Current Status and Future Prospects of Biolubricants: Properties and Applications
Abstract
:1. Introduction
2. Sources and Preparation of Lubricating Oils
Biodegradable Grease
3. Properties of Biolubricants
3.1. Viscosity
3.2. Thermo-Oxidative Stability
3.3. Pour Point
3.4. Ecotoxicity
3.5. Hydrolytic Stability
3.6. Biodegradability
Sl. No. | Oil | Density at 298 K (kg/m3) * | Kinematic Viscosity at 313 K (cSt) | Oxidation Stability, 383 K, h | Cloud Point (K) | Flash Point (K) | Ref. |
---|---|---|---|---|---|---|---|
Non-edible oils | |||||||
1 | Karanja | 918 | 4.80 | 6.0 | 282 | 423 | [2,15,55,62,63,64,65,66,67,68,69,70,71] |
2 | Castor | 898 | 15.25 | 1.2 | 259.5 | 533 | |
3 | Neem | 885 | 5.20 | 7.2 | 287.5 | 317 | |
4 | Jatropha | 878 | 4.82 | 2.3 | 275.75 | 409 | |
5 | Tobacco | 887 | 4.25 | 0.8 | NR | 439 | |
6 | Mahua | 850 | 3.40 | NR | NR | 483 | |
7 | Rubber seed oil | 870.9 (at 313 K) | 31.4 | NR | NR | NR | |
Edible oils | |||||||
8 | Coconut | 805 | 2.75 | 35.4 | 273 | 598 | |
9 | Sunflower | 878 | 4.45 | 0.9 | 276.42 | 525 | |
10 | Linseed | 890 | 3.74 | 0.2 | 269.2 | 451 | |
11 | Soybean | 885 | 4.05 | 2.1 | 274 | 598 | |
12 | Peanut | 882 | 4.92 | 2.1 | 278 | 450 | |
13 | Olive | 892 | 4.52 | 3.4 | NR | 591 | |
14 | Rice bran | 886 | 4.95 | 0.5 | 273.3 | 591 | |
15 | Rape seed | 880 | 4.45 | 7.5 | 269.7 | 525 | |
16 | Palm | 875 | 5.72 | 4.0 | 286 | 438 | |
Other oils | |||||||
17 | HTL biocrude | 940–960 | 110–350 | NR | 278 | 366 | [72,73] |
18 | Waste cooking oil | 908–955 | 35.3 | NR | 272 | NR | [74,75] |
Pyrolysis-derived oils | |||||||
19 | Biomass | 1100–1300 | 13–80 (at 323 K) | NR | NR | 323–373 | [76,77] |
20 | PS | 1100 | 1.4 | NR | NR | 375 | [78] |
21 | PP | 980 | 212 | NR | NR | 357 | [78] |
22 | Catalytically upgraded oil from PS | 979 | 1.63 | NR | NR | 356 | [78] |
23 | Catalytically upgraded oil from PP | 853 | 5.98 | NR | NR | 350 | [78] |
24 | LDPE | 856 | 476.6 | NR | NR | NR | [79] |
25 | PI | 841 | 6.4 | NR | NR | NR | [79] |
26 | PS–biomass mixtures | 1096–1192 | 2.0–2.75 | NR | NR | NR | [79] |
27 | PP–biomass mixtures | 615–942 | 681–729 | NR | NR | NR | [79] |
28 | LDPE–biomass mixtures | 832–867 | 139–187.5 | NR | NR | NR | [79] |
29 | PI–biomass mixtures | 880–892 | 4.1–7.5 | NR | NR | NR | [79] |
30 | Waste tire | 900 | 1.9 | NR | NR | 300 | [80] |
31 | Rice straw | 777–847 | 34.7–39.6 | NR | NR | 387–390 | [81] |
32 | Bagasse | 813–893 | 28.8–31.2 | NR | NR | 382–385 | [81] |
Synthetic and mineral oil | |||||||
33 | SAE20W40 | NR | 105 | NR | NR | 473 | [15,82] |
34 | Neat mineral oil | 880 | 62.9 | NR | NR | 497 | [83] |
35 | ISO VG32 | NR | >28.8 | NR | NR | 477 | [15] |
36 | ISO VG46 | NR | >41.4 | NR | NR | 493 | [15] |
37 | ISO VG68 | NR | >61.4 | NR | NR | 499 | [15] |
38 | ISO VG 100 | NR | >90 | NR | NR | 519 | [15] |
39 | R150 | NR | 150 | 15.52 | NR | 468 | [15] |
4. Development of Biolubricants from Biomass via Thermochemical Techniques
5. Comparison of Biolubricants with Other Lubricants and the Need for Alternate Biolubricants
Sl. No. | Advantages | Disadvantages |
---|---|---|
1 | High lubricity | High cost. |
2 | High viscosity index | Several vegetable oils are edible. This can lead to food vs. fuel debate. |
3 | High volatility | Vegetable oils have higher melting points. |
4 | High boiling point (lower emissions) | Vegetable oils have low oxidative stability. |
5 | Longer tool life | Biolubricants are less developed compared to fossil-based technologies. |
6 | Better skin compatibility | Poor oxidation stability of pyrolysis bio-oils. |
7 | Better safety on the shop floor | High acidity of pyrolysis bio-oils. |
8 | Biodegradability is high (as they are free of aromatics) | Higher extent of upgradation required for thermochemically derived base stocks. |
9 | High volatility | High viscosity of HTL biocrudes. |
10 | Customizable chemical structures | |
11 | Lesser amount of contaminants | |
12 | The base stocks for biolubricants can be derived from a variety of sources |
6. Applications
Sl. No. | Oil | Major Properties * | Major Applications | Reference |
