# An Analytical Approach for Predicting EHL Friction: Usefulness and Limitations

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Film Thickness

_{N}is the highest pressure used in this calculation [19].

#### 2.2. Friction Coefficient and Contact Temperature

#### 2.3. Methodology

#### 2.4. Experimentation

_{0}= 7.36 mPa·s, α* = 9.0 GPa

^{−1}at 80 °C; and η

_{0}= 4.78 mPa·s, α* = 8.2 GPa

^{−1}at 100 °C. In addition, according to references [13,14,59], the following values of the power-law exponent, shear modulus and thermal conductivity at 80 °C can be taken for the PAO-6: n = 0.81, G = 0.1 MPa and K

_{L}= 0.15 W/(mK).

## 3. Results and Discussion

#### 3.1. Initial Application of the Models

#### 3.2. Influence of the Piezoviscous Response

_{oo}= 11.804 GPa, K′

_{o}= 11.74, B = 3.811, α

_{V}= 0.0008 K

^{−1}, β

_{K}= 0.008655 K

^{−1}, V

_{∞}

_{R}/V

_{R}= 0.6193, ε = −0.00134 K

^{−1}, and η

_{R}= 0.1803 Pa·s at T

_{R}= 70 °C. On the other hand, experimental measurements of the low-shear viscosity for the PAO-650 are given in reference [66].

^{−1}at 70 °C and 14.0 GPa

^{−1}at 120 °C, whereas for the PAO-650 they are 20.1 GPa

^{−1}at 20 °C and 14.8 GPa

^{−1}at 75 °C. In addition, the variation of the pressure-viscosity coefficient shown in Figure 8 is obtained by fitting Equation (6) to the low-shear viscosity of these lubricants in pressure intervals of 0.2 GPa. The pressure-viscosity coefficient decreases with increasing pressure and moves away from the reciprocal asymptotic isoviscous pressure coefficient. If this variation is not taken into account, there is a general tendency to overestimate the viscosity and consequently also the friction coefficient. This issue becomes quite significant at high Hertz contact pressure, as can be seen in the results for the PAO-6 in Figure 4 and Figure 5.

^{−1}. If we assume a similar variation of this parameter at 80 °C, a rough estimate of the pressure-viscosity coefficient at 80 °C and 1.1 GPa can be obtained for the PAO-6, resulting in 8.3 GPa

^{−1}. The calculations in the Hertzian region using these new values lead to a significantly better agreement with the experimental data than that previously obtained at Hertz pressures of about 1.1 GPa, as demonstrated in Figure 10 and Figure 11.

#### 3.3. Usefulness and Limitations of the Analytical Approach

## 4. Conclusions

- The film thickness formulae employed were obtained by curve fitting data over ranges of operating parameters. Therefore, outside these ranges, deviations in the predictions may be expected. However, the calculation process proposed in the article remains valid for other film thickness formulae, which could be either more general equations or expressions adapted to the range of operating conditions in each case.
- The analytical deduction of friction formulae becomes increasingly difficult as more complex rheological models are considered, such as when using free volume correlations for the low-shear viscosity. To overcome this issue, a simple exponential law can be considered and the values of the pressure-viscosity coefficient can be fitted to the real piezoviscous response.
- Although the use of equations for the central film thickness and the average contact temperature provides very useful information, the analytical approach cannot predict the film thickness and temperature distributions within the EHL contact.
- As a consequence of all the simplifications introduced, less accurate results may be expected in any analytical approach. However, the formulation proposed can capture the essential features of the EHL contacts and exhibits a reasonably good predictive potential.

