The Avoidance of the Little Sibling of the Big Rip Abrupt Event by a Quantum Approach
Abstract
:1. Introduction
2. The Model and the LSBR Induced Abrupt Event
3. The Wheeler–DeWitt Equation
3.1. WDW Equation with a Perfect Fluid
3.1.1. First Factor Ordering
3.1.2. Second Factor Ordering
3.2. WDW Equation with a Scalar Field
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. The WKB Approximation
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Supernova Search Team Collaboration; et al Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Supernova Cosmology Project Collaboration; et al Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–585. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Bock, J.J.; Crill, B.P.; Doré, O.; Helou, G.; Hildebrandt, S.R.; Pearson, T.J.; Pré, *!!! REPLACE !!!*; zeau, G.; Seiffert, M.D.; Planck Collaboration; et al Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 2016, 594, A14. [Google Scholar] [CrossRef]
- Ade, P.A.R. ; Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Barreiro, R.; Bartlett, J.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Tsujikawa, S. Dark energy: Investigation and modeling. Physics 2010, 370, 331–402. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Amendola, L.; Tsujikawa, S. Dark Energy: Theory and Observations, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hawking, S.W.; Penrose, R. The Singularities of gravitational collapse and cosmology. Proc. Roy. Soc. Lond. A 1970, 314, 529–548. [Google Scholar] [CrossRef]
- Hawking, S.W.; Penrose, R. The Nature of Space and Time; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Barrow, J.D.; Galloway, G.J.; Tipler, F.J. The closed-universe recollapse conjecture. Mon. Not. R. Astron. Soc. 1986, 223, 835–844. [Google Scholar] [CrossRef]
- Barrow, J.D. Sudden future singularities. Class. Quantum Gravity 2004, 21, L79–L82. [Google Scholar] [CrossRef]
- Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. The Chaplygin gas as a model for dark energy. Phys. Rev. D 2004, 69, 123512. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef]
- Barrow, J.D.; Tsagas, C.G. New isotropic and anisotropic sudden singularities. Class. Quantum Gravity 2005, 22, 1563. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; González-Díaz, P.F.; Martín-Moruno, P. On the generalised Chaplygin gas: Worse than a big rip or quieter than a sudden singularity? Int. J. Mod. Phys. D 2008, 17, 2269–2290. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; González-Díaz, P.F.; Martín-Moruno, P. Worse than a big rip? Phys. Lett. B 2008, 659, 1–5. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. The Final state and thermodynamics of dark energy universe. Phys. Rev. D 2004, 70, 103522. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Inhomogeneous equation of state of the universe: Phantom era, future singularity and crossing the phantom barrier. Phys. Rev. D 2005, 72, 023003. [Google Scholar] [CrossRef]
- Bamba, K.; Nojiri, S.; Odintsov, S.D. The Universe future in modified gravity theories: Approaching the finite-time future singularity. J. Cosmol. Astropart. Phys. 2008, 810, 045. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. The Future evolution and finite-time singularities in F(R)-gravity unifying the inflation and cosmic acceleration. Phys. Rev. D 2008, 78, 046006. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Kiefer, C.; Krämer, M. Resolution of type IV singularities in quantum cosmology. Phys. Rev. D 2014, 89, 064016. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Saridakis, E.N. Singular cosmological evolution using canonical and ghost scalar fields. J. Cosmol. Astropart. Phys. 2015, 1509, 044. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Future and origin of our universe: Modern view. Gravit. Cosmol. 2000, 6, 71–84. [Google Scholar]
- Caldwell, R.R. A Phantom menace? Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy and cosmic doomsday. Phys. Rev. Lett. 2003, 91, 071301. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 2003, 68, 1557–1567. [Google Scholar] [CrossRef]
- Chimento, L.P.; Lazkoz, R. On the link between phantom and standard cosmologies. Phys. Rev. Lett. 2003, 91, 211301. [Google Scholar] [CrossRef] [PubMed]
- Da̧browski, M.P.; Stachowiak, T.; Szydlowski, M. Phantom cosmologies. Phys. Rev. D 2003, 68, 103519. [Google Scholar] [CrossRef]
- González-Díaz, P.F. K-essential phantom energy: Doomsday around the corner? Phys. Lett. B 2004, 586, 1–4. [Google Scholar] [CrossRef]
- González-Díaz, P.F. Axion phantom energy. Phys. Rev. D 2004, 69, 063522. [Google Scholar] [CrossRef]
- Ruzmaikina, T.; Ruzmaikin, A.A. Quadratic corrections to the Lagrangian density of the gravitational field and the singularity. Sov. Phys. JETP 1970, 30, 372. [Google Scholar]
