Optimization of Bioconvective Magnetized Walter’s B Nanofluid Flow towards a Cylindrical Disk with Artificial Neural Networks
Abstract
:1. Introduction
2. Problem Statement
2.1. Physical Quantities of Interest
Local Nusselt, Motile Density, and Sherwood Numbers
3. Structure of the ANN Models
4. Discussion
5. Concluding Remarks
- In thermal engineering applications, thermophoresis and Brownian motion play significant roles.
- Thermophoresis number tends to enhance the thermophoresis force that is responsible for moving nanoparticles from hot to cold areas, which causes a more significant increase in temperature.
- As indicated by the MoD value, the developed ANN models are capable of making very accurate predictions.
- According to the error histograms, there is very little error in the training phase of the ANN model.
- MSE values calculated for LNN, LSHN, and LMDN parameters were obtained as , , and , respectively.
- The R value for the ANN model developed for estimating LNN and LSHN values is 0.98537.
- The R value calculated for the ANN model developed to estimate the LMDN value is 0.99269.
- The average MoD value for LNN and LSHN values was calculated as 0.1% and the average MoD value for LMDN value was calculated as 0.02%.
- The findings obtained as a result of the calculation and analysis of the performance parameters clearly showed that both ANN models can make predictions with high accuracy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
dimensionless temperature | |
surface temperature | |
dimensionless velocity | |
gravitational force | |
dimensionless concentration | |
density of nanofluid | |
dimensionless motile density | |
magnetic field | |
coefficients of concentration and thermal | |
stretching velocity | |
specific heat | |
ambient microorganisms concentration | |
density of nanomaterials | |
heat capacity of nanofluid | |
microbe particle density | |
thermal diffusion coefficient | |
Brownian motion coefficient | |
Stefan–Boltzmann constant | |
microorganism diffusivity | |
temperature dependent conductivity | |
viscosity of nanofluid | |
maximum speed of swimming cell | |
constant | |
motile density of microorganisms | |
radiative heat flux | |
velocity components in directions, respectively | |
heat transfer coefficient | |
viscoelastic parameter | |
stress-to-strain ratio | |
ambient temperature | |
chemotaxis constant | |
concentration of nanoparticles | |
coefficient of viscoelasticity | |
nanoliquid’s electrical conductivity | |
ratio of heat capacity of nanoparticles by the heat capacity of nanofluid | |
ambient nanoparticles concentration | |
Brownian motion number | |
Prandtl number | |
bioconvection Pecelt number | |
Lewis parameter | |
radiation number | |
M | magnetic number |
bioconvection Lewis number | |
stress-to-strain ratio | |
thermophoresis number | |
viscoelastic parameter | |
bioconvection Rayleigh number | |
mixed convection number | |
microorganisms difference parameter | |
buoyancy ratio parameter |
References
- Shafiq, A.; Çolak, A.B.; Sindhu, T.N.; Al-Mdallal, Q.M.; Abdeljawad, T. Estimation of unsteady hydromagnetic Williamson fuid fow in a radiative surface through numerical and artificial neural network modeling. Sci. Rep. 2021, 11, 14509. [Google Scholar] [CrossRef] [PubMed]