- The deduction of new film thickness equations applicable in a more general way. They may be obtained from EHL solutions in a broader range of operating conditions by means of curve-fitted regression formulae. Similarly, more general film thickness correction factors for shear-thinning and thermal effects can also be derived.
- The consideration of other effects for an improved formulation, such as transient conditions or starvation. Although they would complicate the development of purely analytical models, these effects could be considered by using machine learning algorithms or semi-analytical approaches, such as those based on the Reynolds-Carreau equations, integrated into the calculation process described in the article.
- A methodology similar to that proposed in the present article may also be applied to other geometries of interest, such as the elliptical contact. To this end, some references and indications are provided in Section 2.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

a | contact half-width (or radius for circular point contact), m |

B | Doolittle parameter |

E_{1}, E_{2} | Young’s modulus of the contacting bodies, Pa |

E’ | $\mathrm{reduced}\text{}\mathrm{Young}\text{\u2019}\mathrm{s}\text{}\mathrm{modulus},\text{}\mathrm{Pa}:\text{}\frac{1}{E\prime}=\frac{1}{2}\left(\frac{1-{\nu}_{1}^{2}}{{E}_{1}}+\frac{1-{\nu}_{2}^{2}}{{E}_{2}}\right)$ |

G | shear modulus of the lubricant, Pa |

h | central film thickness, m |

h_{N} | Newtonian central film thickness, m |

K_{1}, K_{2} | thermal conductivity of the contacting bodies, W/(mK) |

K_{L} | thermal conductivity of the lubricant, W/(mK) |

K′_{o} | pressure rate of change of isothermal bulk modulus at p = 0 |

K_{oo} | isothermal bulk modulus at zero absolute temperature and p = 0, Pa |

L_{T} | thermal loading factor |

n | power-law exponent |

p | pressure, Pa |

p_{H} | Hertz (maximum) pressure, Pa |

R | reduced radius of curvature, m: $R={\left(\frac{1}{{R}_{1}}+\frac{1}{{R}_{1}}\right)}^{-1}$ |

R_{1},R_{2} | radii of the contacting surfaces, m |

R_{q} | combined RMS surface roughness, m |

SRR | $\mathrm{slide}-\mathrm{to}-\mathrm{roll}\text{}\mathrm{ratio},\text{}\%:\text{}SRR=\frac{\mathrm{\Delta}u}{{u}_{m}}100$ |

T | absolute temperature in the Tait-Doolittle equation, K |

T_{b} | lubricant bath temperature, °C |

T_{c} | contact temperature, °C |

T_{in} | inlet temperature, °C |

T_{R} | reference temperature in the Tait-Doolittle equation, K |

u_{1}, u_{2} | velocities of the contacting surfaces, m/s |

u_{m} | average velocity or rolling velocity, m/s |

V_{R} | volume at reference temperature and p = 0, m^{3} |

V_{∞R} | occupied volume at reference temperature and p = 0, m^{3} |

W | normal load, N |

W/L | normal load per unit length, N/m |

α | pressure-viscosity coefficient, Pa^{−1} |

α* | reciprocal asymptotic isoviscous pressure coefficient, Pa^{−1} |

α_{V} | thermal expansivity, K^{−1} |

β | temperature-viscosity coefficient, K^{−1} |

β_{k} | temperature coefficient of isothermal bulk modulus at p = 0, K^{−1} |

$\dot{\gamma}$ | shear rate, s^{−1} |

ΔT_{f} | average flash temperature rise, °C |

ΔT_{L} | average temperature rise with respect to the surfaces due to viscous heating, °C |