---|---|---|---|---|
1 | Palm oil | Less corrosive, low coefficient of friction, high viscosity | Greases, metal working fluids (MWFs) | [2,15] |
2 | Coconut oil | High antiwear, better lubricity, low coefficient of friction | Engine oils | [2,15] |
3 | Crambe oil | n.a. | Greases, surfactants, cosmetics, chemicals | [15] |
4 | Sunflower oil | High VI, high flash point than some conventional oils, high lubricity, low evaporative loss, low co-efficient of friction, better lubricity, non-toxic | Diesel fuels, greases | [2,15] |
5 | Soybean oil | Hydraulic oils, biodiesel fuel, engine oils, transmission fluids, printing inks, paints, detergents, coatings, pesticides, shampoos | [2,15] | |
6 | Safflower oil | Resins, diesel fuels, enamels | [2,15] | |
7 | Linseed oil | Stains, coatings, vanishes, paints | [2,15] | |
8 | Olive oil | Engine oils | [2,15] | |
9 | Canola oil | MWFs, transmission fluids, food-grade lubes, hydraulic fluids, penetrating oils, transmission fluids | [2,15] | |
10 | Castor oil | High VI, low volatility, high antioxidants, low deposit formation | Greases, gear lubricants | [2,15] |
11 | Pongamia oil | Low frictional losses, low emissions, minimum break-specific fuel consumption and high break thermal efficiency at medium loads | Power transformer applications, anticorrosive coating | [2,110,111] |
12 | Tallow oil | n.a. | Soaps, cosmetics, plastics, hydraulic oils | [15] |
13 | Cuphea oil | n.a. | Motor oils, cosmetics | [15] |
14 | Jojoba oil | n.a. | Greases, cosmetics, lubricants | [15] |
15 | Jatropha oil | High VI, low wear loss, low cumulative weight loss, low coefficient of friction | Biodiesel | [2,112,113] |
16 | Rapeseed oil | Better oxidation stability, better cold flow property and low coefficient of friction | Power transformer applications, hydraulic fluids, greases, chainsaw oils | [2,15,110] |
17 | HTL liquid | High viscosity, high acidity | Biocrude for various engineering applications, heating, in marine, rail engines, can be upgraded to transportation fuels and jet fuels | [95,114] |
18 | Pyrolysis oil | High viscosity if the feedstock is polymers, while viscosity is low if derived from biomass; poor oxidation stability, high acidity | Biofuel for energy applications, heating, steel, cement industries, generating valuable hydrocarbons and petrochemicals | [81,86,88] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panchal, T.M.; Patel, A.; Chauhan, D.D.; Thomas, M.; Patel, J.V. A Methodological Review on Bio-Lubricants from Vegetable Oil Based Resources. Renew. Sustain. Energy Rev. 2017, 70, 65–70. [Google Scholar] [CrossRef]
- Mobarak, H.M.; Niza Mohamad, E.; Masjuki, H.H.; Kalam, M.A.; Al Mahmud, K.A.H.; Habibullah, M.; Ashraful, A.M. The Prospects of Biolubricants as Alternatives in Automotive Applications. Renew. Sustain. Energy Rev. 2014, 33, 34–43. [Google Scholar] [CrossRef]
- Minami, I. Molecular Science of Lubricant Additives. Appl. Sci. 2017, 7, 445. [Google Scholar] [CrossRef]
- Sharma, M.; Rakesh, N.; Dasappa, S. Solid Oxide Fuel Cell Operating with Biomass Derived Producer Gas: Status and Challenges. Renew. Sustain. Energy Rev. 2016, 60, 450–463. [Google Scholar] [CrossRef]
- Rakesh, N.; Dasappa, S. Biosyngas for Electricity Generation Using Fuel Cells—A Gas Quality Assessment. In Proceedings of the 26th European Biomass Conference and Exhibition 2018, Copenhagen, Denmark, 14–17 May 2018; pp. 708–712. [Google Scholar] [CrossRef]
- Rakesh, N.; Dasappa, S. Carbon Deposition on the Anode of a Solid Oxide Fuel Cell Fueled by Syngas—A Thermodynamic Analysis. In Proceedings of the 7th International Conference on Advances in Energy Research; Springer Proceedings in Energy; Bose, M., Modi, A., Eds.; Springer: Singapore, 2021; pp. 1083–1090. ISBN 9789811559549. [Google Scholar]
- Singh, A.; Gupta, A.; Rakesh, N.; Shivapuji, A.M.; Dasappa, S. Syngas generation for methanol synthesis: Oxy-steam gasification route using agro-residue as fuel. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Prashanth, F.P.; Kumar, M.M.; Vinu, R. Analytical and microwave pyrolysis of empty oil palm fruit bunch: Kinetics and product characterization. Bioresour. Technol. 2020, 310, 123394. [Google Scholar] [CrossRef]