- Miandoab, A.R.; Bagherzadeh, S.A.; Isfahani, A.H.M. Numerical study of the effects of twisted-tape inserts on heat transfer parameters and pressure drop across a tube carrying Graphene Oxide nanofluid: An optimization by implementation of Artificial Neural Network and Genetic Algorithm. Eng. Anal. Bound. Elem. 2022, 140, 1–11. [Google Scholar] [CrossRef]
- Shafiq, A.; Çolak, A.B.; Sindhu, T.N.; Muhammad, T. Optimization of Darcy-Forchheimer squeezing flow in nonlinear stratified fluid under convective conditions with artificial neural network. HeatTransfer Res. 2022, 3, 53. [Google Scholar] [CrossRef]
- Alzahrani, F.; Khan, M.I. Entropy generation and Joule heating applications for Darcy Forchheimer flow of Ree-Eyring nanofluid due to double rotating disks with artificial neural network. Alex. Eng. 2022, 61, 3679–3689. [Google Scholar] [CrossRef]
- Shafiq, A.; Çolak, A.B.; Sindhu, T.N. Designing artificial neural network of nanoparticle diameter and solid–fluid interfacial layer on single-walled carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles. Int. J. Numer. Methods Fluids 2021, 93, 3384–3404. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME 1995, 66, 99–105. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Tran. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Radwan, M.S.; Saleh, H.E.; Attai, Y.A.; Elsherbiny, M.S. On heat transfer enhancement in diesel engine cylinder head using γ-Al2O3/water nanofluid with different nanoparticle sizes. Adv. Mech.Eng. 2020, 12, 1687814019897507. [Google Scholar] [CrossRef]
- Pantokratoras, A. Discussion:“Computational analysis for mixed convective flows of viscous fluids with nanoparticles”. J. Therm. Sci. Eng. Appl. 2019, 11, 5. [Google Scholar]
- Tayebi, T.; Chamkha, A.J. Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. J. Therm. Sci. Eng. Appl. 2020, 12, 3. [Google Scholar] [CrossRef]
- Dutta, J.; Kundu, B. Finite integral transform based solution of second grade fluid flow between two parallel plates. J. Appl. Comput. Mech. 2019, 5, 989–997. [Google Scholar]
- Rana, M.A.; Latif, A. Three-dimensional free convective flow of a second-grade fluid through a porous medium with periodic permeability and heat transfer. Bound. Value Probl. 2019, 2019, 44. [Google Scholar] [CrossRef]
- Rasool, G.; Zhang, T.; Shafiq, A. Marangoni effect in second grade forced convective flow of water based nanofluid. J. Adv. Nanotechnol. 2019, 1, 50. [Google Scholar] [CrossRef] [Green Version]
- Shafiq, A.; Sindhu, T.N.; Al-Mdallal, Q.M. A sensitivity study on carbon nanotubes significance in Darcy–Forchheimer flow towards a rotating disk by response surface methodology. Sci. Rep. 2021, 11, 1–26. [Google Scholar]
- Chu, Y.-M.; Khan, U.; Shafiq, A.; Zaib, A. Numerical simulations of time-dependent micro-rotation blood flow induced by a curved moving surface through conduction of gold particles with non-uniform heat sink/source. Arab. J. Sci. Eng. 2021, 46, 2413–2427. [Google Scholar] [CrossRef]
- Shafiq, A.; Mebarek-Oudina, F.; Sindhu, T.N.; Abidi, A. A study of dual stratification on stagnation point Walters’ B nanofluid flow via radiative Riga plate: A statistical approach. Eur. Phys. J. Plus 2021, 136, 1–24. [Google Scholar] [CrossRef]
