Impact of Thermal and Activation Energies on Glauert Wall Jet (WJ) Heat and Mass Transfer Flows Induced by ZnO-SAE50 Nano Lubricants with Chemical Reaction: The Case of Brinkman-Extended Darcy Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Similarity Transformations
2.2. The Momentum Similarity Equation
2.3. The Energy Similarity Equation
2.4. The Concentration Similarity Equation
2.5. The Converted BCs
2.6. The Gradients or Engineering Physical Quantities
3. Numerical Methodology
4. Analysis of Results
4.1. Research Analysis of the Tables
Present Results | ||||
---|---|---|---|---|
0.025 | 0.50 | 0.70 | 1.0 | |
0.030 | - | - | - | |
0.035 | - | - | - | |
0.035 | 0.30 | 0.70 | 1.0 | |
- | 0.50 | - | - | |
- | 0.70 | - | - | |
0.035 | 0.50 | 0.60 | 1.0 | |
- | - | 0.65 | - | |
- | - | 0.70 | - | |
0.035 | 0.50 | 0.70 | 1.0 | |
- | - | - | 1.5 | |
- | - | - | 2.0 | |
0.035 | 0.50 | 0.70 | −0.05 | |
- | - | - | −0.10 | |
- | - | - | −0.15 |
Present Results | |||
---|---|---|---|
0.025 | 1.00 | 2.00 | 1.0204154 |
0.030 | - | - | 1.0242804 |
0.035 | - | - | 1.0281458 |
0.035 | 0.00 | 2.00 | 1.0281458 |
- | 1.00 | - | 1.0281458 |
- | 2.00 | - | 1.0281458 |
0.035 | 1.00 | 1.50 | 1.0272708 |
- | - | 2.00 | 1.0281458 |
- | - | 2.50 | 1.0301780 |
Present Results | |||||
---|---|---|---|---|---|
0.025 | 0.50 | 10 | 0.50 | 0.50 | 10.5067960 |
0.030 | - | - | - | - | 10.5067950 |
0.035 | - | - | - | - | 10.5067940 |
0.035 | 0.30 | 10 | 0.50 | 0.50 | 10.3097350 |
- | 0.50 | - | - | - | 10.5067940 |
- | 0.70 | - | - | - | 10.6971130 |
0.035 | 0.50 | 7.5 | 0.50 | 0.50 | 7.99799500 |
- | - | 0.90 | - | - | 9.50379410 |
- | - | 10.5 | - | - | 11.0081000 |
0.035 | 0.50 | 10 | 0.50 | 0.50 | 10.5067940 |
- | - | - | 1.00 | - | 10.5067940 |
- | - | - | 1.50 | - | 10.9238810 |
0.035 | 0.50 | 10 | 0.50 | 0.50 | 10.5067940 |
- | - | - | - | 1.00 | 10.3670720 |
- | - | - | - | 1.50 | 10.2648640 |
4.2. Research Analysis of the Velocity Curve Profiles
4.3. Research Analysis of the Temperature Curve Profiles
4.4. Research Analysis of the Concentration Curve Profiles
5. Conclusions
- The velocity curves of the WJ flow moderate with a superior impact of the nanoparticle volume fraction but the temperature and concentration profile curves are enhanced.
- The modified porosity parameter and the dimensionless permeability parameter impact initially decay the motion of the wall jet flow and then abruptly augmented the velocity.
- With the increasing value of the radiation parameter, the temperature profiles and the thickness of the thermal boundary layer developed.
- The concentration enriches with a higher impact of activation energy but shrinkages with , and .
- The friction factor upsurges and magnitude-wise declines due to the larger impressions of the mass suction factor and mass blowing factor, respectively.
