The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition
Abstract
:1. Introduction
2. Experimental Process
2.1. Materials
2.2. Tribological Tests
2.3. Characterization
3. Tribological Results
3.1. Anti-Friction Properties
3.2. Anti-Wear Properties
3.3. Wear Mechanism
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Y.; He, Y.; Shi, Y. Nanolubricant additives: A review. Friction 2021, 9, 891–917. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Y.; He, Y.; Luo, J. In Situ Green Synthesis of the New Sandwichlike Nanostructure of Mn3O4/Graphene as Lubricant Additives. Acs Appl. Mater. Int. 2019, 11, 36931–36938. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, G.; Zhao, W.; Yan, X.; Zhang, Y. An Experimental Test on a Cryogenic High-Speed Hydrodynamic Non-Contact Mechanical Seal. Tribol Lett. 2017, 65, 65–80. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Mao, J.; Li, Y.; He, Y.; Luo, J. Friction-induced nano-structural evolution of graphene as a lubrication additive. Appl. Surf. Sci. 2018, 434, 21–27. [Google Scholar] [CrossRef]
- Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear 2020, 203, 442–443. [Google Scholar] [CrossRef]
- Jradi, K.; Schmitt, M.; Bistac, S. Surface modifications induced by the friction of graphites against steel. Appl. Surf. Sci. 2009, 255, 4219–4224. [Google Scholar] [CrossRef]
- Hirani, H.; Goilkar, S.S. Formation of transfer layer and its effect on friction and wear of carbon–graphite face seal under dry, water and steam environments. Wear 2009, 266, 1141–1154. [Google Scholar] [CrossRef]
- Chen, G.X.; Li, F.X.; Dong, L.; Zhu, M.H.; Zhou, Z.R. Friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon. Tribol. Int. 2009, 42, 934–939. [Google Scholar] [CrossRef]
- Jia, Q.; Yuan, X.; Zhang, G.; Dong, G.; Zhao, W. Dry friction and wear characteristics of impregnated graphite in a corrosive environment. Chin. J. Mech. Eng. 2014, 27, 965–971. [Google Scholar] [CrossRef]
- Lafon-Placette, S.; Delbé, K.; Denape, J.; Ferrato, M. Tribological characterization of silicon carbide and carbon materials. J. Eur. Ceram. 2015, 35, 1147–1159. [Google Scholar] [CrossRef] [Green Version]
- Li, J. The effect of the addition of graphite on tribological properties of glass fibre-reinforced polyimide composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 224, 279–284. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Guo, F.; Liu, X.; Wang, Y. Friction Characteristics of Impregnated and Non-Impregnated Graphite against Cemented Carbide under Water Lubrication. J. Mater. Sci. Technol. 2017, 33, 1203–1209. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, S.; Wu, J.; Xu, L.; Li, T.; Ren, Y.; Liu, C. Friction and Wear Behavior of Resin/Graphite Composite under Dry Sliding. J. Mater. Sci. Technol. 2015, 31, 325–330. [Google Scholar] [CrossRef]
- Fei, J.; Li, H.; Huang, J.; Fu, Y. S tudy on the friction and wear performance of carbon fabric/phenolic composites under oil lubricated conditions. Tribol. Int. 2017, 56, 30–37. [Google Scholar] [CrossRef]
- Sekiguchi, S.; Suzuki, H.; van Ryper, R.G.; Ritchey, D.J. Development of a new seal material to reduce energy losses in vehicle transmissions. Seal. Technol. 2009, 11, 8–11. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Q.; Yuan, X.; Wang, S. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment. Appl. Surf. Sci. 2012, 258, 9531–9535. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Xiao, J.; Zhou, K. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Trans. Nonferr. Met. Soc. China 2015, 25, 3354–3362. [Google Scholar] [CrossRef]
