A Novel Polishing Method for Extending the Service Life of Magnetic Compound Fluid
Abstract
:1. Introduction
2. Experimental Details
2.1. Polishing Principle
2.2. Experimental Setup
2.3. Experimental Conditions and Procedures
3. Results and Discussion
3.1. MCF Tool
3.2. Optimal Processing Parameters
3.3. MCF Service Life
4. Conclusions
- (1)
- The MCF polishing tool has the best polishing effect when the eccentricity r and MCF slurry supply V are 4 mm and 1 mL.
- (2)
- The formation time of the MCF tool decreased sharply when the eccentricity increased from 2 to 4 mm, but once the eccentricity exceeded 4 mm, the trend of decline became reversed. Moreover, with the increase in supply, the formation time grew steadily.
- (3)
- An ideal processing result could be obtained when the machining gap Δ, the revolution speed of the MCF carrier nc, the eccentricity r, and the revolution speed of the magnet nm were 1 mm, 500 rpm, 4 mm, and 600 rpm, respectively. Moreover, the influence of the processing parameters on surface roughness is more significant than that on material removal.
- (4)
- Adding water and MF could extend the service life of MCF, and, compared with adding water, adding MF could obtain a better polishing effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Magnetic compound fluid | MCF |
Magnetic fluid | MF |
Magnetorheological | MR |
Carbonyl iron particles | CIPs |
Material removal rate | MRR |
Eccentricity distance | r |
Machining gap | Δ |
Supplying of MCF slurry | V |
Polishing time | t |
The rotation speed of the MCF carrier | nc |
The rotation speed of the magnet | nm |
Surface roughness reduction rate | Ra% |
Maximum material removal depth | MRmax |
Surface roughness before polishing | Rai |
Surface roughness after polishing | Rap |
Magnetic levitation force | Fabr |
Volume of abrasive grains | Vabr |
Permeability of vacuum | μ0 |
Intensity of magnetization | Mf |
Gradient of the magnetic field | ▽H |
Magnetization of iron powder | M |
Permeability of the magnetic particle | μ |
Magnetic field intensity | H |
Volume ratio of magnetic particles | φ |
Brinell hardness | HB |
Diameter of the abrasive grain | Dabr |
Pressure of the abrasive grain | P |
Depth of abrasive embedding | h |
References
- Li, M.; Yuan, J.L.; Wu, Z. Progress in ultra-precision machining methods of complex curved parts. J. Mech. Eng. 2015, 51, 178–191. [Google Scholar] [CrossRef]
- Yuan, J.L.; Zhang, F.; Dai, Y.; Kang, R.; Yuan, H.; Lv, B. Development research of science and technologies in ultra-precision machining field. J. Mech. Eng. 2010, 46, 161–177. [Google Scholar] [CrossRef]
- Guo, D.; Sun, Y.; Jia, Z. Methods and research progress of high performance manufacturing. J. Mech. Eng. 2014, 50, 119–134. [Google Scholar] [CrossRef]
- Li, M.; Karpuschewski, B.; Ohmori, H.; Riemer, O.; Wang, Y.; Dong, T. Adaptive shearing-gradient thickening polishing (AS-GTP) and subsurface damage inhibition. Int. J. Mach. Tools Manuf. 2021, 160, 103651. [Google Scholar] [CrossRef]
- Houshi, M.N. A comprehensive review on magnetic abrasive finishing process. Adv. Eng. Forum 2016, 18, 1–20. [Google Scholar] [CrossRef]
- Yin, S. Ultra-Precision Finishing Technology Assisted by Magnetic Field, 1st ed.; Hunan University Press: Changsha, China, 2009; pp. 163–179. [Google Scholar]
- Li, M.; Song, F.; Huang, Z. Control strategy of machining efficiency and accuracy in weak-chemical-coordinated-thickening polishing (WCCTP) process on spherical curved 9Cr18 components. J. Manuf. Process. 2022, 74, 266–282. [Google Scholar] [CrossRef]