- Eschenbacher, A.; Fennell, P.; Kensen, A.D. A review of recent research on catalytic biomass pyrolysis and low-pressure hydropyrolysis. Energy Fuels 2021, 35, 18333–18369. [Google Scholar] [CrossRef]
- Mika, L.T.; Cséfalvay, E.; Németh, Á. Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability. Chem. Rev. 2018, 118, 505–613. [Google Scholar] [CrossRef]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A Review on Bio-Based Lubricants and Their Applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Bart, J.C.J.; Gucciardi, E.; Cavalloro, S. (Eds.) Biolubricants: Science and Technology; Woodhead Publishing Series in Energy; Woodhead Publishing: Cambridge, UK; Philadelphia, PA, USA, 2013; ISBN 978-0-85709-263-2. [Google Scholar]
- Joseph, P.V.; Saxena, D.; Sharma, D.K. Study of Some Non-Edible Vegetable Oils of Indian Origin for Lubricant Application. J. Synth. Lubr. 2007, 24, 181–197. [Google Scholar] [CrossRef]
- Rudnick, L.R. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 3rd ed.; Rudnick, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-1-315-15815-0. [Google Scholar]
- Cecilia, J.A.; Ballesteros Plata, D.; Alves Saboya, R.M.; Tavares de Luna, F.M.; Cavalcante, C.L.; Rodríguez-Castellón, E. An Overview of the Biolubricant Production Process: Challenges and Future Perspectives. Processes 2020, 8, 257. [Google Scholar] [CrossRef] [Green Version]
- Papke, B.L. Mineral Oil Base Fluids. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer: Boston, MA, USA, 2013; pp. 2257–2261. ISBN 978-0-387-92896-8. [Google Scholar]
- Arumugam, S.; Sriram, G. Effect of Bio-Lubricant and Biodiesel-Contaminated Lubricant on Tribological Behavior of Cylinder Liner–Piston Ring Combination. Tribol. Trans. 2012, 55, 438–445. [Google Scholar] [CrossRef]
- Shah, R.; Woydt, M.; Zhang, S. The Economic and Environmental Significance of Sustainable Lubricants. Lubricants 2021, 9, 21. [Google Scholar] [CrossRef]
- Karmakar, G.; Ghosh, P.; Sharma, B. Chemically Modifying Vegetable Oils to Prepare Green Lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, H.; Adhikari, S.; Roy, P.; Shelley, M.; Hassani, E.; Oh, T.-S. Synthesis of novel biolubricants from waste cooking oil and cyclic oxygenates through an integrated catalytic process. ACS Sustain. Chem. Eng. 2021, 9, 13424–13437. [Google Scholar] [CrossRef]
- Aisyah, I.S.; Caesarendra, W.; Kurniawati, D.; Maftuchah, M.; Agung, D.; Glowacz, A.; Oprzędkiewicz, K.; Liu, H. Study of Jatropha Curcas Linn and Olea Europaea as Bio-Oil Lubricant to Physical Properties and Wear Rate. Lubricants 2021, 9, 39. [Google Scholar] [CrossRef]
- Nagendramma, P.; Kumar, P. Eco-Friendly Multipurpose Lubricating Greases from Vegetable Residual Oils. Lubricants 2015, 3, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Borras, F.; de Rooij, M.; Schipper, D. Rheological and Wetting Properties of Environmentally Acceptable Lubricants (EALs) for Application in Stern Tube Seals. Lubricants 2018, 6, 100. [Google Scholar] [CrossRef] [Green Version]
- Attia, N.K.; El-Mekkawi, S.A.; Elardy, O.A.; Abdelkader, E.A. Chemical and rheological assessment of produced biolubricants from different vegetable oils. Fuel 2020, 271, 117578. [Google Scholar] [CrossRef]
- Encinar, J.M.; Nogales-Delgado, S.; Sánchez, N.; González, J.F. Biolubricants from rapeseed and castor oil transesterification by using titanium isopropoxide as a catalyst: Production and characterization. Catalysts 2020, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.; Singh, Y.; Tiwari, K. A Review on the Production and Characterization Methods of Bio-Based Lubricants. Mater. Today: Proc. 2021, 46, 10503–10506. [Google Scholar] [CrossRef]
- API Base Oil Interchangeability Guidelines for Passenger Car Motor Oils and Diesel Engine Oils. Available online: https://www.api.org/~/media/files/certification/engine-oil-diesel/publications/anne-rev-03-25-15.pdf?la=en (accessed on 12 January 2022).