- Ma, W.; Lu, J. Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper–Graphite Composite. Tribol Lett. 2010, 41, 363–370. [Google Scholar] [CrossRef]
- Su, L.; Gao, F.; Han, X.; Chen, J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol. Int. 2015, 90, 420–425. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Xu, J.; Wu, C.; Chen, P. Effect of the content of ball-milled expanded graphite on the bending and tribological properties of copper–graphite composites. Mater. Des. 2013, 47, 667–671. [Google Scholar] [CrossRef]
- Cao, H.M.; Zhou, X.; Li, X.Y.; Lu, K. Friction mechanism in the running-in stage of copper: From plastic deformation to delamination and oxidation. Tribol. Int. 2017, 115, 3–7. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Sun, L.; Li, Y.; Zheng, B.; Zhai, W. Effect of physical properties of Cu-Ni-graphite composites on tribological characteristics by grey correlation analysis. Results Phys. 2017, 7, 263–271. [Google Scholar] [CrossRef]
- Williams, J.A.; Morris, J.H.; Ball, A. The effect of transfer layers on the surface contact and wear of carbon-graphite materials. Tribol. Int. 1997, 9, 663–676. [Google Scholar] [CrossRef]
- Jin, K.; Qiao, Z.; Zhu, S.; Cheng, J.; Yin, B.; Yang, J. Friction and wear properties and mechanism of bronze–Cr–Ag composites under dry-sliding conditions. Tribol. Int. 2016, 96, 132–140. [Google Scholar] [CrossRef]
- Engqvist, H.; Hogberg, H.; Botton, G.A.; Ederyd, S.; Axen, N. Tribofilm formation on cemented carbides in dry sliding conformal contact. Wear 2000, 239, 219–228. [Google Scholar] [CrossRef]
- Hokao, M.; Hironaka, S.; Suda, Y.; Yamamoto, Y. Friction and wear properties of graphiter glassy carbon composites. Wear 2000, 237, 54–62. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Wang, Y.; Guo, F.; Liu, X.; Wang, Y. Wear behavior of WC-Ni sliding against graphite under water lubrication. J. Mater. Sci. Technol. 2017, 33, 1346–1352. [Google Scholar] [CrossRef]
- Guo, F.; Tian, Y.; Liu, Y.; Wang, Y. Ultralow friction between cemented carbide and graphite in water using three-step ring-on-ring friction test. Wear 2016, 352, 54–64. [Google Scholar] [CrossRef]
- Cui, G.; Bi, Q.; Zhu, S.; Yang, J.; Liu, W. Tribological behavior of Cu–6Sn–6Zn–3Pb under sea water, distilled water and dry-sliding conditions. Tribol. Int. 2012, 55, 126–134. [Google Scholar] [CrossRef]
- Shankar, S.; Praveenkumar, G.; Krishnakumar, P. Experimental study on frictional characteristics of tungsten carbide versus carbon as mechanical seals under dry and eco-friendly lubrications. Int. J. Refract. Met. Hard Mater. 2016, 54, 39–45. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.; Li, S.; Li, S.; Chen, G.; Liu, X.; He, Y.; Luo, J. Influence of a carbon-based tribofilm induced by the friction temperature on the tribological properties of impregnated graphite sliding against a cemented carbide. Friction 2020, 9, 686–696. [Google Scholar] [CrossRef]
- Yang, C.; Hui, H.; Huang, S. Theoretical and experimental study on sealing performance of a novel ultra-highpressure bursting disc. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 22, 1–7. [Google Scholar]