- Okokpujie, I.P.; Tartibu, L.K.; Sinebe, J.E.; Adeoye, A.O.M.; Akinlabi, E.T. Comparative Study of Rheological Effects of Vegetable Oil-Lubricant, TiO2, MWCNTs Nano-Lubricants, and Machining Parameters’ Influence on Cutting Force for Sustainable Metal Cutting Process. Lubricants 2022, 10, 54. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Ishak, A.; Waini, I.; Sherif, M.E.S.; Boonsatit, N.; Pop, I.; Jirawattanapanit, A. Ramification of Hall and Mixed Convective Radiative Flow towards a Stagnation Point into the Motion of Water Conveying Alumina Nanoparticles Past a Flat Vertical Plate with a Convective Boundary Condition: The Case of Non-Newtonian Williamson Fluid. Lubricants 2022, 10, 192. [Google Scholar] [CrossRef]
- Abbasi, A.; Mabood, F.; Farooq, W.; Batool, M. Bioconvective flow of viscoelastic nanofluid over a convective rotating stretching disk. Int. Commun. Heat Mass Tran. 2020, 119, 104921. [Google Scholar] [CrossRef]
- Hassan, W.; Metib, A.; Taseer, M.; Khan, M.A. Bioconvection transport of magnetized Walter’s B nanofluid across a cylindrical disk with nonlinear radiative heat transfer. Case Stud. Therm. Eng. 2021, 26, 101097. [Google Scholar]
- Vaferi, B.; Samimi, F.; Pakgohar, E.; Mowla, D. Artificial neural network approach for prediction of thermal behavior of nanofluids flowing through circular tubes. Powder Technol. 2014, 267, 1–10. [Google Scholar] [CrossRef]
- Canakci, A.; Ozsahin, S.; Varol, T. Modeling the influence of a process control agent on the properties of metal matrix composite powders using artificial neural networks. Powder Technol. 2012, 228, 26–35. [Google Scholar] [CrossRef]
- Güzel, T.; Çolak, A.B. An experimental study on artificial intelligence-based prediction of capacitance-voltage parameters of polymer-interface 6H-SiC/MEH-PPV/Al Schottky diodes. Phys. Status Solidi A Appl. Mater. Sci. 2022, 219, 2100821. [Google Scholar] [CrossRef]
- Ali, A.; Abdulrahman, A.; Garg, S.; Maqsood, K.; Murshid, G. Application of artificial neural networks (ANN) for vapor-liquid-solid equilibrium prediction for CH4-CO2 binary mixture. Greenh. Gases 2019, 9, 67–78. [Google Scholar] [CrossRef]
- Kareem, F.A.A.; Shariff, A.M.; Ullah, S.; Garg, S.; Dreisbach, F.; Keong, L.K.; Mellon, N. Experimental and neural network modeling of partial uptake for a carbon dioxide/methane/water ternary mixture on 13X zeolite. Energy Technol. 2017, 5, 1373–1391. [Google Scholar] [CrossRef]
- Vafaei, M.; Afrand, M.; Sina, N.; Kalbasi, R.; Sourani, F.; Teimouri, H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys. E 2017, 85, 90–96. [Google Scholar] [CrossRef]
- Akhgar, A.; Toghraie, D.; Sina, N.; Afrand, M. Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol. 2019, 355, 602–610. [Google Scholar] [CrossRef]
- Çolak, A.B. An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks. Int. J. Energy Res. 2021, 45, 478–500. [Google Scholar] [CrossRef]
- Esmaeilzadeh, F.; Teja, A.S.; Bakhtyari, A. The thermal conductivity, viscosity, and cloud points of bentonite nanofluids with n-pentadecane as the base fluid. J. Mol. Liq. 2020, 300, 112307. [Google Scholar] [CrossRef]
- Barati-Harooni, A.; Najafi-Marghmaleki, A. An accurate RBF-NN model for estimation of Viscosity of nanofluids. J. Mol. Liq. 2016, 224, 580–588. [Google Scholar] [CrossRef]
- Rostamian, S.H.; Biglari, M.; Saedodin, S.; Esfe, M.H. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Mol. Liq. 2017, 231, 364–369. [Google Scholar] [CrossRef]
