Intermediate-Mass Black Holes: The Essential Population to Explore the Unified Model for Accretion and Ejection Processes
Abstract
:1. Introduction
2. The Universal Picture for Black Hole Accretion and Ejection
3. Radio Activities of IMBHs
4. The Black Hole Fundamental Plane of Involving IMBHs
5. The Correlation between the Size Scale of Outflows and the Masses of Accretors
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGNs | Active Galactic Nuclei |
IMBHs | Intermediate-mass black holes |
SBHs | Stellar-mass black holes |
SMBHs | Supermassive black holes |
XRBs | X-ray binaries |
YSOs | Young Stellar Objects |
GRGs | Giant Radio Galaxies |
RQ-AGNs | Radio-quiet AGNs |
RL-AGNs | Radio-loud AGNs |
VLBI | Very Long Baseline Interferometry |
VLBA | the Very Long Baseline Array |
VLA | the Very Large Array |
EVN | the European VLBI Network |
References
- Mirabel, F. The formation of stellar black holes. New Astron. Rev. 2017, 78, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef] [Green Version]
- Greene, J.E.; Strader, J.; Ho, L.C. Intermediate-Mass Black Holes. Annu. Rev. Astron. Astrophys. 2020, 58, 257–312. [Google Scholar] [CrossRef]
- Wu, X.B.; Wang, F.; Fan, X.; Yi, W.; Zuo, W.; Bian, F.; Jiang, L.; McGreer, I.D.; Wang, R.; Yang, J.; et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 2015, 518, 512–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bañados, E.; Venemans, B.P.; Mazzucchelli, C.; Farina, E.P.; Walter, F.; Wang, F.; Decarli, R.; Stern, D.; Fan, X.; Davies, F.B.; et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5. Nature 2018, 553, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Volonteri, M. Formation of supermassive black holes. Astron. Astrophys. Rev. 2010, 18, 279–315. [Google Scholar] [CrossRef] [Green Version]
- Inayoshi, K.; Visbal, E.; Haiman, Z. The Assembly of the First Massive Black Holes. Annu. Rev. Astron. Astrophys. 2020, 58, 27–97. [Google Scholar] [CrossRef] [Green Version]
- Mezcua, M. Observational evidence for intermediate-mass black holes. Int. J. Mod. Phys. D 2017, 26, 1730021. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.W.; Soria, R. Expected intermediate-mass black holes in the Virgo cluster—I. Early-type galaxies. Mon. Not. R. Astron. Soc. 2019, 484, 794–813. [Google Scholar] [CrossRef]
- Graham, A.W.; Soria, R.; Davis, B.L. Expected intermediate-mass black holes in the Virgo cluster—II. Late-type galaxies. Mon. Not. R. Astron. Soc. 2019, 484, 814–831. [Google Scholar] [CrossRef]
- Secrest, N.J.; Satyapal, S.; Gliozzi, M.; Cheung, C.C.; Seth, A.C.; Böker, T. The Chandra View of NGC 4178: The Lowest Mass Black Hole in a Bulgeless Disk Galaxy? Astrophys. J. 2012, 753, 38. [Google Scholar] [CrossRef] [Green Version]
- Mezcua, M.; Roberts, T.P.; Lobanov, A.P.; Sutton, A.D. The powerful jet of an off-nuclear intermediate-mass black hole in the spiral galaxy NGC 2276. Mon. Not. R. Astron. Soc. 2015, 448, 1893–1899. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, R.; Guo, Q. A compact symmetric ejection from the low mass AGN in the LINER galaxy NGC 4293. Mon. Not. R. Astron. Soc. 2022, 517, 4959–4967. [Google Scholar] [CrossRef]
- Kaspi, S.; Smith, P.S.; Netzer, H.; Maoz, D.; Jannuzi, B.T.; Giveon, U. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. Astrophys. J. 2000, 533, 631–649. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.H.; Cho, H.; Gallo, E.; Hodges-Kluck, E.; Le, H.A.N.; Shin, J.; Son, D.; Horst, J.C. A 10,000-solar-mass black hole in the nucleus of a bulgeless dwarf galaxy. Nat. Astron. 2019, 3, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Orosz, J.; Bregman, J.N. Dynamical Mass Constraints on the Ultraluminous X-Ray Source NGC 1313 X-2. Astrophys. J. 2012, 745, 89. [Google Scholar] [CrossRef]
- Paynter, J.; Webster, R.; Thrane, E. Evidence for an intermediate-mass black hole from a gravitationally lensed gamma-ray burst. Nat. Astron. 2021, 5, 560–568. [Google Scholar] [CrossRef]
- Greene, J.E.; Ho, L.C. Active Galactic Nuclei with Candidate Intermediate-Mass Black Holes. Astrophys. J. 2004, 610, 722–736. [Google Scholar] [CrossRef]