- Choudary, N.V.; Newalkar, B.L. Use of zeolites in petroleum refining and petrochemical processes: Recent advances. J. Porous Mater. 2011, 18, 685–692. [Google Scholar] [CrossRef]
- Singh, Y.; Farooq, A.; Raza, A.; Mahmood, M.A.; Jain, S. Sustainability of a Non-Edible Vegetable Oil Based Bio-Lubricant for Automotive Applications: A Review. Process Saf. Environ. Prot. 2017, 111, 701–713. [Google Scholar] [CrossRef]
- Reeves, C.J.; Siddaiah, A.; Menezes, P.L. A Review on the Science and Technology of Natural and Synthetic Biolubricants. J. Bio-Tribo-Corros. 2017, 3, 11. [Google Scholar] [CrossRef]
- Greco-Duarte, J.; Cavalcanti-Oliveira, E.D.; Da Silva, J.A.C.; Fernandez-Lafuente, R.; Freire, D.M.G. Two-Step Enzymatic Production of Environmentally Friendly Biolubricants Using Castor Oil: Enzyme Selection and Product Characterization. Fuel 2017, 202, 196–205. [Google Scholar] [CrossRef]
- Vafaei, S.; Fischer, D.; Jopen, M.; Jacobs, G.; König, F.; Weberskirch, R. Investigation of Tribological Behavior of Lubricating Greases Composed of Different Bio-Based Polymer Thickeners. Lubricants 2021, 9, 80. [Google Scholar] [CrossRef]
- Abdulbari, H.A.; Zuhan, N. Grease Formulation from Palm Oil Industry Wastes. Waste Biomass Valorization 2018, 9, 2447–2457. [Google Scholar] [CrossRef]
- Sánchez, R.; Valencia, C.; Franco, J.M. Rheological and Tribological Characterization of a New Acylated Chitosan–Based Biodegradable Lubricating Grease: A Comparative Study with Traditional Lithium and Calcium Greases. Tribol. Trans. 2014, 57, 445–454. [Google Scholar] [CrossRef]
- Shapovalov, V.M.; Zlotnikov, I.I.; Kupchinov, B.I.; Timoshenko, V.V.; Zubritskii, M.I. New Biodegradable Antifriction Grease. J. Frict. Wear 2007, 28, 306–309. [Google Scholar] [CrossRef]
- Sánchez, R.; Alonso, G.; Valencia, C.; Franco, J.M. Rheological and TGA Study of Acylated Chitosan Gel-like Dispersions in Castor Oil: Influence of Acyl Substituent and Acylation Protocol. Chem. Eng. Res. Des. 2015, 100, 170–178. [Google Scholar] [CrossRef]
- Martín Alfonso, J.E.; Yañez, R.; Valencia, C.; Franco, J.M.; Díaz, M.J. Optimization of the Methylation Conditions of Kraft Cellulose Pulp for Its Use As a Thickener Agent in Biodegradable Lubricating Greases. Ind. Eng. Chem. Res. 2009, 48, 6765–6771. [Google Scholar] [CrossRef]
- Mas, R.; Magnin, A. Rheology of Colloidal Suspensions: Case of Lubricating Greases. J. Rheol. 1994, 38, 889–908. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Martín-Sampedro, R.; Ibarra, D.; Valencia, C.; Eugenio, M.E.; Franco, J.M. Evaluation of Lignin-Enriched Side-Streams from Different Biomass Conversion Processes as Thickeners in Bio-Lubricant Formulations. Int. J. Biol. Macromol. 2020, 162, 1398–1413. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, R.; Fiedler, M.; Kuhn, E.; Franco, J.M. Tribological Characterization of Green Lubricating Greases Formulated with Castor Oil and Different Biogenic Thickener Agents: A Comparative Experimental Study. Ind. Lubr. Tribol. 2011, 63, 446–452. [Google Scholar] [CrossRef]
- Gallego, R.; Arteaga, J.F.; Valencia, C.; Díaz, M.J.; Franco, J.M. Gel-Like Dispersions of HMDI-Cross-Linked Lignocellulosic Materials in Castor Oil: Toward Completely Renewable Lubricating Grease Formulations. ACS Sustain. Chem. Eng. 2015, 3, 2130–2141. [Google Scholar] [CrossRef]
- Acar, N.; Kuhn, E.; Franco, J. Tribological and Rheological Characterization of New Completely Biogenic Lubricating Greases: A Comparative Experimental Investigation. Lubricants 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Thermo-Rheological and Tribological Properties of Novel Bio-Lubricating Greases Thickened with Epoxidized Lignocellulosic Materials. J. Ind. Eng. Chem. 2019, 80, 626–632. [Google Scholar] [CrossRef]
- Saboya, R.M.A.; Cecilia, J.A.; García-Sancho, C.; Sales, A.V.; de Luna, F.M.T.; Rodríguez-Castellón, E.; Cavalcante, C.L. Assessment of Commercial Resins in the Biolubricants Production from Free Fatty Acids of Castor Oil. Catal. Today 2017, 279, 274–285. [Google Scholar] [CrossRef]