- The rate of heat transfer is boosted due to the higher influences of the nanoparticle volume fraction while the mass transfer rate decelerates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Glauert, M.B. The wall jet. J. Fluid Mech. 1956, 1, 625–643. [Google Scholar] [CrossRef]
- Astin, P.; Wilks, G. Jet profile solutions of the Falkner-Skan equation. Z. Angew. Math. Und Phys. ZAMP 1996, 47, 790–798. [Google Scholar] [CrossRef]
- Zaidi, S.Z.A.; Mohyud-Din, S.T.; Bin-Mohsen, B. A comparative study of wall jet flow containing carbon nanotubes with convective heat transfer and MHD. Eng. Comput. 2017, 3, 739–753. [Google Scholar] [CrossRef]
- Jafarimoghaddam, A.; Pop, I. Numerical modeling of Glauert type exponentially decaying wall jet flows of nanofluids using Tiwari and Das’ nanofluid model. Int. J. Numer. Meth. Heat Fluid Flow 2018, 2, 1010–1038. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Laminar slip wall jet of Glauert type and heat transfer. Int. J. Heat Mass Transf. 2019, 134, 1153–1158. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Jafarimoghaddam, A.; Shafizadeh, F. Numerical modeling and spatial stability analysis of the wall jet flow of nanofluids with thermophoresis and Brownian effects. Propuls. Power Res. 2019, 8, 210–220. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, A. Heat transfer and fluid flow characteristics of a turbulent wall jet with a wavy wall. Int. J. Heat Fluid Flow 2021, 87, 108749. [Google Scholar] [CrossRef]
- Rashid, U.; Baleanu, D.; Iqbal, A.; Abbas, M. Shape effect of nanosize particles on magnetohydrodynamic nanofluid flow and heat transfer over a stretching sheet with entropy generation. Entropy 2020, 22, 1171. [Google Scholar] [CrossRef]
- Narender, G.; Govardhan, K.; Sarma, G.S. Magnetohydrodynamic stagnation point on a Casson nanofluid flow over a radially stretching sheet. Beilstein J. Nanotechnol. 2020, 11, 1303–1315. [Google Scholar] [CrossRef]
- Yahya, A.U.; Salamat, N.; Habib, D.; Ali, B.; Hussain, S.; Abdal, S. Implication of bio-convection and Cattaneo–Christov heat flux on Williamson Sutterby nanofluid transportation caused by a stretching surface with convective boundary. Chin. J. Phys. 2021, 73, 706–718. [Google Scholar] [CrossRef]
- Garia, R.; Rawat, S.K.; Kumar, M.; Yaseen, M. Hybrid nanofluid flow over two different geometries with Cattaneo–Christov heat flux model and heat generation: A model with correlation coefficient and probable error. Chin. J. Phys. 2021, 74, 421–439. [Google Scholar] [CrossRef]
- Laila, R.; Marwat, D.N.K. Nanofluid flow in a converging and diverging channel of rectangular and heated walls. Ain Shams Eng. J. 2021, 12, 4023–4035. [Google Scholar] [CrossRef]
- Yaseen, M.; Rawat, S.K.; Kumar, M. Cattaneo–Christov heat flux model in Darcy–Forchheimer radiative flow of MoS2–SiO2/kerosene oil between two parallel rotating disks. J. Therm. Anal. Calorim. 2022, 147, 10865–10887. [Google Scholar] [CrossRef]
- Mabood, F.; Imtiaz, M.; Rafiq, M.; El-Zahar, E.R.; Sidi, M.O.; Khan, M.I. Bidirectional rotating flow of nanofluid over a variable thickened stretching sheet with non-Fourier’s heat flux and non-Fick’s mass flux theory. PLoS ONE 2022, 17, e0265443. [Google Scholar] [CrossRef]
- Yaseen, M.; Rawat, S.K.; Kumar, M. Analysis of MoS2-SiO2/water hybrid nanofluid flow with linear and quadratic thermal radiation induced by a stretching/shrinking surface in a Darcy-Forchheimer porous medium. Spec. Top. Rev. Porous Media Int. J. 2022, 13, 31–48. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Pop, I.; Waini, I.; Ishak, A. MHD flow of a nanofluid due to a nonlinear stretching/shrinking sheet with a convective boundary condition: Tiwari–Das nanofluid model. Int. J. Num. Meth. Heat Fluid Flow 2022, 32, 3233–3258. [Google Scholar] [CrossRef]
- Bestman, A.R. Natural convection boundary layer with suction and mass transfer in a porous medium. Int. J. Energy Res. 1990, 14, 389–396. [Google Scholar] [CrossRef]
- Abbas, Z.; Sheikh, M.; Motsa, S.S. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 2016, 95, 12–20. [Google Scholar] [CrossRef]