Δu | sliding velocity, m/s |

ε | occupied volume thermal expansivity, K^{−1} |

η | low-shear viscosity, Pa·s |

η_{0} | low-shear viscosity at p = 0, Pa·s |

η_{G} | generalized viscosity, Pa·s |

η_{R} | low-shear viscosity at reference temperature and p = 0, Pa·s |

λ | specific lubricant film thickness or lambda ratio |

μ | friction (or traction) coefficient |

ν_{1}, ν_{2} | Poisson ratio of the contacting bodies |

ρ_{1}, ρ_{2} | density of the contacting bodies, kg/m^{3} |

σ_{1}, σ_{2} | specific heat of the contacting bodies, J/(kgK) |

τ | shear stress, Pa |

φ_{T} | thermal film thickness reduction factor |

## References

- Dowson, D. History of Tribology, 2nd ed.; Professional Engineering Publishing: London, UK, 1998. [Google Scholar]
- Echávarri, J.; De la Guerra, E.; Chacón, E. Tribology: A historical overview of the relation between theory and application. In A Bridge between Conceptual Frameworks: Sciences, Society and Technology Studies; Pisano, R., Ed.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Johns-Rahnejat, P.M.; Karami, G.; Aini, R.; Rahnejat, H. Fundamentals and advances in elastohydrodynamics: The role of Ramsey Gohar. Lubricants
**2021**, 9, 120. [Google Scholar] [CrossRef] - Stachowiak, G.W. How tribology has been helping us to advance and to survive. Friction
**2017**, 5, 233–247. [Google Scholar] [CrossRef][Green Version] - Habchi, W.; Eyheramendy, D.; Bair, S.; Vergne, P. Thermal elastohydrodynamic lubrication of point contacts using a Newtonian/Generalized Newtonian lubricant. Tribol. Lett.
**2008**, 30, 41–52. [Google Scholar] [CrossRef] - Carli, M.; Sharif, K.J.; Ciulli, E.; Evans, H.P.; Snidle, R.W. Thermal point contact EHL analysis of rolling sliding contacts with experimental comparison showing anomalous film shapes. Tribol. Int.
**2009**, 42, 517–525. [Google Scholar] [CrossRef] - Echávarri, J.; de la Guerra, E.; Chacón, E.; Lafont, P.; Díaz, A.; Munoz-Guijosa, J.M.; Muñoz, J.L. Artificial neural network approach to predict the lubricated friction coefficient. Lubr. Sci.
**2014**, 26, 141–162. [Google Scholar] [CrossRef] - Olver, A.V.; Spikes, H.A. Prediction of traction in elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**1998**, 212, 321–332. [Google Scholar] [CrossRef] - Morales-Espejel, G.E.; Wemekamp, A.W. An engineering approach on sliding friction in full-film, heavily loaded lubricated contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2004**, 218, 513–528. [Google Scholar] [CrossRef] - Masjedi, M.; Khonsari, M.M. An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL. Tribol. Int.
**2015**, 92, 184–190. [Google Scholar] [CrossRef] - Paouris, L.; Rahmani, R.; Theodossiades, S.; Rahnejat, H.; Hunt, G.; Barton, W. An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation. Tribol. Lett.
**2016**, 64, 10. [Google Scholar] [CrossRef][Green Version] - Shirzadegan, M.; Larsson, R.; Almqvist, A. A low degree of freedom approach for prediction of friction in finite EHL line contacts. Tribol. Int.
**2017**, 115, 628–639. [Google Scholar] [CrossRef] - Echávarri, J.; Lafont, P.; Chacón, E.; de la Guerra, E.; Díaz, A.; Munoz-Guijosa, J.M.; Muñoz, J.L. Analytical model for predicting friction coefficient in point contacts with thermal elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2011**, 225, 181–191. [Google Scholar] [CrossRef] - Echávarri, J.; de la Guerra, E.; Chacón, E.; Díaz, A.; Munoz-Guijosa, J.M. Analytical model for predicting friction in line contacts. Lubr. Sci.