- Saboya, R.M.A.; Cecilia, J.A.; García-Sancho, C.; Luna, F.M.T.; Rodríguez-Castellón, E.; Cavalcante, C.L. WO 3 -Based Catalysts Supported on Porous Clay Heterostructures (PCH) with Si–Zr Pillars for Synthetic Esters Production. Appl. Clay Sci. 2016, 124–125, 69–78. [Google Scholar] [CrossRef]
- Verdier, S.; Coutinho, J.A.P.; Silva, A.M.S.; Alkilde, O.F.; Hansen, J.A. A Critical Approach to Viscosity Index. Fuel 2009, 88, 2199–2206. [Google Scholar] [CrossRef]
- Braga, J.W.B.; dos Santos Junior, A.A.; Martins, I.S. Determination of Viscosity Index in Lubricant Oils by Infrared Spectroscopy and PLSR. Fuel 2014, 120, 171–178. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. ASTM D2270-10: Standard practice for calculating viscosity index from kinematic viscosity at 40 and 100 °C. Annual Book of ASTM Standards, ASTM International, West Conshohocken. 2016. Available online: https://www.astm.org/d2270-10r16.html (accessed on 12 January 2022).
- Brazilian Association of Technical Standards. NBR 14358: Determination of the Viscosity Index from Kinematic Viscosity; Brazilian Association of Technical Standards: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- Dean, E.; Davis, G. Viscosity Variations of Oils with Temperature. Chem. Met. Eng. 1929, 36, 618–619. [Google Scholar]
- Minami, I. Ionic Liquids in Tribology. Molecules 2009, 14, 2286–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedrzejczyk, M.A.; Van den Bosch, S.; Van Aelst, J.; Van Aelst, K.; Kouris, P.D.; Moalin, M.; Haenen, G.R.; Boot, M.D.; Hensen, E.J.; Lagrain, B.; et al. Lignin-Based Additives for Improved Thermo-Oxidative Stability of Biolubricants. ACS Sustain. Chem. Eng. 2021, 9, 12548–12559. [Google Scholar] [CrossRef]
- Tripathi, A.; Vinu, R. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils. Lubricants 2015, 3, 54–79. [Google Scholar] [CrossRef] [Green Version]
- Haase, K.D.; Heynen, A.J.; Laane, N.L.M. Composition and Application of Isostearic Acid. Fat Sci. Technol. 1989, 91, 350–353. [Google Scholar]
- Kamalakar, K.; Rajak, A.K.; Prasad, R.B.N.; Karuna, M.S.L. Rubber seed oil-based biolubricant base stocks:A potential source for hydraulic oils. Ind. Crop. Prod. 2013, 51, 249–257. [Google Scholar] [CrossRef]
- Battersby, N.S. Biodegradable Lubricants: What Does ‘Biodegradable’ Really Mean? J. Synth. Lubr. 2005, 22, 3–18. [Google Scholar] [CrossRef]
- Luna, F.M.T.; Cavalcante, J.B.; Silva, F.O.N.; Cavalcante, C.L. Studies on Biodegradability of Bio-Based Lubricants. Tribol. Int. 2015, 92, 301–306. [Google Scholar] [CrossRef]
- Cecutti, C.; Agius, D. Ecotoxicity and Biodegradability in Soil and Aqueous Media of Lubricants Used in Forestry Applications. Bioresour. Technol. 2008, 99, 8492–8496. [Google Scholar] [CrossRef] [Green Version]
- Beran, E. Experience with Evaluating Biodegradability of Lubricating Base Oils. Tribol. Int. 2008, 41, 1212–1218. [Google Scholar] [CrossRef]
- Dibble, J.T.; Bartha, R. Effect of Environmental Parameters on the Biodegradation of Oil Sludge. Appl. Environ. Microbiol. 1979, 37, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Rawat, S.S.; Harsha, A.P. The lubrication effect of different vegetable oil-based greases on steel-steel tribo-pair. Biomass Convers. Biorefinery 2022. [CrossRef]
- Usta, N.; Aydoğan, B.; Çon, A.H.; Uğuzdoğan, E.; Özkal, S.G. Properties and Quality Verification of Biodiesel Produced from Tobacco Seed Oil. Energy Convers. Manag. 2011, 52, 2031–2039. [Google Scholar] [CrossRef]
- Willing, A. Lubricants Based on Renewable Resources—An Environmentally Compatible Alternative to Mineral Oil Products. Chemosphere 2001, 43, 89–98. [Google Scholar] [CrossRef]
- Asadauskas, S.; Perez, J.M.; Duda, J.L. Oxidative Stability and Antiwear Properties of High Oleic Vegetable Oils. Lubr. Eng. 1996, 52, 877–882. [Google Scholar]
- Erhan, S.Z.; Asadauskas, S. Lubricant Basestocks from Vegetable Oils. Ind. Crop. Prod. 2000, 11, 277–282. [Google Scholar] [CrossRef]