- Cheng, Q.; Fan, Z.; Tian, Y.; Liu, Y.; Han, J.; Wang, J. A review on magnetic abrasive finishing. Int. J. Adv. Manuf. Technol. 2020, 112, 619–634. [Google Scholar]
- Kumari, C.; Chak, S. A review on magnetically assisted abrasive finishing and their critical process parameters. Manuf. Rev. 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Yan, L.; Huang, Y.; Xu, X. Review on magnetic field assisted machining technology. J. Mech. Eng. 2016, 52, 1–9. [Google Scholar] [CrossRef]
- Li, M.; Xie, J. Green-chemical-jump-thickening polishing for silicon carbide. Ceram. Int. 2022, 48, 1107–1124. [Google Scholar] [CrossRef]
- Yuan, J.; Wu, Z.; Lv, B.; Nguyen, D.; Lu, H.; Zhao, P. Review on ultra-precision polishing technology of aspheric surface. J. Mech. Eng. 2012, 48, 167–177. [Google Scholar] [CrossRef]
- Tani, Y.; Kawata, K.; Nakayama, K. Development of high-efficient fine finishing process using magnetic fluid. CIRP Ann. Manuf. Technol. 1984, 33, 217–220. [Google Scholar] [CrossRef]
- Yin, S.; Xu, Z.; Duan, H.; Chen, F. Effects of magnetic fluid on machining characteristics in magnetic field assisted polishing process. Adv. Mater. Res. 2013, 797, 396–400. [Google Scholar] [CrossRef]
- Liu, T. Study on Synthesis of Magnetic Fluids Containing Carbon Coated Fe and Fe-Ni Nanoparticles, 1st ed.; China University Mining and Technology Press: Xuzhou, China, 2008; pp. 21–32. [Google Scholar]
- Kordonski, W.; Golini, D. Progress update in magnetorheological finishing. Int. J. Mod. Phys. B 1999, 13, 2205–2212. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Q. Research progress of magnetorheological polishing technology. Surf. Technol. 2019, 48, 317–328. [Google Scholar]
- Jacobs, S.; Arrasmith, S.; Kozhinova, I.; Gregg, L.; Hogen, S. An overview of magnetorheological finishing (MRF) for precision optics manufacturing. Ceram. Trans. 1999, 102, 185–199. [Google Scholar]
- Jha, S.; Jain, V. Design and development of the magnetorheological abrasive flow finishing (MRAFF) process. Int. J. Mach. Tools Manuf. 2004, 44, 1019–1029. [Google Scholar] [CrossRef]
- Das, M.; Jain, V.; Ghoshdastidar, P. Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process. Int. J. Mach. Tools Manuf. 2007, 48, 415–426. [Google Scholar] [CrossRef]
- Jha, S.; Jain, V. Modeling and simulation of surface roughness in magnetorheological abrasive flow finishing (MRAFF) process. Wear 2006, 261, 856–866. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, H.; Luan, D. Research on machining mechanics and experiment of ultrasonic-magnetorheological compound finishing. Int. J. Comput. Appl. Technol. 2007, 29, 252–256. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Zhang, Y.; Luan, D. Research on material removal of ultrasonic-magnetorheological compound finishing. Int. J. Mach. Mach. Mater. 2007, 2, 50–58. [Google Scholar] [CrossRef]
- Shimada, K.; Akagami, Y.; Kamiyama, S.; Fujita, T.; Shibayama, A. New microscopic polishing with magnetic compound fluid (MCF). J. Intell. Mater. Syst. Struct. 2002, 13, 405–408. [Google Scholar] [CrossRef]
- Shimada, K.; Fujita, T.; Oka, H.; Akagami, Y.; Kamiyama, S. Hydrodynamic and magnetized characteristics of MCF (magnetic compound fluid). Trans. Jpn. Soc. Mech. Eng. 2001, 67, 3034–3040. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Nomura, M. Feasibility study on surface finishing of miniature V-grooves with magnetic compound fluid slurry. Precis. Eng. 2016, 45, 67–78. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Nomura, M. Fundamental investigation on nano-precision surface finishing of electroless Ni–P-plated STAVAX steel using magnetic compound fluid slurry. Precis. Eng. 2017, 48, 32–44. [Google Scholar] [CrossRef]
