRD patterns of as-prepared Ti2SnC and Cu-coated Ti2SnC.

The SEM images of the as-prepared Ti2SnC and Cu-coated Ti2SnC are shown in
Figure 4. Clearly, the sizes of the as-prepared Ti2SnC particles are smaller than 10 µm in
length, as shown in Figure 4a,b. Like some other MAX phases, the as-prepared Ti2SnC
ceramic particle exhibits a laminate structure feature as well. For the as-prepared Cu-coated
Ti2SnC ceramic, large stacking Cu particles that are nano-scale cover the Ti2SnC ceramic
particle, as shown in Figure 4c,d. The laminate structure feature cannot be observed on
account of this covering of Cu nano-particles. Some reports have argued that MAX phases
need to be pretreated before Cu deposition [24]. For the most part, ceramic particles should
be treated to increase the micro-roughness of the surface before the plating treatment. The
increment in the micro-roughness of the surface contributes to the plating of the Cu nano-
particles. Herein, we found that the Ti2SnC ceramic particles had good self-catalytic activity,
and the stacking Cu nano-particles layer could be deposited onto the Ti2SnC ceramic surface
without pretreatment. The Cu content was approximately calculated to be 10 wt.%. An EDS
analysis was also conducted to evolute the Cu content in the Cu-coated Ti2SnC particles.
As shown in the inserts, the atomic ratio of the Ti and Sn in the Ti2SnC particles was
approximately 2:1, suggesting that the Ti2SnC ceramic was successfully prepared. For the
Cu-coated Ti2SnC particles, the atomic ratio of Ti and Sn still retained about 2:1, and the
atomic content of Cu was 7.8 wt.%, which was in agreement with the calculation result. It
should be mentioned that it is not possible to quantify carbon using an EDS analysis.

