Stability Assessment of Polyvinyl-Ether-Based TiO2, SiO2, and Their Hybrid Nanolubricants
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Material Properties
2.2. Preparation of Nanolubricants
2.3. Stability Assessment
3. Results and Discussion
3.1. Visual Sedimentation Observation
3.2. UV–Vis Spectrophotometer Evaluation
3.3. Zeta Potential Analysis
4. Conclusions
- Dispersion of TiO2 in PVE nanolubricant works well with magnetic stirring and a 7 h ultrasonication in a bath homogeniser. A concentration ratio of more than 95% was measured for this nanolubricant on the 30th day after preparation.
- UV–Vis spectrophotometer measurement and photo-capturing of visual sedimentation observation can be used to evaluate the stability of mono- and hybrid nanolubricants. However, for mono-SiO2/PVE nanolubricants, only the visual sedimentation method is reliable to measure its stability.
- The stability of mono-SiO2/PVE nanolubricants is improved when combining the nanoparticles with TiO2 in a hybrid nanolubricant. UV–Vis measurement of the hybrid nanolubricants showed acceptable values and improved SiO2/PVE nanolubricant stability.
- Zeta potential and Zetasizer tests provide aligned results, confirming the UV–Vis and visual observation evaluation results. This also affirms that the UV–Vis spectrophotometer is reliable enough to measure the stability of nanolubricants.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 1993, 7, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Anitha, S.; Thomas, T.; Parthiban, V.; Pichumani, M. What dominates heat transfer performance of hybrid nanofluid in single pass shell and tube heat exchanger? Adv. Powder Technol. 2019, 30, 3107–3117. [Google Scholar] [CrossRef]
- Nabil, M.F.; Azmi, W.H.; Hamid, K.A.; Mamat, R. Experimental investigation of heat transfer and friction factor of TiO2-SiO2 nanofluids in water:ethylene glycol mixture. Int. J. Heat Mass Transf. 2018, 124, 1361–1369. [Google Scholar] [CrossRef]
- Sharif, M.Z.; Azmi, W.H.; Redhwan, A.A.M.; Mamat, R. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. Int. J. Refrig. 2016, 70, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.; Tailor, P.R.; Parekh, A.D. Nanorefrigerants: A comprehensive review on its past, present and future. Int. J. Refrig. 2016, 67, 290–307. [Google Scholar] [CrossRef]
- Redhwan, A.A.M.; Azmi, W.H.; Sharif, M.Z.; Mamat, R. Development of nanorefrigerants for various types of refrigerant based: A comprehensive review on performance. Int. Commun. Heat Mass Transf. 2016, 76, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.Z.; Azmi, W.H.; Mamat, R.; Shaiful, A.I.M. Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants—A review. Int. Commun. Heat Mass Transf. 2018, 92, 56–63. [Google Scholar] [CrossRef]
- Wang, R.; Hao, B.; Xie, G.; Li, H. A refrigerating-system using HFC134A and mineral lubricant appended with N-TIO2(R) as working fluids. In Proceedings of the 4th International Symposium On Heating, Ventilating and Air Conditioning, Beijing, China, 11 September 2003; pp. 888–892. [Google Scholar]
- Bi, S.; Shi, L.; Zhang, L. Application of nanoparticles in domestic refrigerators. Appl. Therm. Eng. 2008, 28, 1834–1843. [Google Scholar] [CrossRef]
- Adelekan, D.S.; Ohunakin, O.S.; Babarinde, T.O.; Odunfa, M.K.; Leramo, R.O.; Oyedepo, S.O.; Badejo, D.C. Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator. Case Stud. Therm. Eng. 2017, 9, 55–61. [Google Scholar] [CrossRef]