**2016**, 28, 189–205. [Google Scholar] [CrossRef][Green Version] - De la Guerra, E.; Echávarri, J.; Chacón, E.; del Río, B. A thermal resistances-based approach for thermal-elastohydrodynamic calculations in point contacts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2018**, 232, 2088–2102. [Google Scholar] [CrossRef] - Stachowiak, G.W.; Batchelor, A.W. Engineering Tribology; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Gohar, R. Elastohydrodynamics; Ellis Horwood Limited: Chichester, UK, 1988. [Google Scholar]
- Gohar, R.; Rahnejat, H. Fundamentals of Tribology, 3rd ed.; World Scientific Publishing: London, UK, 2018. [Google Scholar]
- Bair, S. High Pressure Rheology for Quantitative Elastohydrodynamics; Elsevier: Burlington, MA, USA, 2007. [Google Scholar]
- Marian, M.; Tremmel, S. Current trends and applications of machine learning in tribology—A review. Lubricants
**2021**, 9, 86. [Google Scholar] [CrossRef] - Marian, M.; Mursak, J.; Bartz, M.; Profito, F.J.; Rosenkranz, A.; Wartzack, S. Predicting EHL film thickness parameters by machine learning approaches. Friction
**2022**. [Google Scholar] [CrossRef] - Spikes, H. Basics of EHL for practical application. Lubr. Sci.
**2015**, 27, 45–67. [Google Scholar] [CrossRef][Green Version] - Hamrock, B.J. Fundamentals of Fluid Film Lubrication; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Dowson, D.; Toyoda, S. A central film thickness formula for elastohydrodynamic line contacts. In Elastohydrodynamics and Related Topics; Dowson, D., Taylor, C.M., Godet, M., Berthe, D., Eds.; Mechanical Engineering Publications: Leeds, UK, 1978. [Google Scholar]
- Pan, P.; Hamrock, B.J. Simple formulas for performance parameters used in elastohydrodynamically lubricated line contacts. ASME J. Tribol.
**1989**, 111, 246–251. [Google Scholar] [CrossRef] - Hamrock, B.J.; Dowson, D. Ball bearing lubrication: The Elastohydrodynamics of Elliptical Contacts; Wiley-lnterscience: New York, NY, USA, 1981. [Google Scholar]
- Chaomleffel, J.P.; Dalmaz, G.; Vergne, P. Experimental results and analytical film thickness predictions in EHD rolling point contacts. Tribol. Int.
**2007**, 40, 1543–1552. [Google Scholar] [CrossRef] - Katyal, P.; Kumar, P. New central film thickness equation for shear thinning lubricants in elastohydrodynamic lubricated rolling/sliding point contact conditions. ASME J. Tribol.
**2014**, 136, 041504. [Google Scholar] [CrossRef] - Moes, H. Optimum Similarity Analysis with applications to Elastohydrodynamic Lubrication. Wear
**1992**, 159, 57–66. [Google Scholar] [CrossRef][Green Version] - Moes, H. Lubrication and Beyond; Lecture Notes, Code 115531; University of Twente: Enschede, The Netherlands, 2000. [Google Scholar]
- Nijenbanning, G.; Venner, C.H.; Moes, H. Film thickness in elastohydrodynamically lubricated elliptic contacts. Wear
**1994**, 176, 217–229. [Google Scholar] [CrossRef][Green Version] - Katyal, P.; Kumar, P. Central film thickness formula for shear thinning lubricants in EHL point contacts under pure rolling. Tribol. Int.
**2012**, 48, 113–121. [Google Scholar] [CrossRef] - Marian, M.; Bartz, M.; Wartzack, S.; Rosenkranz, A. Non-dimensional groups, film thickness equations and correction factors for elastohydrodynamic lubrication: A review. Lubricants
**2020**, 8, 95. [Google Scholar] [CrossRef] - Sivayogan, G.; Rahmani, R.; Rahnejat, H. Transient non-Newtonian elastohydrodynamics of rough meshing hypoid gear teeth subjected to complex contact kinematics. Tribol. Int.