- Ahmadloo, E.; Azizi, S. Prediction of thermal conductivity of various nanofluids using artificial neural network. Int. Heat Mass Transf. 2016, 74, 69–75. [Google Scholar] [CrossRef]
- Bonakdari, H.; Zaji, A.H. Open channel junction velocity prediction by using a hybrid self-neuron adjustable artificial neural network. Flow Meas. Instrum. 2016, 49, 46–51. [Google Scholar] [CrossRef]
- Çolak, A.B.; Güzel, T.; Yıldız, O.; Özer, M. An experimental study on determination of the shottky diode current-voltage characteristic depending on temperature with artificial neural network. Phys. B 2021, 608, 412852. [Google Scholar] [CrossRef]
- Çolak, A.B.; Yıldız, O.; Bayrak, M.; Tezekici, B.S. Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int. J. Energy Res. 2020, 44, 7198–7215. [Google Scholar] [CrossRef]
- Öcal, S.; Gökçek, M.; Çolak, A.B.; Korkanxcx, M. A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: Proposing new correlation and artificial neural network optimization. Heat Transf. Res. 2021, 52, 55–79. [Google Scholar] [CrossRef]
- Çolak, A.B.; Karakoyun, Y.; Acikgoz, O.; Yumurtacı, Z.; Dalkılıç, A.S. A Numerical Study Aimed at Finding Optimal Artificial Neural Network Model Covering Experimentally Obtained Heat Transfer Characteristics of Hydronic Underfloor Radiant Heating Systems Running Various Nanofluids. Heat Transf. Res. 2022, 53, 51–71. [Google Scholar] [CrossRef]
Input Parameters | Output | ||||||
---|---|---|---|---|---|---|---|
LNN | |||||||
LSHN | |||||||
LMDN |
Input Parameters | MSE | R | MoD |
---|---|---|---|
LNN | −3.58 10 | 0.98537 | 0.1 |
LSHN | 1.24 10 | 0.98537 | 0.1 |
LMDN | 3.55 10 | 0.99269 | 0.02 |
Numerical | ANN | Numerical | ANN | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.0 | 0.3 | 0.2 | 0.1 | 1.0 | 0.5 | 1.5 | 0.00706623 | 0.007120861 | 0.982473 | 0.97897501 |
0.1 | 0.00585829 | 0.005821774 | 0.997541 | 0.98950042 | ||||||
0.2 | 0.00572972 | 0.005711059 | 0.997733 | 0.99436298 | ||||||
0.5 | 0.0 | 0.2 | 0.1 | 1.0 | 0.5 | 1.5 | 0.0594894 | 0.059154763 | 0.974766 | 0.96693118 |
0.1 | 0.0416794 | 0.041330512 | 0.985207 | 0.98928310 | ||||||
0.2 | 0.0289821 | 0.028794055 | 0.991531 | 0.99989813 | ||||||
0.3 | 0.0201370 | 0.020248731 | 0.995604 | 0.99948123 | ||||||
0.4 | 0.0144062 | 0.014506383 | 0.996893 | 0.99240511 | ||||||
0.5 | 0.0105187 | 0.010580637 | 0.996327 | 0.99003848 | ||||||
0.6 | 0.0075922 | 0.007567344 | 0.994418 | 0.99592816 | ||||||
0.5 | 0.3 | 0.1 | 0.1 | 1.0 | 0.5 | 1.5 | 0.0029765 | 0.002969022 | 1.142050 | 1.14788526 |
0.2 | 0.0201370 | 0.020213487 | 0.995604 | 0.99948123 | ||||||
0.3 | 0.0388217 | 0.038513639 | 0.901250 | 0.90153594 | ||||||
0.4 | 0.0664982 | 0.066123094 | 0.805869 | 0.80230088 | ||||||
0.5 | 0.1055840 | 0.105204524 | 0.711609 | 0.71249690 | ||||||
0.6 | 0.1426990 | 0.143756818 | 0.651097 | 0.64930150 | ||||||
0.7 | 0.1823790 | 0.183142094 | 0.608822 | 0.60762012 | ||||||
0.5 | 0.3 | 0.2 | 1.5 | 1.0 | 0.5 | 1.5 | 0.3488190 | 0.347577697 | 0.672576 | 0.67037292 |
1.6 | 0.3388980 | 0.337247923 | 0.628460 | 0.62831733 | ||||||
1.7 | 0.3306660 | 0.331810197 | 0.573616 | 0.57453589 | ||||||
1.8 | 0.3234070 | 0.323858413 | 0.522936 | 0.52209556 | ||||||
0.5 | 0.3 | 0.2 | 0.1 | 1.0 | 0.5 | 1.5 | 0.3019310 | 0.302487310 | 0.879359 | 0.87948123 |