- Ohunakin, O.S.; Adelekan, D.S.; Gill, J.; Atayero, A.A.; Atiba, O.E.; Okokpujie, I.P.; Abam, F.I. Performance of a hydrocarbon driven domestic refrigerator based on varying concentration of SiO2 nano-lubricant. Int. J. Refrig. 2018, 94, 59–70. [Google Scholar] [CrossRef]
- Kumar, R.S.; Sharma, T. Stability and rheological properties of nanofluids stabilized by SiO2 nanoparticles and SiO2-TiO2 nanocomposites for oilfield applications. Colloids Surf. a-Physicochem. Eng. Asp. 2018, 539, 171–183. [Google Scholar] [CrossRef]
- Marcucci Pico, D.F.; da Silva, L.R.R.; Schneider, P.S.; Bandarra Filho, E.P. Performance evaluation of diamond nanolubricants applied to a refrigeration system. Int. J. Refrig. 2019, 100, 104–112. [Google Scholar] [CrossRef]
- Marcucci Pico, D.F.; da Silva, L.R.R.; Hernandez Mendoza, O.S.; Bandarra Filho, E.P. Experimental study on thermal and tribological performance of diamond nanolubricants applied to a refrigeration system using R32. Int. J. Heat Mass Transf. 2020, 152, 119493. [Google Scholar] [CrossRef]
- Zawawi, N.N.M.; Azmi, W.H.; Redhwan, A.A.M.; Sharif, M.Z.; Sharma, K.V. Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system. Int. J. Refrig. 2017, 80, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Azmi, W.H.; Sharif, M.Z.; Yusof, T.M.; Mamat, R.; Redhwan, A.A.M. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system—A review. Renew. Sustain. Energy Rev. 2017, 69, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Qiang, A.H.; Zhao, L.M.; Xu, C.J.; Zhou, M. Effect of dispersant on the colloidal stability of nano-sized CuO suspension. J. Dispers. Sci. Technol. 2007, 28, 1004–1007. [Google Scholar] [CrossRef]
- Cacua, K.; Buitrago-Sierra, R.; Herrera, B.; Chejne, F.; Pabón, E. Influence of different parameters and their coupled effects on the stability of alumina nanofluids by a fractional factorial design approach. Adv. Powder Technol. 2017, 28, 2581–2588. [Google Scholar] [CrossRef]
- Subramani, N.; Prakash, M.J. Experimental studies on a vapour compression system using nanorefrigerants. Int. J. Eng. Sci. Technol. 2012, 3, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Sanukrishna, S.S.; Vishnu, A.S.; Jose, M. Nanorefrigerants for energy efficient refrigeration systems. J. Mech. Sci. Technol. 2017, 31, 3993–4001. [Google Scholar] [CrossRef]
- Lou, J.; Zhang, H.; Wang, R. Experimental investigation of graphite nanolubricant used in a domestic refrigerator. Adv. Mech. Eng. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Gill, J.; Singh, J.; Ohunakin, O.S.; Adelekan, D.S. Energetic and exergetic analysis of a domestic refrigerator system with LPG as a replacement for R134a refrigerant, using POE lubricant and mineral oil based TiO2-, SiO2- and Al2O3-lubricants. Int. J. Refrig. 2018, 91, 122–135. [Google Scholar] [CrossRef]
- Saravanan, K.; Vijayan, R. First law and Second law analysis of Al2O3/TiO2 nano composite lubricant in domestic refrigerator at different evaporator temperature. Mater. Res. Express. 2018, 5, 10. [Google Scholar] [CrossRef]
- Sezer, N.; Atieh, M.A.; Koc, M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 2019, 344, 404–431. [Google Scholar] [CrossRef]
- Gallego, A.; Cacua, K.; Herrera, B.; Cabaleiro, D.; Piñeiro, M.M.; Lugo, L. Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Adv. Powder Technol. 2020, 31, 560–570. [Google Scholar] [CrossRef]