**2022**, 167, 107398. [Google Scholar] [CrossRef] - Habchi, W.; Bair, S.; Qureshi, F.; Covitch, M. A film thickness correction formula for double-Newtonian shear-thinning in rolling EHL circular contacts. Tribol. Lett.
**2013**, 50, 59–66. [Google Scholar] [CrossRef] - Anuradha, P.; Kumar, P. New film thickness formula for shear thinning fluids in thin film elastohydrodynamic lubrication line contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2011**, 225, 173–179. [Google Scholar] [CrossRef] - De la Guerra, E.; Echávarri, J.; Sánchez, A.; Chacón, E.; del Río, B. Film thickness formula for thermal EHL line contact considering a new Reynolds–Carreau equation. Tribol. Lett.
**2018**, 66, 31. [Google Scholar] [CrossRef][Green Version] - Habchi, W.; Vergne, P.; Bair, S.; Andersson, O.; Eyheramendy, D.; Morales-Espejel, G.E. Influence of pressure and temperature dependence of thermal properties of a lubricant on the behavior of circular TEHD contacts. Tribol. Int.
**2010**, 43, 1842–1850. [Google Scholar] [CrossRef] - Habchi, W.; Bair, S.; Vergne, P. On friction regimes in quantitative elastohydrodynamics. Tribol. Int.
**2013**, 58, 107–117. [Google Scholar] [CrossRef] - Bair, S. A rough shear thinning correction for EHD film thickness. STLE Tribol. Trans.
**2004**, 47, 361–365. [Google Scholar] [CrossRef] - Bair, S. Shear thinning correction for rolling/sliding elastohydrodynamic film thickness. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2005**, 219, 69–74. [Google Scholar] [CrossRef] - Cheng, H.S. Calculations of Elastohydrodynamic Film Thickness in High Speed Rolling and Sliding Contacts; Technical Report, MTI-67TR24; Mechanical Technology, Inc.: Albany, NY, USA, 1967. [Google Scholar]
- Gupta, P.K.; Cheng, H.S.; Forster, N.H.; Schrand, J.B. Viscoelastic effects in MIL-L-7808-type lubricant. Part I: Analytical formulation. Tribol. Trans.
**1992**, 35, 269–274. [Google Scholar] [CrossRef] - Jubault, I.; Molimard, J.; Lubrecht, A.A.; Mansot, J.L.; Vergne, P. In situ pressure and film thickness measurements in rolling/sliding lubricated point contacts. Tribol. Lett.
**2003**, 15, 421–429. [Google Scholar] [CrossRef] - De la Guerra, E.; Echávarri, J.; Sánchez, A.; Chacón, E. Film thickness predictions for line contact using a new Reynolds-Carreau equation. Tribol. Int.
**2015**, 82, 133–141. [Google Scholar] [CrossRef] - Stribeck, R. Ball bearings for various loads. Trans. ASME
**1907**, 29, 420–463. [Google Scholar] - Hersey, M.D. The laws of lubrication of horizontal journal bearings. J. Wash. Acad. Sci.
**1914**, 19, 542–552. [Google Scholar] - Zhu, D.; Hu, Y. A computer program package for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3-D surface roughness. Tribol. Trans.
**2001**, 44, 383–390. [Google Scholar] [CrossRef] - Castro, J.; Seabra, J. Coefficient of friction in mixed film lubrication: Gears versus twin-discs. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2007**, 221, 399–411. [Google Scholar] [CrossRef] - Brandão, A.; Seabra, J.; Castro, J. Surface initiated tooth flank damage. Part I: Numerical model. Wear
**2010**, 268, 1–12. [Google Scholar] [CrossRef] - Vergne, P. Super low traction under EHD and mixed lubrication regimes. In Superlubricity; Erdemir, A., Martin, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Chittenden, R.J.; Dowson, D.; Dunn, J.F.; Taylor, C.M. A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts II. General Case, with lubricant entrainment along either principal axis of the Hertzian contact ellipse or at some intermediate angle. Proc. R. Soc. Lond. A
**1985**, 397, 271–294. [Google Scholar] [CrossRef] - Carreau, P.J. Rheological equations from molecular network theories. Trans. Soc. Rheol.