- Štefančić, H. Expansion around the vacuum equation of state—Sudden future singularities and asymptotic behavior. Phys. Rev. D 2005, 71, 084024. [Google Scholar] [CrossRef]
- Bouhmadi-López, M. Phantom-like behaviour in dilatonic brane-world scenario with induced gravity. Nucl. Phys. B 2008, 797, 78–92. [Google Scholar] [CrossRef]
- Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. The Little Rip. Phys. Rev. D 2011, 84, 063003. [Google Scholar] [CrossRef]
- Brevik, I.; Elizalde, E.; Nojiri, S.; Odintsov, S.D. Viscous Little Rip Cosmology. Phys. Rev. D 2011, 84, 103508. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Chen, P.; Liu, Y.-W. Tradeoff between smoother and sooner `little rip’. Eur. Phys. J. C 2013, 73, 2546. [Google Scholar] [CrossRef]
- Bouhmadi-López, M.; Errahmani, A.; Martín-Moruno, P.; Ouali, T.; Tavakoli, Y. The little sibling of the big rip singularity. Int. J. Mod. Phys. D 2015, 24, 1550078. [Google Scholar] [CrossRef]
- Morais, J.; Bouhmadi-López, M.; Kumar, K.S.; Marto, J.; Tavakoli, Y. Interacting 3-form dark energy models: Distinguishing interactions and avoiding the Little Sibling of the Big Rip. Phys. Dark Universe 2017, 15, 7–30. [Google Scholar] [CrossRef]
- Ita, E.E., III; Soo, C.; Yu, H.L. Intrinsic Time Quantum Geometrodynamics. Prog. Theor. Exp. Phys. 2015, 2015, 083E01. [Google Scholar] [CrossRef]
- Kiefer, C. Quantum Gravity, 2nd ed.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Moniz, P. Quantum Cosmology—The Supersymmetric Perspective—Vol.1: Fundamentals; Lecture Notes in Physics; 803; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. 1. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef]
- Da̧browski, M.P.; Kiefer, C.; Sandhöfer, B. Quantum phantom cosmology. Phys. Rev. D 2006, 74, 044022. [Google Scholar] [CrossRef]
- Albarran, I.; Bouhmadi-López, M.; Cabral, F.; Martín-Moruno, P. The quantum realm of the “Little Sibling” of the Big Rip singularity. J. Cosmol. Astropart. Phys. 2015, 1511, 044. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook on Mathematical Functions; Dover Publications: Dover, UK, 1980. [Google Scholar]
- Hao, J.G.; Li, X.Z. An Attractor solution of phantom field. Phys. Rev. D 2003, 67, 107303. [Google Scholar] [CrossRef]
- Albarran, I.; Bouhmadi-López, M.; Kiefer, C.; Marto, J.; Moniz, P.V. Classical and quantum cosmology of the little rip abrupt event. Phys. Rev. D 2016, 94, 063536. [Google Scholar] [CrossRef]
- Mathews, J.; Walker, R.L. Mathematical Methods of Physics; California Institute of Techonolgy: Pasadena, CA, USA, 1969. [Google Scholar]
1. | The Sudden Singularity, Big Freeze and Type IV singularities can be induced in a phantom or non-phantom scenario. On the contrary, the Big Rip singularity and the abrupt events of Little Rip and Little Sibling of the Big Rip, if and only if phantom matter is present. |
2. | While we are not giving any observational constraint on the value of parameter , some estimation can be found in Reference [37]. |
3. | Please notice that this procedure is well defined for any finite value of a and in addition the resulting WDW Equation (23) has WKB solutions that fulfill the DeWitt condition. Moreover, such an approximation is better the larger is the scale factor. Before the quantum regime is reached, one would expect to enter in a semi-classical region. It is in that region that the WDW equation multiplied by the scale factor definitely holds, and as we show below the wave function tends to zero for large values of the scale factor. |
4. | Notice that, in this case, we regard the scale factor as dimensional quantity, so corresponds with the current size of the Universe. This parameter is just necessary for a correct dimensional analysis and is reabsorbed by the constant term . |
5. | The total wave function is a product of the gravitational and matter part solutions. Therefore, the total output vanishes if the wave function of the matter part vanishes faster than the gravitational part could diverge. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarran, I.; Bouhmadi-López, M.; Cabral, F.; Martín-Moruno, P. The Avoidance of the Little Sibling of the Big Rip Abrupt Event by a Quantum Approach. Galaxies 2018, 6, 21. https://doi.org/10.3390/galaxies6010021
Albarran I, Bouhmadi-López M, Cabral F, Martín-Moruno P. The Avoidance of the Little Sibling of the Big Rip Abrupt Event by a Quantum Approach. Galaxies. 2018; 6(1):21. https://doi.org/10.3390/galaxies6010021
Chicago/Turabian StyleAlbarran, Imanol, Mariam Bouhmadi-López, Franciso Cabral, and Prado Martín-Moruno. 2018. "The Avoidance of the Little Sibling of the Big Rip Abrupt Event by a Quantum Approach" Galaxies 6, no. 1: 21. https://doi.org/10.3390/galaxies6010021
APA StyleAlbarran, I., Bouhmadi-López, M., Cabral, F., & Martín-Moruno, P. (2018). The Avoidance of the Little Sibling of the Big Rip Abrupt Event by a Quantum Approach. Galaxies, 6(1), 21. https://doi.org/10.3390/galaxies6010021