- Heinz, K.; Gahr, Z. Microstructure and Wear of Materials; Elsevier Science Publishers: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Fischer, A.; Dudzinski, W.; Gleising, B.; Stemmer, P. Analyzing Mild- and Ultra-Mild Sliding Wear of Metallic Materials by Transmission Electron Microscopy. In Advanced Analytical Methods in Tribology; Springer: Berlin, Germany, 2018; pp. 29–59. [Google Scholar]
- Xu, A.; Xia, Q.; Zhang, S.; Duan, H.; Yan, Y.; Wu, S. Ultrahigh Rate Performance of Hollow Antimony Nanoparticles Impregnated in Open Carbon Boxes, for Sodium-Ion Battery under Elevated Temperature. Adv. Sci. News. 2019, 15, 1903521. [Google Scholar] [CrossRef]
- Langlade, C.; Fayeulle, S.; Olierb, R. Role of additive in the physico-chemistry of graphite-based transfer films. Thin Solid Film. 1994, 237, 38–47. [Google Scholar] [CrossRef]
- Wang, Q.; He, M.; He, Y.; Hu, Y.; Liu, Q. Microstructure and Tribological Properties of Graphite/Antimony Composites for Mechanical Seal. Asian J. Chem. 2014, 26, 5657–5662. [Google Scholar] [CrossRef]
- Liu, R.; Cheng, K.; Chen, J.; Xiong, X.; Lin, X. Friction and wear properties of high temperature and low temperature sintered copper-graphite brushes at different ambient temperatures. J Mater. Res. Technol. 2020, 9, 7288–7296. [Google Scholar] [CrossRef]
- Lee, W.K.; Rhee, T.H.; Kim, H.S.; Jang, H. Effects of Antimony Trisulfide (Sb2S3) on Sliding Friction of Automotive Brake Friction Materials. Met. Mater. Int. 2013, 5, 1101–1107. [Google Scholar] [CrossRef]
- Wang, B.; Gao, K.; Chang, Q.; Berman, D.; Tian, Y. Magnesium Silicate Hydroxide-MoS2-Sb2O3 Coating Nanomaterials for High-Temperature Superlubricity. ACS. Appl. Nano. Mater. 2021, 4, 7097–7106. [Google Scholar] [CrossRef]
- Gomes, J.R.; Miranda, A.S.; Rui, F.S.; Vieira, J.M. Tribooxidational Effects on Friction and Wear Behavior of Silicon Nitride/Tool Steel and Silicon Nitride/Gray Cast Iron Contacts. J. Am. Ceram. Soc. 2020, 4, 953–960. [Google Scholar]
Materials | Roughness (nm) | Microhardness | Density (g/cm3) | Open Porosity (vol.%) |
---|---|---|---|---|
Metal-IG | 52 | 340.38 HV | 5.58 | - |
Resin-IG | 50 | 123.44 HV | 1.83 | - |
Non-IG | 55 | 93.68 HV | 1.77 | 15 |
Steel | 12 | 800 HV | 7.90 | - |
Experimental Conditions | Parameter |
---|---|
Temperature | 25–350 °C |
Sliding Frequency | 10 Hz |
Sliding Stroke | 2 mm |
Friction Load Friction Time | 20–140 N 30 min |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Liu, Y.; Liu, D.; Gu, Y.; Zheng, R.; Ma, R.; Li, S.; Wang, Y.; Shi, Y. The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants 2022, 10, 2. https://doi.org/10.3390/lubricants10010002
Zhao J, Liu Y, Liu D, Gu Y, Zheng R, Ma R, Li S, Wang Y, Shi Y. The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants. 2022; 10(1):2. https://doi.org/10.3390/lubricants10010002
Chicago/Turabian StyleZhao, Jun, Yijiang Liu, Dengyu Liu, Yanfei Gu, Rao Zheng, Runmei Ma, Shuangxi Li, Yongfu Wang, and Yijun Shi. 2022. "The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition" Lubricants 10, no. 1: 2. https://doi.org/10.3390/lubricants10010002
APA StyleZhao, J., Liu, Y., Liu, D., Gu, Y., Zheng, R., Ma, R., Li, S., Wang, Y., & Shi, Y. (2022). The Tribological Performance of Metal-/Resin-Impregnated Graphite under Harsh Condition. Lubricants, 10(1), 2. https://doi.org/10.3390/lubricants10010002