- Sadeghy, R.; Haghshenasfard, M.; Etemad, S.G.; Keshavarzi, E. Investigation of alumina nanofluid stability using experimental and modified population balance methods. Adv. Powder Technol. 2016, 27, 2186–2195. [Google Scholar] [CrossRef]
- Che Sidik, N.A.; Mahmud Jamil, M.; Aziz Japar, W.M.A.; Muhammad Adamu, I. A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. [Google Scholar] [CrossRef]
- Jalili, M.M.; Davoudi, K.; Zafarmand Sedigh, E.; Farrokhpay, S. Surface treatment of TiO2 nanoparticles to improve dispersion in non-polar solvents. Adv. Powder Technol. 2016, 27, 2168–2174. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2012, 2012, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zapata-Hernandez, C.; Durango-Giraldo, G.; López, D.; Buitrago-Sierra, R.; Cacua, K. Surfactants versus surface functionalization to improve the stability of graphene nanofluids. J. Dispers. Sci. Technol. 2021, 43, 1717–1724. [Google Scholar] [CrossRef]
- Ouikhalfan, M.; Labihi, A.; Belaqziz, M.; Chehouani, H.; Benhamou, B.; Sarı, A.; Belfkira, A. Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2. J. Dispers. Sci. Technol. 2020, 41, 374–382. [Google Scholar] [CrossRef]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of nanoparticles in lubricating oil: A critical review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.S.; Elsaid, A.M. Effect of hybrid and single nanofluids on the performance characteristics of chilled water air conditioning system. Appl. Therm. Eng. 2019, 163, 114398. [Google Scholar] [CrossRef]
- Zawawi, N.N.M.; Azmi, W.H.; Sharif, M.Z.; Najafi, G. Experimental investigation on stability and thermo-physical properties of Al2O3-SiO2/PAG nanolubricants with different nanoparticle ratios. J. Therm. Anal. Calorim. 2019, 135, 1243–1255. [Google Scholar] [CrossRef]
- Leong, K.Y.; Ku Ahmad, K.Z.; Ong, H.C.; Ghazali, M.J.; Baharum, A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—A review. Renew. Sustain. Energy Rev. 2017, 75, 868–878. [Google Scholar] [CrossRef]
- Redhwan, A.A.M.; Azmi, W.H.; Sharif, M.Z.; Mamat, R.; Zawawi, N.N.M. Comparative study of thermo-physical properties of SiO2 and Al2O3 nanoparticles dispersed in PAG lubricant. Appl. Therm. Eng. 2017, 116, 823–832. [Google Scholar] [CrossRef]
- Motozawa, M.; Makida, N.; Fukuta, M. Experimental study on physical properties of CuO-PVE nano-oil and its mixture with refrigerant. In Proceedings of the 24th International Compressor Engineering Conference, West Lafayette, IN, USA, 9–12 July 2018; pp. 1–10. [Google Scholar]
- Karnaz, J.; Seeton, C. Evaluation of lubricant properties and refrigerant interaction. In Proceedings of the 24th International Compressor Engineering Conference, West Lafayette, IN, USA, 9–12 July 2018; pp. 1–10. [Google Scholar]
- Idemitsu Kosan, C.L. Daphne Hermetic Oil FVC68D. In Material Safety Data Sheet; Idemitsu Kosan Co., Ltd.: Tokyo, Japan, 2010; pp. 1–5. [Google Scholar]
- Hongwu International, G.L. Anatase Nano TiO2 Titanium Dioxide Powders. Available online: www.hwnanomaterial.com/anatase-nano-tio2-titanium-dioxide-powders_p49.html (accessed on 25 September 2021).
- Beijing Deke Daojin, S.A.T.C.L. Nano Silica. Available online: www.dknano.com/Ecplb.asp?Fid=1177&ClassId=1190&NewsId=2993 (accessed on 25 September 2021).
