Polymeric Coatings for Skutterudite-Based Thermoelectric Materials
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Encapsulation of Skutterudite Materials
2.3. Thermogravimetric Analysis
2.4. Electrical Resistivity
2.5. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
3. Thermal Stability of HTPs
4. Electrical Resistivity
5. Sublimation and Oxidation
6. Effects of Heating on Morphology
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiSalvo, F.J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-H. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators. Mater. Lett. 2000, 43, 221–224. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics Basic Principles and New Materials Developments; Springer Series in Materials Science; Springer: Heidelberg, Germany, 2001; p. 45. [Google Scholar]
- Beyer, H.; Nurnus, J.; Böttner, H.; Lambrecht, A.; Wagner, E.; Bauer, G. High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity. Phys. E Low-Dimens. Syst. Nanostructures 2002, 13, 965–968. [Google Scholar] [CrossRef]
- Riffat, S.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Shikano, M.; Funahashi, R.; Kitawaki, M. Properties of CaxCo2O4 Aligned Crystals. J. Mater. Res. 2005, 20, 3082–3087. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics Handbook—Macro to Nano; Taylor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, D.; Zhu, G.; Li, J.; Pan, F. Thermoelectric properties of conducting polyaniline/graphite composites. Mater. Lett. 2011, 65, 1086–1088. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef] [Green Version]
- Brostow, W.; Granowski, G.; Hnatchuk, N.; Sharp, J.; White, J.B. Thermoelectric phenomena. J. Mater. Ed. 2014, 36, 175–185. [Google Scholar]
- El-Desouky, A.; Carter, M.; Andre, M.A.; Bardet, P.M.; LeBlanc, S. Rapid processing and assembly of semiconductor thermoelectric materials for energy conversion devices. Mater. Lett. 2016, 185, 598–602. [Google Scholar] [CrossRef]
- Brostow, W.; Sayana, S.; Sharp, J.; Thompson, A.J.; White, J.B. Thermoelectric materials. J. Mater. Ed. 2017, 39, 259–269. [Google Scholar]
- Kim, J.; Duy, L.T.; Kang, H.; Ahn, B.; Seo, H. Fluorine doping for improved thermoelectric properties of spark plasma sintered bismuth telluride. J. Mater. Sci. Technol. 2021, 90, 225–235. [Google Scholar] [CrossRef]
- Kim, S.-T.; Park, J.M.; Park, K.-I.; Chun, S.-E.; Lee, H.S.; Choi, P.-P.; Yi, S. Enhanced thermoelectric composite performance from mesoporous carbon additives in a commercial Bi0.5Sb1.5Te3 matrix. J. Mater. Sci. Technol. 2021, 94, 175–182. [Google Scholar] [CrossRef]
- Abbas, M. Smart materials for changing the electrical properties of nanostructures. Compos. Adv. Mater. 2021, 30, 1–16. [Google Scholar] [CrossRef]
- Biesuz, M.; Saunders, T.; Ke, D.; Reece, M.J.; Hu, C.; Grasso, S. A review of electromagnetic processing of materials (EPM): Heating, sintering, joining and forming. J. Mater. Sci. Technol. 2021, 69, 239–272. [Google Scholar] [CrossRef]
- Parashchuk, T.; Kostyuk, O.; Nykyruy, L.; Dashevsky, Z. High thermoelectric performance of p-type Bi0.5Sb1.5Te3 films on flexible substrate. Mater. Chem. Phys. 2020, 253, 123427. [Google Scholar] [CrossRef]
- Özçelik, B.; Çetin, G.; Gürsul, M.; Madre, M.; Sotelo, A. A study on thermoelectric performance and magnetic properties of Ti-doped Bi2Sr2Co1.8Oy ceramic materials. Mater. Chem. Phys. 2020, 256, 123701. [Google Scholar] [CrossRef]