TEM characterizations were also carried out to examine the structures of the as-
prepared Cu-coated Ti2SnC particles. In order to expose the Ti2SnC matrix, the particles
were ground in a mortar. As shown in Figure 5a, the dot-like Cu nano-particles were dis-
tributed on the Ti2SnC surface. Based on the HRTEM image of a Cu-coated Ti2SnC particle,
the plane (103) of Ti2SnC can be indexed, as shown in Figure 5b. Furthermore, the planes
(110) and (101) of the Cu nano-particles can be identified as well. The XRD, SEM, and TEM
evidence suggests that the Cu-coated Ti2SnC particles were successfully prepared.
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Figure 6a shows the friction coefficient curves versus the sliding time of the PAO10
base oil containing the Ti2SnC and Cu-coated Ti2SnC. Figure 6b shows the wear volumes
of the GCr15 disks after the sliding tests. As shown in Figure 6a, the friction coefficient
of the PAO10 base oil was around 0.122. When the Ti2SnC powder was incorporated into
the PAO10 base oil, the friction coefficient decreased down to 0.114. Furthermore, when
the Cu-coated Ti2SnC powder was added into the PAO10 base oil, it showed the best
lubrication behavior among the three oils, in which the friction coefficient was as low as
0.095. It can be seen that the GCr15 tribo-pair showed the best lubricating behavior as the
Cu-coated Ti2SnC powder was incorporated into the PAO10 base oil. It also can be found
that the fluctuation of the blue curve was higher than that of the others. As the PAO10 base
oil was employed as lubricant, the wear volume of GCr15 was as high as 0.28 mm3. When
the Ti2SnC or Cu-coated Ti2SnC additives were added, the wear volume of the GCr15 disk
evidently came down. When the Cu-coated Ti2SnC was doped into the PAO10 base oil, the
GCr15 disk had the smallest wear volume (0.13 mm3). The result shows that Cu-coated
Ti2SnC powder coupled with PAO10 base oil can reduce friction and wear obviously.
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Figure 7 shows the optical wear images of the GCr15 disks after the sliding tests that
were lubricated by PAO10 base oil, PAO10 base oil containing 5 wt.% Ti2SnC, and PAO10
base oil containing 5 wt.% Cu-coated Ti2SnC. As show in Figure 7b,c, some remnant Ti2SnC
and Cu-coated Ti2SnC particles could be detected on the unworn surfaces of the GCr15
disks. For the PAO10 base oil, large continuous furrows could be observed, which could be
attributed to two-body abrasive wear between the GCr15 tribo-pairs, as shown in Figure 7a.
When 5 wt.% Ti2SnC was added into the PAO10 base oil, the furrows were diminished,
as shown in Figure 7b. The wear scars of the GCr15 balls had similar wear morphologies,
as shown in the inserts of Figure 7a,b. The addition of PAO base oil between the sliding
interface could result in a low friction coefficient, where the friction coefficient was as low
as 0.122. With the incorporation of Ti2SnC into the PAO base oil, the friction coefficient
slightly came down (0.114). Wu and Xue et al. reported that, when Ti3SiC2 powders are
doped into base oil, the friction coefficient could also be reduced, in which the friction
coefficient could come further down with an increasing sliding speed [19,21]. This indicates
that a base oil containing MAX phase powders can improve the lubricating behaviors of
the base oil. However, in this study, it appeared that the Ti2SnC ceramic showed a superior
lubricating effect in the base oil in comparison to the Ti3SiC2 MAX phase. In particular,
for the PAO10 base oil containing 5 wt.% Cu-coated Ti2SnC, the friction coefficient was
decreased by 22% compared the pure PAO10 base oil, in which the friction coefficient was
as low as 0.095. As shown in Figure 7c, the furrows that were caused by two-body abrasive
almost disappeared. Instead, a layer of tribo-film could be found on the wear track. The
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tribo-film, which was traced to the tribo-chemical reaction of the Cu-coated Ti2SnC, could
further reduce the friction coefficient. Furthermore, the corresponding wear scar of the
GCr15 ball was covered by a layer of tribo-film as well. The most likely explanation could
be attributed to the modification of the layer of Cu nano-particles. On the one hand, the
layer of Cu nano-particles might have been destroyed and distributed into the PAO10
base oil during the sliding process, which could result in a slight fluctuation of the friction
coefficient. On the other hand, a layer of tribo-film induced by a tribo-chemical reaction
could be generated due to the incorporation of Cu nano-particles, which can reduce friction
and wear.
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The 3D wear tracks of GCr15 after the sliding tests that were lubricated by PAO10
base oil, PAO10 base oil containing 5 wt.% Ti2SnC, and PAO10 base oil containing 5 wt.%
Cu-coated Ti2SnC are shown in Figure 8. For the PAO10 base oil, the width of the wear
track was as high as 413 µm, as shown in Figure 8a. When the Ti2SnC and Cu-coated
Ti2SnC were incorporated into the PAO10 base oil, the width of the GCr15 wear tracks
came down to 392 µm and 350 µm, respectively, as shown in Figure 8b,c. Furthermore,
the depth of the wear tracks gradually became shallow when the Ti2SnC and Cu-coated
Ti2SnC were doped into the PAO10 base oil. The variation in the GCr15 wear tracks also
confirmed that the PAO10 base oil containing 5 wt.% Cu-coated Ti2SnC could display a
better wear-resistant property. On account of the addition of Ti2SnC powder, the oil film
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strength could be notably elevated, which could reduce the friction coefficient during the
sliding [26]. It is well known that Cu nano-particles can contribute to generating a stable
tribo-film to diminish the destruction of lubricating films during sliding [27]. Moreover, Cu
nano-particles can also increase the intensity of an oil film because of the adsorption effect
of these Cu nano-particles, in which a higher intensity of tribo-film could lead to a better
lubrication effect. Therefore, due to the synergistic lubrication effect of the Ti2SnC and
Cu nano-particles, the PAO10 base oil within the Cu-coated Ti2SnC powder could exhibit
superior lubrication behaviors.
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4. Conclusions

In this paper, a Cu-coated Ti2SnC ceramic that was employed as a lubricant additive
for PAO10 base oil was prepared and its tribological behaviors were studied. Herein,
Cu-coated Ti2SnC ceramic was prepared for the first time using a chemical plating method.
It was established that the Ti2SnC ceramic had favorable self-catalytic activity. The Cu nano-
particles could be stacked onto the surface of the Ti2SnC particles without pretreatment.
When Ti2SnC ceramic particles were incorporated into the PAO10 base oil, the friction
and wear of the GCr15 tribo-pair was slightly improved. The main wear mechanism
was two-body abrasive wear. It was established that the friction coefficient of PAO10
base oil can be greatly improved by incorporating Cu-coated Ti2SnC ceramic powder, in
which the friction coefficient can be as low as 0.095. The two-body abrasive wear can be
greatly inhibited when Cu-coated Ti2SnC ceramic is doped into PAO10 base oil. The better
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lubrication behaviors can be attributed to the synergistic lubrication effect of Ti2SnC and
Cu nano-particles. It can be concluded that Cu-coated Ti2SnC ceramic can be employed as
an additive for base oil in tribological fields.
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