- Zawawi, N.N.M.; Azmi, W.H.; Ghazali, M.F.; Ali, H.M. Performance of Air-Conditioning System with Different Nanoparticle Composition Ratio of Hybrid Nanolubricant. Micromachines 2022, 13, 1871. [Google Scholar] [CrossRef]
- Zawawi, N.N.M.; Azmi, W.H.; Redhwan, A.A.M.; Ramadhan, A.I.; Ali, H.M. Optimization of air conditioning performance with Al2O3-SiO2/PAG composite nanolubricants using the response surface method. Lubricants 2022, 10, 243. [Google Scholar] [CrossRef]
- Zawawi, N.N.M.; Azmi, W.H.; Redhwan, A.A.M.; Sharif, M.Z.; Samykano, M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int. J. Refrig. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Urmi, W.; Rahman, M.M.; Hamzah, W.A.W. An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. Int. Commun. Heat Mass Transf. 2020, 116, 104663. [Google Scholar] [CrossRef]
- Beer, A.; Beer, P. Determination of the absorption of red light in colored liquids. Ann. Der Phys. Und Chem. 1852, 86, 78–88. [Google Scholar] [CrossRef]
- Selvamani, V. Stability Studies on Nanomaterials Used in Drugs. In Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier Inc.: Amsterdam, Netherlands, 2018; pp. 425–444. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mizuhata, M. Predictive zeta potential measurement method applicable to nonaqueous solvents in high-concentration dispersion systems for the system of LiClO4–propylene carbonate solution and LiCoO2 powder sheet. Electrochemistry 2022, 90, 103001. [Google Scholar] [CrossRef]
- Lambert, J.H. Photometry: Or on the Measure and Gradations of Light, Colors, and Shade. 1760. Transl. Lat. By David L. DiLaura 2001, 22, 1760. [Google Scholar]
- Lin, L.; Peng, H.; Ding, G. Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl. Therm. Eng. 2015, 91, 163–171. [Google Scholar] [CrossRef]
- Lin, L.; Peng, H.; Chang, Z.; Ding, G. Experimental research on degradation of nanolubricant–refrigerant mixture during continuous alternation processes of condensation and evaporation. Int. J. Refrig. 2017, 76, 97–108. [Google Scholar] [CrossRef]
- Redhwan, A.A.M.; Azmi, W.H.; Sharif, M.Z.; Mamat, R.; Samykano, M.; Najafi, G. Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant. J. Therm. Anal. Calorim. 2019, 135, 1299–1310. [Google Scholar] [CrossRef]
- Ghadimi, A.; Saidur, R.; Metselaar, H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 2011, 54, 4051–4068. [Google Scholar] [CrossRef]
- Sharif, M.Z.; Azmi, W.H.; Redhwan, A.A.M.; Mamat, R.; Najafi, G. Energy saving in automotive air conditioning system performance using SiO2/PAG nanolubricants. J. Therm. Anal. Calor. 2019, 135, 1285–1297. [Google Scholar] [CrossRef]
- Kumar, R.S.; Narukulla, R.; Sharma, T. Comparative Effectiveness of Thermal Stability and Rheological Properties of Nanofluid of SiO2-TiO2 Nanocomposites for Oil Field Applications. Ind. Eng. Chem. Res. 2020, 59, 15768–15783. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.S.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 2008, 51, 2651–2656. [Google Scholar] [CrossRef]
Property (s) | PVE |
---|---|
Appearance | Light yellow |
Odour | Characteristic |
Physical state | Liquid |
Flash point | 206 °C/403 °F |
Density | 940 kg/m3 @ 15 °C |
Viscosity | @40 °C = 66.57 cSt; @ 100 °C = 8.037 cSt |
Property (s) | Unit | TiO2 | SiO2 |
---|---|---|---|
Molecular mass | g/mol | 79.87 | 60.08 |
Density | kg/m3 | 4230 | 2220 |
Average particle diameter | nm | 50 | 30 |
Specific heat | J/(kg·K) | 692 | 745 |
Thermal conductivity | W/(m·K) | 8.4 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, M.F.; Azmi, W.H.; Mamat, R.; Sharma, K.V.; Zawawi, N.N.M. Stability Assessment of Polyvinyl-Ether-Based TiO2, SiO2, and Their Hybrid Nanolubricants. Lubricants 2023, 11, 23. https://doi.org/10.3390/lubricants11010023
Ismail MF, Azmi WH, Mamat R, Sharma KV, Zawawi NNM. Stability Assessment of Polyvinyl-Ether-Based TiO2, SiO2, and Their Hybrid Nanolubricants. Lubricants. 2023; 11(1):23. https://doi.org/10.3390/lubricants11010023
Chicago/Turabian StyleIsmail, Mohd Farid, Wan Hamzah Azmi, Rizalman Mamat, Korada Viswanatha Sharma, and Nurul Nadia Mohd Zawawi. 2023. "Stability Assessment of Polyvinyl-Ether-Based TiO2, SiO2, and Their Hybrid Nanolubricants" Lubricants 11, no. 1: 23. https://doi.org/10.3390/lubricants11010023
APA StyleIsmail, M. F., Azmi, W. H., Mamat, R., Sharma, K. V., & Zawawi, N. N. M. (2023). Stability Assessment of Polyvinyl-Ether-Based TiO2, SiO2, and Their Hybrid Nanolubricants. Lubricants, 11(1), 23. https://doi.org/10.3390/lubricants11010023