- 66. Munoz, R.A.; Fernandes, D.M.; Santos, D.Q.; Barbosa, T.G.; Sousa, R.M. Biodiesel: Production, Characterization, Metallic Corrosion and Analytical Methods for Contaminants. In Biodiesel—Feedstocks, Production and Applications; Fang, Z., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-51-0910-5. [Google Scholar]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of Edible Oil vs. Non-Edible Oil vs. Waste Edible Oil as Biodiesel Feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Wu, X.; Leung, M.K.H. A Review on Biodiesel Production Using Catalyzed Transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of Various Plants and Animals Feedstocks for Biodiesel Production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Biofuels–Renewable Energy Sources: A Review. J. Dispers. Sci. Technol. 2010, 31, 409–425. [Google Scholar] [CrossRef]
- Mohibbeazam, M.; Waris, A.; Nahar, N. Prospects and Potential of Fatty Acid Methyl Esters of Some Non-Traditional Seed Oils for Use as Biodiesel in India. Biomass Bioenergy 2005, 29, 293–302. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Prussi, M.; Buffi, M.; Rizzo, A.M.; Pari, L. Review and Experimental Study on Pyrolysis and Hydrothermal Liquefaction of Microalgae for Biofuel Production. Appl. Energy 2017, 185, 963–972. [Google Scholar] [CrossRef]
- Divyabharathi, R.; Subramanian, P. Biocrude Production from Orange (Citrus Reticulata) Peel by Hydrothermal Liquefaction and Process Optimization. Biomass Convers. Biorefinery 2022, 12, 183–194. [Google Scholar] [CrossRef]
- Chhetri, A.; Watts, K.; Islam, M. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies 2008, 1, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Chen, M.; Wu, S.; Liu, J.; Amirkhanian, S. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties. Materials 2017, 10, 508. [Google Scholar] [CrossRef]
- Oasmaa, A.; Czernik, S. Fuel Oil Quality of Biomass Pyrolysis OilsState of the Art for the End Users. Energy Fuels 1999, 13, 914–921. [Google Scholar] [CrossRef]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of Biomass Pyrolysis Oil Properties and Upgrading Research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Boruah, B.; Raja, D.; Vinu, R. Microwave Assisted Co-Pyrolysis of Biomasses with Polypropylene and Polystyrene for High Quality Bio-Oil Production. Fuel Process. Technol. 2018, 175, 64–75. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Vinu, R. Biomass Waste Conversion into Value-Added Products via Microwave-Assisted Co-Pyrolysis Platform. Renew. Energy 2021, 170, 400–409. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Rehan, M.; Aburiazaiza, A.S.; Gardy, J.; Nizami, A.S. Effect of Advanced Catalysts on Tire Waste Pyrolysis Oil. Process Saf. Environ. Prot. 2018, 116, 542–552. [Google Scholar] [CrossRef] [Green Version]
- Suriapparao, D.V.; Vinu, R.; Shukla, A.; Haldar, S. Effective Deoxygenation for the Production of Liquid Biofuels via Microwave Assisted Co-Pyrolysis of Agro Residues and Waste Plastics Combined with Catalytic Upgradation. Bioresour. Technol. 2020, 302, 122775. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.; Joy, M.L.; Nair, K.P. Evaluation of Physiochemical and Tribological Properties of Rice Bran Oil—Biodegradable and Potential Base Stoke for Industrial Lubricants. Ind. Crop. Prod. 2015, 65, 328–333. [Google Scholar] [CrossRef]
- Bekal, S.; Bhat, N.R. Bio-Lubricant as an Alternative to Mineral Oil for a CI Engine—An Experimental Investigation with Pongamia Oil as a Lubricant. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 1016–1026. [Google Scholar] [CrossRef]
- Rakesh, N.; Dasappa, S. Analysis of tar obtained from hydrogen-rich syngas generated from a fixed bed downdraft biomass gasification system. Energy Convers. Manag. 2018, 167, 134–146. [Google Scholar] [CrossRef]
- Pedersen, T.H.; Hansen, N.H.; Pérez, O.M.; Cabezas, D.E.V.; Rosendahl, L.A. Renewable Hydrocarbon Fuels from Hydrothermal Liquefaction: A Techno-Economic Analysis: Renewable Hydrocarbon Fuels from Hydrothermal Liquefaction: A Techno-Economic Analysis. Biofuels Bioprodicts Biorefinery 2018, 12, 213–223. [Google Scholar] [CrossRef]
- Gautam, R.; Vinu, R. Reaction Engineering and Kinetics of Algae Conversion to Biofuels and Chemicals via Pyrolysis and Hydrothermal Liquefaction. React. Chem. Eng. 2020, 5, 1320–1373. [Google Scholar] [CrossRef]