- Shimada, K.; Wu, Y.; Matsuo, Y.; Yamamoto, K. Float polishing technique using new tool consisting of micro magnetic clusters. J. Mater. Process. Technol. 2005, 162, 690–695. [Google Scholar] [CrossRef]
- Furuya, T.; Wu, Y.; Nomura, M.; Shimada, K.; Yamamoto, K. Fundamental performance of magnetic compound fluid polishing liquid in contact-free polishing of metal surface. J. Mater. Process. Technol. 2007, 201, 536–541. [Google Scholar] [CrossRef]
- Wu, Y.; Sato, T.; Lin, W.; Yamamoto, K.; Shimada, K. Mirror surface finishing of acrylic resin using MCF-based polishing liquid. Int. J. Abras. Technol. 2010, 3, 11–24. [Google Scholar] [CrossRef]
- Guo, H.; Wu, Y.; Lu, D.; Fujimoto, M.; Nomura, M. Effects of pressure and shear stress on material removal rate in ultra-fine polishing of optical glass with magnetic compound fluid slurry. J. Mater. Process. Technol. 2014, 214, 2759–2769. [Google Scholar] [CrossRef]
- Sato, T.; Wu, Y.; Lin, W.; Shimada, K. Study on magnetic compound fluid (MCF) polishing process using fluctuating magnetic field. Trans. Jpn. Soc. Mech. Eng. 2009, 75, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Wu, Y.; Lin, W.; Shimada, K. Study of three-dimensional polishing using magnetic compound fluid (MCF). Adv. Mater. Res. 2009, 849, 288–293. [Google Scholar] [CrossRef]
- Nomura, M.; Makita, N.; Fujii, T.; Wu, Y. Effects of water supply using ultrasonic atomization on the working life of MCF slurry in MCF polishing. Int. J. Autom. Technol. 2019, 13, 743–748. [Google Scholar] [CrossRef]
- Shorey, A.; Jacobs, S.; Kordonski, W.; Gans, R. Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing. Appl. Opt. 2001, 40, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Cho, M.; Seo, T.; Shin, Y. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications. Sensors 2008, 8, 222–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidpara, A.; Jain, V. Analysis of forces on the freeform surface in magnetorheological fluid based finishing process. Int. J. Mach. Tools Manuf. 2013, 69, 1–10. [Google Scholar] [CrossRef]
- Sidpara, A.; Jain, V. Theoretical analysis of forces in magnetorheological fluid based finishing process. Int. J. Mech. Sci. 2012, 56, 50–59. [Google Scholar] [CrossRef]
- Liang, H.; Yan, Q.L.; Lu, J.; Luo, B.; Xiao, X. Material removal mechanisms in chemical-magnetorheological compound finishing. Int. J. Adv. Manuf. Technol. 2019, 103, 1337–1348. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Y.; Li, S. Mathematical model of material removal in magnetorheological polishing. J. Mech. Eng. 2004, 40, 67–70. [Google Scholar] [CrossRef]
- Pawan, P.; Jain, K. Computational simulation of abrasive flow machining for two dimensional models. Mater. Today: Proc. 2018, 5, 12969–12983. [Google Scholar]
- Peng, Z.; Song, W.; Ye, C.; Shi, P.; Choi, S. Model establishment of surface roughness and experimental investigation on magnetorheological finishing for polishing the internal surface of titanium alloy tubes. J. Intell. Mater. Syst. Struct. 2021, 32, 1278–1289. [Google Scholar] [CrossRef]
- Jain, R.; Jain, V.; Dixit, P. Modeling of material removal and surface roughness in abrasive flow machining process. Int. J. Mach. Tools Manuf. 1999, 39, 1903–1923. [Google Scholar] [CrossRef]