**1972**, 16, 99–127. [Google Scholar] [CrossRef] - Johnson, K.L.; Tevaarwerk, J.L. Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. Lond. A
**1977**, 356, 215–236. [Google Scholar] [CrossRef] - Kumar, P.; Anuradha, P.; Khonsari, M.M. Some important aspects of thermal elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
**2010**, 224, 2588–2598. [Google Scholar] [CrossRef] - Bair, S. Is it possible to extract the pressure dependence of low-shear viscosity from EHL friction? Revised May, 2020. Tribol. Int.
**2020**, 151, 106454. [Google Scholar] [CrossRef] - Tian, X.; Kennedy, F.E., Jr. Maximum and average flash temperatures in sliding contacts. ASME. J. Tribol.
**1994**, 116, 167–174. [Google Scholar] [CrossRef] - Bhushan, B. Modern Tribology Handbook. Volume One: Principles of Tribology; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Larsson, R.; Andersson, O. Lubricant thermal conductivity and heat capacity under high pressure. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2000**, 214, 337–342. [Google Scholar] [CrossRef] - Lafont, P.; Echávarri, J.; Sánchez-Peñuela, J.B.; Muñoz, J.L.; Díaz, A.; Munoz-Guijosa, J.M.; Lorenzo, H.; Leal, P.; Muñoz, J. Models for predicting friction coefficient and parameters with influence in elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2009**, 223, 949–958. [Google Scholar] [CrossRef][Green Version] - Hansen, J.; Björling, M.; Larsson, R. Mapping of the lubrication regimes in rough surface EHL contacts. Tribol. Int.
**2019**, 131, 637–651. [Google Scholar] [CrossRef] - Bellón, I.; de la Guerra, E.; Echávarri, J.; Chacón, E.; Fernández, I.; Santiago, J.A. Individual and combined effects of introducing DLC coating and textured surfaces in lubricated contacts. Tribol. Int.
**2020**, 151, 106440. [Google Scholar] [CrossRef] - Lafountain, A.R.; Johnston, G.J.; Spikes, H.A. The elastohydrodynamic traction of synthetic base oil blends. Tribol. Trans.
**2001**, 44, 648–656. [Google Scholar] [CrossRef] - Vengudusamy, B.; Enekes, C.; Spallek, R. EHD friction properties of ISO VG 320 gear oils with smooth and rough surfaces. Friction
**2020**, 8, 164–181. [Google Scholar] [CrossRef][Green Version] - Kumar, P.; Khonsari, M.M. Traction in EHL line contacts using free-volume pressure–viscosity relationship with thermal and shear-thinning effects. J. Tribol.
**2009**, 131, 011503. [Google Scholar] [CrossRef] - Bair, S.; Vergne, P.; Querry, M. A unified shear-thinning treatment of both film thickness and traction in EHD. Tribol. Lett.
**2005**, 18, 145–152. [Google Scholar] [CrossRef][Green Version] - Nakamura, Y.; Hiraiwa, S.; Suzuki, F.; Matsui, M. High-Pressure Viscosity Measurements of Polyalphaorefins at Elevated Temperature. Tribol. Online
**2016**, 11, 444–449. [Google Scholar] [CrossRef][Green Version] - Bair, S. The unresolved definition of the pressure-viscosity coefficient. Sci. Rep.
**2022**, 12, 3422. [Google Scholar] [CrossRef] - Spikes, H.; Jie, Z. History, origins and prediction of elastohydrodynamic friction. Tribol. Lett.
**2014**, 56, 1–25. [Google Scholar] [CrossRef][Green Version] - Bair, S. Pressure-viscosity response in the inlet zone for quantitative elastohydrodynamics. Tribol. Int.
**2016**, 97, 272–277. [Google Scholar] [CrossRef][Green Version]