- Ranganathan, P.; Savithri, S. Techno-Economic Analysis of Microalgae-Based Liquid Fuels Production from Wastewater via Hydrothermal Liquefaction and Hydroprocessing. Bioresour. Technol. 2019, 284, 256–265. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Reddy, M.; Subramanyam, M.D.; Kishore, N. A Review on the Upgradation Techniques of Pyrolysis Oil. Renew. Sustain. Energy Rev. 2016, 58, 1543–1568. [Google Scholar] [CrossRef]
- Sánchez, M.E.; Lindao, E.; Margaleff, D.; Martínez, O.; Morán, A. Pyrolysis of Agricultural Residues from Rape and Sunflowers: Production and Characterization of Bio-Fuels and Biochar Soil Management. J. Anal. Appl. Pyrolysis 2009, 85, 142–144. [Google Scholar] [CrossRef]
- Asadullah, M.; Rahman, M.A.; Ali, M.M.; Rahman, M.S.; Motin, M.A.; Sultan, M.B.; Alam, M.R. Production of Bio-Oil from Fixed Bed Pyrolysis of Bagasse. Fuel 2007, 86, 2514–2520. [Google Scholar] [CrossRef]
- Zhou, X.; Broadbelt, L.J.; Vinu, R. Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass. In Advances in Chemical Engineering; Van Geem, K.M., Ed.; Academic Press: Burlington, ON, Canada, 2016; Volume 49, pp. 95–198. ISBN 978-0-12-809777-9. [Google Scholar]
- Liu, C.; Wang, H.; Karim, A.M.; Sun, J.; Wang, Y. Catalytic Fast Pyrolysis of Lignocellulosic Biomass. Chem. Soc. Rev. 2014, 43, 7594–7623. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Li, Y.; Wang, X.; Wan, Y.; Chen, Q.; Wang, C.; Lin, X.; Liu, Y.; Chen, P.; Ruan, R. Microwave-Assisted Pyrolysis of Microalgae for Biofuel Production. Bioresour. Technol. 2011, 102, 4890–4896. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Kishore, N.; Gu, S. A Review on Hydrothermal Liquefaction of Biomass. Renew. Sustain. Energy Rev. 2018, 81, 1378–1392. [Google Scholar] [CrossRef]
- Nallasivam, J.; Prashanth, P.F.; Vinu, R. Hydrothermal Liquefaction of Biomass for the Generation of Value-Added Products. In Biomass, Biofuels and Biochemicals; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Ssempebwa, J.C.; Carpenter, D.O. The Generation, Use and Disposal of Waste Crankcase Oil in Developing Countries: A Case for Kampala District, Uganda. J. Hazard. Mater. 2009, 161, 835–841. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.L.; Stipe, C.B.; Habjan, M.C.; Ahlstrand, G.G. Role of Lubrication Oil in Particulate Emissions from a Hydrogen-Powered Internal Combustion Engine. Environ. Sci. Technol. 2007, 41, 6828–6835. [Google Scholar] [CrossRef]
- Li, W.; Wang, X. Bio-Lubricants Derived from Waste Cooking Oil with Improved Oxidation Stability and Low-Temperature Properties. J. Oleo Sci. 2015, 64, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Haarlemmer, G.; Guizani, C.; Anouti, S.; Déniel, M.; Roubaud, A.; Valin, S. Analysis and Comparison of Bio-Oils Obtained by Hydrothermal Liquefaction and Fast Pyrolysis of Beech Wood. Fuel 2016, 174, 180–188. [Google Scholar] [CrossRef]
- Singh, R. Progress of Environment Friendly Cutting Fluids/Solid Lubricants in Turning-A Review. Mater. Today Proc. 2021, 37, 3577–3580. [Google Scholar] [CrossRef]
- Ho, C.K.; McAuley, K.B.; Peppley, B.A. Biolubricants through Renewable Hydrocarbons: A Perspective for New Opportunities. Renew. Sustain. Energy Rev. 2019, 113, 109261. [Google Scholar] [CrossRef]
- Liston, T.V. Engine Lubricant Additives What They Are and How They Function. Lubr. Eng. 1992, 48, 389–397. [Google Scholar]
- Katna, R.; Suhaib, M.; Agrawal, N. Nonedible Vegetable Oil-Based Cutting Fluids for Machining Processes—A Review. Mater. Manuf. Process. 2020, 35, 1–32. [Google Scholar] [CrossRef]
- Emmanuel, O.A.; Kessington, O.O.; Mudiakeoghene, O. Biodegradation of Vegetable Oils: A Review. Sci. Res. Essay 2009, 4, 543–548. [Google Scholar]
- Kania, D.; Yunus, R.; Omar, R.; Abdul Rashid, S.; Mohamad Jan, B. A Review of Biolubricants in Drilling Fluids: Recent Research, Performance, and Applications. J. Pet. Sci. Eng. 2015, 135, 177–184. [Google Scholar] [CrossRef]
- Ghuge, N.C.; Dhatrak, V.K.; Mahalle, A. Minimum Quantity Lubrication. Iosrjen 2012, 2, 55–60. [Google Scholar]