- Hsiao, K.L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy 2017, 130, 486–499. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Baleanu, D.; Sheikholeslami, M.; Wakif, A. Exploration of dual solutions for an enhanced cross liquid flow past a moving wedge under the significant impacts of activation energy and chemical reaction. Heliyon 2020, 6, e04565. [Google Scholar] [CrossRef]
- Ullah, I.; Alghamdi, M.; Xia, W.-F.; Shah, S.I.; Khan, H. Activation energy effect on the magnetized-nanofluid flow in a rotating system considering the exponential heat source. Int. Commun. Heat Mass Transf. 2021, 128, 105578. [Google Scholar] [CrossRef]
- Yesodha, P.; Bhuvaneswari, M.; Sivasankaran, S. Nanofluid flow with activation energy and heat generation under slip boundary condition with convective heat and mass transfer. Mater. Proc. 2022, 59, 959–967. [Google Scholar] [CrossRef]
- Brinkman, H.C. On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. 1947, 1, 81–86. [Google Scholar] [CrossRef]
- Hong, J.T.; Yamada, Y.; Tien, C.L. Effects of non-Darcian and non-uniform porosity on vertical plate natural convection in porous media. ASME J. Heat Transf. 1987, 109, 356–362. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium. Int. J. Heat Mass Transf. 2008, 51, 1150–1155. [Google Scholar] [CrossRef]
- Pantokratoras, A. Forced convection in a Darcy–Brinkman porous medium with a convective thermal boundary condition. J. Porous Media 2015, 18, 873–878. [Google Scholar] [CrossRef]
- Kausar, M.S.; Hassanan, A.; Mamat, M.; Ahmad, B. Boundary layer flow through Darcy–Brinkman porous medium in the presence of slip effects and porous dissipation. Symmetry 2019, 11, 659. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y. Darcy-Brinkman flow in channels of arbitrary curvature. J. Porous Media 2022, 25, 1–10. [Google Scholar] [CrossRef]
- Nayak, M.K.; Prakash, J.; Tripathi, D.; Pandey, V.S. 3D radiative convective flow of ZnO-SAE50 nano-lubricant in the presence of varying magnetic field and hetrogenous reaction. Propuls. Power Res. 2019, 8, 339–350. [Google Scholar] [CrossRef]
- Avramenko, A.A.; Shevchuk, I.V. Modelling of Convective Heat and Mass Transfer in Nanofluids with and without Boiling and Condensation; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Raees, A.; Hang, X.; Raees-ul-Haq, M. Explicit solutions of wall jet flow subject to a convective boundary condition. Bound. Value Prob. 2014, 2014, 163. [Google Scholar] [CrossRef] [Green Version]
- Waini, I.; Ishak, A.; Pop, I. MHD Glauert flow of a hybrid nanofluid with heat transfer. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 86, 91–100. [Google Scholar] [CrossRef]
Nanoparticles | ||||
---|---|---|---|---|
SAE50 | 0.15 | 1900 | 0.906 | 0.192543 |
ZnO | 19 | 544 | 5.606 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, U.; Zaib, A.; Ishak, A. Impact of Thermal and Activation Energies on Glauert Wall Jet (WJ) Heat and Mass Transfer Flows Induced by ZnO-SAE50 Nano Lubricants with Chemical Reaction: The Case of Brinkman-Extended Darcy Model. Lubricants 2023, 11, 22. https://doi.org/10.3390/lubricants11010022
Khan U, Zaib A, Ishak A. Impact of Thermal and Activation Energies on Glauert Wall Jet (WJ) Heat and Mass Transfer Flows Induced by ZnO-SAE50 Nano Lubricants with Chemical Reaction: The Case of Brinkman-Extended Darcy Model. Lubricants. 2023; 11(1):22. https://doi.org/10.3390/lubricants11010022
Chicago/Turabian StyleKhan, Umair, Aurang Zaib, and Anuar Ishak. 2023. "Impact of Thermal and Activation Energies on Glauert Wall Jet (WJ) Heat and Mass Transfer Flows Induced by ZnO-SAE50 Nano Lubricants with Chemical Reaction: The Case of Brinkman-Extended Darcy Model" Lubricants 11, no. 1: 22. https://doi.org/10.3390/lubricants11010022
APA StyleKhan, U., Zaib, A., & Ishak, A. (2023). Impact of Thermal and Activation Energies on Glauert Wall Jet (WJ) Heat and Mass Transfer Flows Induced by ZnO-SAE50 Nano Lubricants with Chemical Reaction: The Case of Brinkman-Extended Darcy Model. Lubricants, 11(1), 22. https://doi.org/10.3390/lubricants11010022