**Figure 3.**Friction test results and calculated lambda ratio for each test. Ball-on-disc contact lubricated with PAO-6 at T

_{b}= 80 °C and SRR = 50%.

**Figure 4.**Comparison of the models with experimental results. Ball-on-disc contact lubricated with PAO-6 at T

_{b}= 80 °C and SRR = 50%.

**Figure 5.**Comparison of the models with experimental results for the PAO-6 oil at T

_{b}= 80 °C: (

**a**) Ball-on-disc contact at u

_{m}= 2 m/s; (

**b**) Triple contact between steel discs at u

_{m}= 2.5 m/s.

**Figure 9.**Influence of the pressure-viscosity coefficient on the prediction of the friction coefficient: (

**a**) Steel-steel line contact lubricated with PAO-100 at T

_{b}= 70 °C, p

_{H}= 1 GPa and SRR = 100%; (

**b**) Steel ball on glass disc, lubricated with PAO-650 at T

_{b}= 75 °C, p

_{H}= 0.53 GPa and u

_{m}= 0.03, 0.13 and 0.26 m/s. (For more details, see references [65,66]).

**Figure 10.**New prediction for the results at highest pressure in Figure 4. Steel ball on steel disc contact lubricated with PAO-6 at T

_{b}= 80 °C, SRR = 50% and W = 50 N (p

_{H}= 1.12 GPa).

**Figure 11.**New prediction for the results at highest pressures in Figure 5: (

**a**) Steel ball on steel disc contact lubricated with PAO-6 at T

_{b}= 80 °C, u

_{m}= 2 m/s and W = 50 N (p

_{H}= 1.12 GPa); (

**b**) Triple contact between steel discs lubricated with PAO-6 at T

_{b}= 80 °C, u

_{m}= 2.5 m/s and W = 150 N (p

_{H}= 1.06 GPa).

**Figure 12.**Friction calculated with the methodology proposed in the article (µ

_{F}) versus numerical integration of the Tait-Doolittle equation (µ

_{TD}) for the PAO-100, Δu = 1 m/s and h = 80 nm. Percentage deviations calculated as the absolute value of 100(µ

_{F}− µ

_{TD})/µ

_{TD}.

**Table 1.**Classical central film thickness formulae and Hertzian contact parameters. The film thickness formula for each type of geometry is expressed both as a function of non-dimensional groups and in terms of dimensional parameters.

Type of Geometry | Newtonian Film Thickness | Hertzian Parameters | |
---|---|---|---|

Circular contact | $\frac{{h}_{N}}{R}=1.90{\left(\frac{{\eta}_{0}{u}_{m}}{E\prime R}\right)}^{0.67}{\left(\alpha *E\prime \right)}^{0.53}{\left(\frac{W}{E\prime {R}^{2}}\right)}^{-0.067}$ $\mathrm{Equivalently}:\text{}{h}_{N}=1.55\alpha {*}^{0.53}{\left({\eta}_{0}{u}_{m}\right)}^{0.67}E{\prime}^{0.061}{R}^{0.33}{p}_{H}^{-0.201}$ | ${p}_{H}=\frac{3W}{2\pi {a}^{2}}$ | $a={\left(\frac{3WR}{2E\prime}\right)}^{1/3}$ |

Line contact | $\frac{{h}_{N}}{R}=2.922{\left(\frac{{\eta}_{0}{u}_{m}}{E\prime R}\right)}^{0.692}{\left(\alpha *E\prime \right)}^{0.47}{\left(\frac{W/L}{E\prime R}\right)}^{-0.166}$ $\mathrm{Equivalently}:\text{}{h}_{N}=2.154\alpha {*}^{0.47}{\left({\eta}_{0}{u}_{m}\right)}^{0.692}E{\prime}^{0.110}{R}^{0.308}{p}_{H}^{-0.332}$ | ${p}_{H}=\frac{2(W/L)}{\pi a}$ | $a={\left(\frac{8(W/L)R}{\pi E\prime}\right)}^{1/2}$ |

Type of Geometry | Equation |
---|---|

Circular contact | ${\left[{\eta}_{0}({T}_{in})\right]}^{0.67}{\left[\alpha *({T}_{in})\right]}^{0.53}={\phi}_{T}{\left[{\eta}_{0}({T}_{b})\right]}^{0.67}{\left[\alpha *({T}_{b})\right]}^{0.53}$ |

Line contact | ${\left[{\eta}_{0}({T}_{in})\right]}^{0.692}{\left[\alpha *({T}_{in})\right]}^{0.47}={\phi}_{T}{\left[{\eta}_{0}({T}_{b})\right]}^{0.692}{\left[\alpha *({T}_{b})\right]}^{0.47}$ |

Geometry | Formula |
---|---|

Point contact | $\mu =3{\left(\frac{{\eta}_{0}\mathrm{\Delta}u}{h}\right)}^{n}\frac{{G}^{1-n}}{{p}_{H}}\left[\frac{\mathrm{exp}(n\alpha {p}_{H})}{n\alpha {p}_{H}}\left(1-\frac{1}{n\alpha {p}_{H}}\right)+\frac{1}{{\left(n\alpha {p}_{H}\right)}^{2}}\right]$ |