- Greene, J.E.; Ho, L.C. A New Sample of Low-Mass Black Holes in Active Galaxies. Astrophys. J. 2007, 670, 92–104. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.B.; Ho, L.C.; Yuan, W.; Wang, T.G.; Fan, X.; Zhou, H.; Jiang, N. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. Astrophys. J. 2012, 755, 167. [Google Scholar] [CrossRef] [Green Version]
- Reines, A.E.; Greene, J.E.; Geha, M. Dwarf Galaxies with Optical Signatures of Active Massive Black Holes. Astrophys. J. 2013, 775, 116. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, M.A.; Kluźniak, W.; McClintock, J.E.; Remillard, R.A. The Importance of Discovering a 3:2 Twin-Peak Quasi-periodic Oscillation in an Ultraluminous X-Ray Source or How to Solve the Puzzle of Intermediate-Mass Black Holes. Astrophys. J. 2004, 609, L63–L65. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, M.A.; Liu, F.K. Mass estimate of the Swift J 164449.3+573451 supermassive black hole based on the 3:2 QPO resonance hypothesis. Astron. Astrophys. 2012, 548, A3. [Google Scholar] [CrossRef] [Green Version]
- Pasham, D.R.; Strohmayer, T.E.; Mushotzky, R.F. A 400-solar-mass black hole in the galaxy M82. Nature 2014, 513, 74–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasham, D.R.; Cenko, S.B.; Zoghbi, A.; Mushotzky, R.F.; Miller, J.; Tombesi, F. Evidence for High-frequency QPOs with a 3:2 Frequency Ratio from a 5000 Solar Mass Black Hole. Astrophys. J. 2015, 811, L11. [Google Scholar] [CrossRef] [Green Version]
- Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M.A.; Stuchlík, Z.; Horák, J. Mass of the active galactic nucleus black hole XMMUJ134736.6+173403. Astron. Astrophys. 2019, 622, L8. [Google Scholar] [CrossRef]
- Portegies Zwart, S.F.; Dewi, J.; Maccarone, T. Intermediate mass black holes in accreting binaries: Formation, evolution and observational appearance. Mon. Not. R. Astron. Soc. 2004, 355, 413–423. [Google Scholar] [CrossRef] [Green Version]
- Webb, N.; Cseh, D.; Lenc, E.; Godet, O.; Barret, D.; Corbel, S.; Farrell, S.; Fender, R.; Gehrels, N.; Heywood, I. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1. Science 2012, 337, 554. [Google Scholar] [CrossRef] [Green Version]
- Kaaret, P.; Feng, H.; Roberts, T.P. Ultraluminous X-Ray Sources. Annu. Rev. Astron. Astrophys. 2017, 55, 303–341. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, K.; Rich, R.M.; Ho, L.C. An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations. Astrophys. J. 2005, 634, 1093–1102. [Google Scholar] [CrossRef] [Green Version]
- Kızıltan, B.; Baumgardt, H.; Loeb, A. An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature 2017, 542, 203–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.; Jonker, P.G.; Stone, N.C.; Zabludoff, A.I. Mass, Spin and Ultralight Boson Constraints from the Intermediate-mass Black Hole in the Tidal Disruption Event 3XMM J215022.4-055108. Astrophys. J. 2021, 918, 46. [Google Scholar] [CrossRef]
- Pechetti, R.; Seth, A.; Kamann, S.; Caldwell, N.; Strader, J.; den Brok, M.; Luetzgendorf, N.; Neumayer, N.; Voggel, K. Detection of a 100,000 M⊙ black hole in M31’s Most Massive Globular Cluster: A Tidally Stripped Nucleus. Astrophys. J. 2022, 924, 48. [Google Scholar] [CrossRef]
- Filippenko, A.V.; Ho, L.C. A Low-Mass Central Black Hole in the Bulgeless Seyfert 1 Galaxy NGC 4395. Astrophys. J. 2003, 588, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Yuan, W.; Dong, X.B.; Zhou, H.; Liu, W.J. A Uniformly Selected Sample of Low-mass Black Holes in Seyfert 1 Galaxies. II. The SDSS DR7 Sample. Astrophys. J. 2018, 235, 40. [Google Scholar] [CrossRef] [Green Version]
- Chilingarian, I.V.; Katkov, I.Y.; Zolotukhin, I.Y.; Grishin, K.A.; Beletsky, Y.; Boutsia, K.; Osip, D.J. A Population of Bona Fide Intermediate-mass Black Holes Identified as Low-luminosity Active Galactic Nuclei. Astrophys. J. 2018, 863, 1. [Google Scholar] [CrossRef]
- Greene, J.E. Low-mass black holes as the remnants of primordial black hole formation. Nat. Commun. 2012, 3, 1304. [Google Scholar] [CrossRef] [Green Version]
- Falcke, H.; Biermann, P.L. The jet–disk symbiosis. I. Radio to X-ray emission models for quasars. Astron. Astrophys. 1995, 293, 665–682. [Google Scholar]
- Merloni, A.; Heinz, S.; di Matteo, T. A Fundamental Plane of black hole activity. Mon. Not. R. Astron. Soc. 2003, 345, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- Gültekin, K.; Cackett, E.M.; King, A.L.; Miller, J.M.; Pinkney, J. Low-mass AGNs and Their Relation to the Fundamental Plane of Black Hole Accretion. Astrophys. J. 2014, 788, L22. [Google Scholar] [CrossRef] [Green Version]