- Thongsamrit, W.; Promphet, C.; Maneesai, K.; Karaphun, A.; Tuichai, W.; Sriwong, C.; Ruttanapun, C. Effect of grain boundary interfaces on electrochemical and thermoelectric properties of a Bi2Te3/reduced graphene oxide composites. Mater. Chem. Phys. 2020, 250, 123196. [Google Scholar] [CrossRef]
- Zheng, Z.-H.; Shi, X.-L.; Ao, D.-W.; Liu, W.-D.; Chen, Y.-X.; Li, F.; Chen, S.; Tian, X.-Q.; Li, X.-R.; Duan, J.-Y.; et al. Rational band engineering and structural manipulations inducing high thermoelectric performance in n-type CoSb3 thin films. Nano Energy 2020, 81, 105683. [Google Scholar] [CrossRef]
- Brostow, W.; Datashvili, T.; McCarty, R.; White, J.B. Copper viscoelasticity manifested in scratch recovery. Mater. Chem. Phys. 2010, 124, 371–376. [Google Scholar] [CrossRef]
- Brostow, W.; Hagg Lobland, H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Brostow, W.; Chen, I.K.; White, J.B. Effects of polymeric coatings on the service life of bismuth telluride-based thermoelectric materials. Sustain. Energy Fuels 2017, 1, 1376–1380. [Google Scholar] [CrossRef]
- Brostow, W.; Datashvili, T.; Lobland, H.E.H.; Hilbig, T.; Su, L.; Vinado, C.; White, J. Bismuth telluride thermoelectric materials: Coatings as protection against thermal cycling effects. J. Mater. Res. 2012, 27, 2930–2936. [Google Scholar] [CrossRef] [Green Version]
- Arenas, M.C.; Andablo, E.; Castaño, V.M. Synthesis of conducting polyaniline nanofibers from single and binary dopant agents. J. Nanosci. Nanotechnol. 2010, 10, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Vijay, P.V.; Soti, P.R.; Banerjee, D.A.; Sierros, K.A. Abrasion resistance of polymer and polymer–ceramic composite coatings for steel hydraulic structures. J. Coatings Technol. Res. 2020, 17, 401–411. [Google Scholar] [CrossRef]
- Jena, G.; Vanithakumari, C.; Polaki, S.R.; George, R.P.; Philip, J.; Amarendra, G. Electrophoretically deposited graphene oxide–polymer bilayer coating on Cu-Ni alloy with enhanced corrosion resistance in simulated chloride environment. J. Coatings Technol. Res. 2019, 16, 1317–1335. [Google Scholar] [CrossRef]
- Brostow, W.; Chang, J.; Lobland, H.E.H.; Perez, J.M.; Shipley, S.; Wahrmund, J.; White, J.B. Rheological Characterization of Liquid Polymers Containing Ceramic Nanopowders for Use in Thermoelectric Devices. J. Nanosci. Nanotechnol. 2015, 15, 6604–6608. [Google Scholar] [CrossRef]
- Nolas, G.; Fowler, G. Partial filling of skutterudites: Optimization for thermoelectric applications. J. Mater. Res. 2005, 20, 3234–3237. [Google Scholar] [CrossRef]
- Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Lucas, E.F.; Soarez, B.G.; Monteiro, E. Caracterização de Polimeros; E-Papers: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Gedde, U.W.; Hedenqvist, M.S. Polymer Physics, 2nd ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brostow, W.; Chen, I.; Lobland, H.E.H. Polymeric Coatings for Skutterudite-Based Thermoelectric Materials. Lubricants 2022, 10, 72. https://doi.org/10.3390/lubricants10040072
Brostow W, Chen I, Lobland HEH. Polymeric Coatings for Skutterudite-Based Thermoelectric Materials. Lubricants. 2022; 10(4):72. https://doi.org/10.3390/lubricants10040072
Chicago/Turabian StyleBrostow, Witold, IKang Chen, and Haley E. Hagg Lobland. 2022. "Polymeric Coatings for Skutterudite-Based Thermoelectric Materials" Lubricants 10, no. 4: 72. https://doi.org/10.3390/lubricants10040072
APA StyleBrostow, W., Chen, I., & Lobland, H. E. H. (2022). Polymeric Coatings for Skutterudite-Based Thermoelectric Materials. Lubricants, 10(4), 72. https://doi.org/10.3390/lubricants10040072