Line contact | $\mu ={\left(\frac{{\eta}_{0}\mathrm{\Delta}u}{h}\right)}^{n}\frac{{G}^{1-n}}{{p}_{H}}\left[\frac{4}{\pi}+\frac{n\alpha {p}_{H}}{3}\left(\frac{2+\sqrt{3}}{2}\mathrm{exp}\left(n\alpha {p}_{H}\sqrt{\frac{1}{2}-\frac{\sqrt{3}}{4}}\right)+\mathrm{exp}\left(n\alpha {p}_{H}\frac{\sqrt{2}}{2}\right)+\frac{2-\sqrt{3}}{2}\mathrm{exp}\left(n\alpha {p}_{H}\sqrt{\frac{1}{2}+\frac{\sqrt{3}}{4}}\right)\right)\right]$ |

Geometry | Average Temperature Rise Formulae | |
---|---|---|

Circular contact | $\mathrm{\Delta}{T}_{f}=\frac{0.37\mu W\mathrm{\Delta}u/a}{\sqrt{{K}_{1}(1.74{K}_{1}+a{u}_{1}{\rho}_{1}{\sigma}_{1})}+\sqrt{{K}_{2}(1.74{K}_{2}+a{u}_{2}{\rho}_{2}{\sigma}_{2})}}$ | $\mathrm{\Delta}{T}_{L}=\frac{\mu Wh\mathrm{\Delta}u}{8\pi {a}^{2}{K}_{L}}$ |

Line Contact | $\mathrm{\Delta}{T}_{f}=\frac{0.53\mu (W/L)\mathrm{\Delta}u}{\sqrt{{K}_{1}(0.90{K}_{1}+a{u}_{1}{\rho}_{1}{\sigma}_{1})}+\sqrt{{K}_{2}(0.90{K}_{2}+a{u}_{2}{\rho}_{2}{\sigma}_{2})}}$ | $\mathrm{\Delta}{T}_{L}=\frac{\mu (W/L)h\mathrm{\Delta}u}{16a{K}_{L}}$ |

**Table 5.**Properties of the tested materials [13].

Property | Steel | Copper |
---|---|---|

Young’s modulus, GPa | 210 | 117 |

Poisson ratio | 0.30 | 0.34 |

Thermal conductivity, W/(mK) | 41 | 385 |

Density, kg/m^{3} | 7850 | 8913 |

Specific heat, J/(kgK) | 418 | 398 |

Test Rig and Type of Contact | Materials | Load, N | Hertz Pressure, GPa |
---|---|---|---|

MTM, ball-on-disc | steel-copper | 20 | 0.67 |

steel-steel | 20 | 0.83 | |

steel-steel | 50 | 1.12 | |

MPR, triple-disc | steel-steel | 100 | 0.86 |

steel-steel | 150 | 1.06 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Echávarri Otero, J.; de la Guerra Ochoa, E.; Chacón Tanarro, E.; Franco Martínez, F.; Contreras Urgiles, R.W.
An Analytical Approach for Predicting EHL Friction: Usefulness and Limitations. *Lubricants* **2022**, *10*, 141.
https://doi.org/10.3390/lubricants10070141

**AMA Style**

Echávarri Otero J, de la Guerra Ochoa E, Chacón Tanarro E, Franco Martínez F, Contreras Urgiles RW.
An Analytical Approach for Predicting EHL Friction: Usefulness and Limitations. *Lubricants*. 2022; 10(7):141.
https://doi.org/10.3390/lubricants10070141

**Chicago/Turabian Style**

Echávarri Otero, Javier, Eduardo de la Guerra Ochoa, Enrique Chacón Tanarro, Francisco Franco Martínez, and Rafael Wilmer Contreras Urgiles.
2022. "An Analytical Approach for Predicting EHL Friction: Usefulness and Limitations" *Lubricants* 10, no. 7: 141.
https://doi.org/10.3390/lubricants10070141