- Guo, H.; Wu, Y. Behaviors of MCF (magnetic compound fluid) slurry and its mechanical characteristics: Normal and shearing forces under a dynamic magnetic field. J. Jpn. Soc. Exp. Mech. 2012, 12, 369–374. [Google Scholar]
Water-based magnetic fluid (MF) | mean diameter | 10 nm |
concentration | 45 wt.% | |
Carbonyl iron powder (CIP) | mean diameter | 7 μm |
concentration | 40 wt.% | |
Abrasive grain (Al2O3) | mean diameter | 1 μm |
concentration | 12 wt.% | |
α-cellulose | concentration | 3 wt.% |
Parameters | Value |
---|---|
Workpiece | Polycarbonate board: L 50 mm × W 50 mm × t 1 mm |
Permanent magnet | Φ 20 mm × t 10 mm |
B = 0.5 T | |
r = 2, 4, 6, 8 mm | |
nm = 300, 400, 500, 600 rpm | |
MCF carrier | nc = 200, 300, 400, 500 rpm |
Supplying of MCF slurry, V | 1, 1.5, 2, 2.5 mL |
Machining gap, Δ | 1, 1.5, 2, 2.5 mm |
Processing time, t | 10 min |
Level | Eccentricity r/mm | Machining Gap Δ/mm | Rotation Speed of the MCF Carrier nc/rpm | Rotation Speed of the Magnet nm/rpm |
---|---|---|---|---|
1 | 2 | 1 | 200 | 300 |
2 | 4 | 1.5 | 300 | 400 |
3 | 6 | 2 | 400 | 500 |
4 | 8 | 2.5 | 500 | 600 |
Test No. | r/mm | Δ/mm | nc/rpm | nm/rpm | Rai/μm | Rap/μm | Ra% | MRmax/μm |
---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 200 | 300 | 0.409 | 0.028 | 93.154 | 11.279 |
2 | 2 | 1.5 | 300 | 400 | 0.467 | 0.032 | 93.147 | 9.822 |
3 | 2 | 2 | 400 | 500 | 0.408 | 0.069 | 83.088 | 8.724 |
4 | 2 | 2.5 | 500 | 600 | 0.523 | 0.123 | 76.482 | 8.618 |
5 | 4 | 1 | 300 | 500 | 0.373 | 0.010 | 97.319 | 15.732 |
6 | 4 | 1.5 | 200 | 600 | 0.383 | 0.031 | 91.906 | 10.732 |
7 | 4 | 2 | 500 | 300 | 0.497 | 0.080 | 83.903 | 13.745 |
8 | 4 | 2.5 | 400 | 400 | 0.461 | 0.120 | 73.970 | 7.814 |
9 | 6 | 1 | 400 | 600 | 0.406 | 0.026 | 93.596 | 15.917 |
10 | 6 | 1.5 | 500 | 500 | 0.420 | 0.016 | 96.190 | 12.334 |
11 | 6 | 2 | 200 | 400 | 0.429 | 0.163 | 62.005 | 10.652 |
12 | 6 | 2.5 | 300 | 300 | 0.387 | 0.190 | 50.904 | 6.974 |
13 | 8 | 1 | 500 | 400 | 0.496 | 0.010 | 97.984 | 12.764 |
14 | 8 | 1.5 | 400 | 300 | 0.425 | 0.019 | 95.529 | 8.015 |
15 | 8 | 2 | 300 | 600 | 0.386 | 0.103 | 73.316 | 7.307 |
16 | 8 | 2.5 | 200 | 500 | 0.466 | 0.218 | 53.219 | 6.938 |
r/mm | Δ/mm | nc/rpm | nm/rpm | |
---|---|---|---|---|
K1 | 86.468 | 95.513 | 75.071 | 80.873 |
K2 | 86.775 | 94.193 | 78.672 | 81.777 |
K3 | 75.674 | 75.578 | 86.546 | 82.454 |
K4 | 80.012 | 63.644 | 88.640 | 83.825 |
R | 11.101 | 31.869 | 13.569 | 2.952 |
F1 | 9.61 | 13.923 | 9.9 | 10.003 |
F2 | 12.005 | 10.226 | 9.959 | 10.263 |
F3 | 11.469 | 10.014 | 10.117 | 10.931 |
F4 | 8.756 | 7.585 | 11.865 | 10.643 |
T | 3.249 | 6.338 | 1.965 | 0.928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, X.; Gao, J.; Chen, X.; Zhang, W.; Feng, M. A Novel Polishing Method for Extending the Service Life of Magnetic Compound Fluid. Lubricants 2022, 10, 299. https://doi.org/10.3390/lubricants10110299
Wang Y, Gao X, Gao J, Chen X, Zhang W, Feng M. A Novel Polishing Method for Extending the Service Life of Magnetic Compound Fluid. Lubricants. 2022; 10(11):299. https://doi.org/10.3390/lubricants10110299
Chicago/Turabian StyleWang, Youliang, Xichun Gao, Jibo Gao, Xiujuan Chen, Wenjuan Zhang, and Ming Feng. 2022. "A Novel Polishing Method for Extending the Service Life of Magnetic Compound Fluid" Lubricants 10, no. 11: 299. https://doi.org/10.3390/lubricants10110299
APA StyleWang, Y., Gao, X., Gao, J., Chen, X., Zhang, W., & Feng, M. (2022). A Novel Polishing Method for Extending the Service Life of Magnetic Compound Fluid. Lubricants, 10(11), 299. https://doi.org/10.3390/lubricants10110299