1.1 | 0.0064014 | 0.006410842 | 1.006070 | 1.00356818 | ||||||
1.2 | 0.0057237 | 0.005713821 | 1.010830 | 1.00678515 | ||||||
1.3 | 0.0041842 | 0.004170770 | 1.011430 | 1.00237659 | ||||||
0.5 | 0.3 | 0.2 | 0.1 | 1.0 | 0.6 | 1.5 | 0.5307090 | 0.527078283 | 0.001060 | 0.00105056 |
0.7 | 0.4553460 | 0.458079375 | 0.703808 | 0.70252241 | ||||||
0.8 | 0.4541080 | 0.455081465 | 0.880447 | 0.88167512 | ||||||
0.9 | 0.3824030 | 0.383862892 | 1.339640 | 1.33749294 | ||||||
0.5 | 0.3 | 0.2 | 0.1 | 1.0 | 0.5 | 1.0 | 0.357312 | 0.354579621 | 0.525635 | 0.52597711 |
1.1 | 0.341071 | 0.342211522 | 0.581446 | 0.58248946 | ||||||
1.2 | 0.327225 | 0.326213719 | 0.654565 | 0.65716262 | ||||||
1.3 | 0.316405 | 0.315009302 | 0.774718 | 0.77586484 | ||||||
1.4 | 0.308013 | 0.306337044 | 0.811257 | 0.81242199 | ||||||
1.5 | 0.301931 | 0.302873098 | 0.879359 | 0.87848123 | ||||||
1.6 | 0.297064 | 0.294190117 | 0.94344 | 0.94395369 |
Numerical | ANN | |||||
---|---|---|---|---|---|---|
0.4 | 0.3 | 0.5 | 0.5 | 0.4 | 1.10653 | 1.102680744 |
0.5 | 1.16505 | 1.167071986 | ||||
0.6 | 1.22508 | 1.225074698 | ||||
0.7 | 1.45868 | 1.458678604 | ||||
0.8 | 1.55096 | 1.559421692 | ||||
0.5 | 0.3 | 0.5 | 0.5 | 0.4 | 0.929259 | 0.927071986 |
0.4 | 0.927242 | 0.927791210 | ||||
0.5 | 0.925283 | 0.923907224 | ||||
0.6 | 0.924153 | 0.922095005 | ||||
0.7 | 0.922385 | 0.924749807 | ||||
0.8 | 0.898653 | 0.895988520 | ||||
0.9 | 0.841132 | 0.841954530 | ||||
0.5 | 0.5 | 0.3 | 0.5 | 0.4 | 0.760761 | 0.760580071 |
0.4 | 0.851282 | 0.851445091 | ||||
0.5 | 0.925283 | 0.923907224 | ||||
0.6 | 0.990710 | 0.987201151 | ||||
0.7 | 1.050930 | 1.050969904 | ||||
0.8 | 1.107430 | 1.109965904 | ||||
0.9 | 1.162840 | 1.155655059 | ||||
0.5 | 0.5 | 0.4 | 0.2 | 0.4 | 0.578026 | 0.577950752 |
0.3 | 0.671149 | 0.671444988 | ||||
0.4 | 0.761970 | 0.761496607 | ||||
0.5 | 0.851282 | 0.851445091 | ||||
0.6 | 0.940008 | 0.939732709 | ||||
0.7 | 1.026480 | 1.026473051 | ||||
0.8 | 1.116070 | 1.115985529 | ||||
0.5 | 0.5 | 0.4 | 0.3 | 0.2 | 0.633349 | 0.635564192 |
0.3 | 0.653085 | 0.653024429 | ||||
0.4 | 0.671149 | 0.671444988 | ||||
0.5 | 0.689128 | 0.689475657 | ||||
0.6 | 0.706883 | 0.706904971 | ||||
0.7 | 0.724439 | 0.724183974 | ||||
0.8 | 0.741400 | 0.741447652 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiq, A.; Çolak, A.B.; Sindhu, T.N. Optimization of Bioconvective Magnetized Walter’s B Nanofluid Flow towards a Cylindrical Disk with Artificial Neural Networks. Lubricants 2022, 10, 209. https://doi.org/10.3390/lubricants10090209
Shafiq A, Çolak AB, Sindhu TN. Optimization of Bioconvective Magnetized Walter’s B Nanofluid Flow towards a Cylindrical Disk with Artificial Neural Networks. Lubricants. 2022; 10(9):209. https://doi.org/10.3390/lubricants10090209
Chicago/Turabian StyleShafiq, Anum, Andaç Batur Çolak, and Tabassum Naz Sindhu. 2022. "Optimization of Bioconvective Magnetized Walter’s B Nanofluid Flow towards a Cylindrical Disk with Artificial Neural Networks" Lubricants 10, no. 9: 209. https://doi.org/10.3390/lubricants10090209
APA StyleShafiq, A., Çolak, A. B., & Sindhu, T. N. (2022). Optimization of Bioconvective Magnetized Walter’s B Nanofluid Flow towards a Cylindrical Disk with Artificial Neural Networks. Lubricants, 10(9), 209. https://doi.org/10.3390/lubricants10090209