- Dong, L.; Li, C.; Zhou, F.; Bai, X.; Gao, W.; Duan, Z.; Li, X.; Lv, X.; Zhang, F. Temperature of the 45 Steel in the Minimum Quantity Lubricant Milling with Different Biolubricants. Int. J. Adv. Manuf. Technol. 2021, 113, 2779–2790. [Google Scholar] [CrossRef]
- Mang, T.; Freiler, C.; Horner, D. Metalworking Fluids. In Lubricants and Lubrication, 2nd ed.; Mang, T., Dresel, W., Eds.; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Arca, M.; Sharma, B.K.; Perez, J.M.; Doll, K.M. Gear Oil Formulation Designed to Meet Bio-Preferred Criteria as Well as Give High Performance. Int. J. Sustain. Eng. 2013, 6, 326–331. [Google Scholar] [CrossRef]
- Thanigaiselvan, R.; Raja, T.S.R.; Karthik, R. Investigations on Eco Friendly Insulating Fluids from Rapeseed and Pongamia Pinnata Oils for Power Transformer Applications. J. Electr. Eng. Technol. 2015, 10, 2348–2355. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ashraf, S.M.; Naqvi, F.; Yadav, S.; Hasnat, A. A Polyesteramide from Pongamia Glabra Oil for Biologically Safe Anticorrosive Coating. Prog. Org. Coat. 2003, 47, 95–102. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Das, L.M. Combustion Analysis of Jatropha, Karanja and Polanga Based Biodiesel as Fuel in a Diesel Engine. Fuel 2009, 88, 994–999. [Google Scholar] [CrossRef]
- Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Habib, M.A.; Mobarak, H.M. Effect of Bio-Lubricant on Tribological Characteristics of Steel. Procedia Eng. 2014, 90, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Mahesh, D.; Ahmad, S.; Kumar, R.; Chakravarthy, S.R.; Vinu, R. Hydrothermal Liquefaction of Municipal Solid Wastes for High Quality Bio-Crude Production Using Glycerol as Co-Solvent. Bioresour. Technol. 2021, 339, 125537. [Google Scholar] [CrossRef] [PubMed]
- Athaley, A.; Saha, B.; Ierapetritou, M. Biomass-based chemical production using techno-economic and life cycle analysis. AIChE J. 2019, 65, 16660. [Google Scholar] [CrossRef]
Sl. No. | Base Stock | Source | Reference |
---|---|---|---|
1 | Mineral oil base stocks | They are obtained from crude oil processing after solvent refining, catalytic dewaxing, hydrotreatment, and hydrocracking. They can be naphthenic, aromatic, or paraffinic in nature. They mainly include API Group I, II, and III oils. | [26,27,28] |
2 | Re-refined oil base stocks | These are obtained from refined petroleum products after the removal of volatile and insoluble components and contaminants via acid/clay treatment. They mainly include API Group I, II, and III oils. | [26] |
3 | Synthetic oil base stocks | They are obtained from petroleum crude oil after chemical modification via hydrotreating and hydroprocessing. They mainly include poly-α-olefins, silicones, polyolesters, phosphate ester-based and polyalkylene glycol-based oils. They mainly include API Group IV and V oils. | [26] |
4 | Biomass base stocks | They include plants and animal-based oils including vegetable oils, lipids, and oils derived from agro-residues and wastes via thermochemical and catalytic processing. | [15,26,29] |
Common Name | Molecular Formula | Fatty Acid Type |
---|---|---|
Palmitic acid | C16H32O2 | Saturated |
Stearic acid | C18H36O2 | Saturated |
Oleic acid | C18H34O2 | Monounsaturated |
Linoleic acid | C18H32O2 | Diunsaturated |
Linolenic acid | C18H30O2 | Triunsaturated |
Ricinoleic acid | C18H34O3 | Unsaturated fatty acid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayana Sarma, R.; Vinu, R. Current Status and Future Prospects of Biolubricants: Properties and Applications. Lubricants 2022, 10, 70. https://doi.org/10.3390/lubricants10040070
Narayana Sarma R, Vinu R. Current Status and Future Prospects of Biolubricants: Properties and Applications. Lubricants. 2022; 10(4):70. https://doi.org/10.3390/lubricants10040070
Chicago/Turabian StyleNarayana Sarma, Rakesh, and Ravikrishnan Vinu. 2022. "Current Status and Future Prospects of Biolubricants: Properties and Applications" Lubricants 10, no. 4: 70. https://doi.org/10.3390/lubricants10040070
APA StyleNarayana Sarma, R., & Vinu, R. (2022). Current Status and Future Prospects of Biolubricants: Properties and Applications. Lubricants, 10(4), 70. https://doi.org/10.3390/lubricants10040070