- Greene, J.E.; Ho, L.C.; Ulvestad, J.S. The Radio Quiescence of Active Galaxies with High Accretion Rates. Astrophys. J. 2006, 636, 56–62. [Google Scholar] [CrossRef]
- McClintock, J.E.; Remillard, R.A. Black Hole Binaries; Cambridge Astrophysics Series, No. 39; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 157–213. [Google Scholar]
- Yang, X.; Yao, S.; Yang, J.; Ho, L.C.; An, T.; Wang, R.; Baan, W.A.; Gu, M.; Liu, X.; Yang, X.; et al. Radio Activity of Supermassive Black Holes with Extremely High Accretion Rates. Astrophys. J. 2020, 904, 200. [Google Scholar] [CrossRef]
- Gallo, E.; Fender, R.P.; Pooley, G.G. A universal radio-X-ray correlation in low/hard state black hole binaries. Mon. Not. R. Astron. Soc. 2003, 344, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Bariuan, L.G.C.; Snios, B.; Sobolewska, M.; Siemiginowska, A.; Schwartz, D.A. The Fundamental Planes of black hole activity for radio-loud and radio-quiet quasars. Mon. Not. R. Astron. Soc. 2022, 513, 4673–4681. [Google Scholar] [CrossRef]
- Yang, X.; Mohan, P.; Yang, J.; Ho, L.C.; Aditya, J.N.H.S.; Zhang, S.; Jaiswal, S.; Yang, X. Radio Observations of Four Active Galactic Nuclei Hosting Intermediate-mass Black Hole Candidates: Studying the Outflow Activity and Evolution. Astrophys. J. 2022, 941, 43. [Google Scholar] [CrossRef]
- Blandford, R.D.; Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 1979, 232, 34–48. [Google Scholar] [CrossRef]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Bañados, E.; Venemans, B.P.; Morganson, E.; Hodge, J.; Decarli, R.; Walter, F.; Stern, D.; Schlafly, E.; Farina, E.P.; Greiner, J.; et al. Constraining the Radio-loud Fraction of Quasars at z > 5.5. Astrophys. J. 2015, 804, 118. [Google Scholar] [CrossRef] [Green Version]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 2019, 3, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Paragi, Z.; An, T.; Baan, W.A.; Mohan, P.; Liu, X. A two-sided but significantly beamed jet in the supercritical accretion quasar IRAS F11119+3257. Mon. Not. R. Astron. Soc. 2020, 494, 1744–1750. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Paragi, Z.; Nardini, E.; Baan, W.A.; Fan, L.; Mohan, P.; Varenius, E.; An, T. The nearby extreme accretion and feedback system PDS 456: Finding a complex radio-emitting nucleus. Mon. Not. R. Astron. Soc. 2021, 500, 2620–2626. [Google Scholar] [CrossRef]
- Wang, A.; An, T.; Jaiswal, S.; Mohan, P.; Wang, Y.; Baan, W.A.; Zhang, Y.; Yang, X. The obstructed jet in Mrk 231. Mon. Not. R. Astron. Soc. 2021, 504, 3823–3830. [Google Scholar] [CrossRef]
- Baskin, A.; Laor, A. Radiation pressure confinement—V. The predicted free-free absorption and emission in active galactic nuclei. Mon. Not. R. Astron. Soc. 2021, 508, 680–697. [Google Scholar] [CrossRef]
- Laor, A.; Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2008, 390, 847–862. [Google Scholar] [CrossRef] [Green Version]
- Raginski, I.; Laor, A. AGN coronal emission models—I. The predicted radio emission. Mon. Not. R. Astron. Soc. 2016, 459, 2082–2096. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Doi, A. Detection of Coronal Magnetic Activity in nearby Active Supermassive Black Holes. Astrophys. J. 2018, 869, 114. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Greene, J.E. Quasar feedback and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2014, 442, 784–804. [Google Scholar] [CrossRef]
- Nims, J.; Quataert, E.; Faucher-Giguère, C.A. Observational signatures of galactic winds powered by active galactic nuclei. Mon. Not. R. Astron. Soc. 2015, 447, 3612–3622. [Google Scholar] [CrossRef] [Green Version]
- Wrobel, J.M.; Ho, L.C. Radio Emission on Subparsec Scales from the Intermediate-Mass Black Hole in NGC 4395. Astrophys. J. 2006, 646, L95–L98. [Google Scholar] [CrossRef]
- Reines, A.E.; Deller, A.T. Parsec-scale Radio Emission from the Low-luminosity Active Galactic Nucleus in the Dwarf Starburst Galaxy Henize 2–10. Astrophys. J. 2012, 750, L24. [Google Scholar] [CrossRef] [Green Version]
- Paragi, Z.; Frey, S.; Kaaret, P.; Cseh, D.; Overzier, R.; Kharb, P. Probing the Active Massive Black Hole Candidate in the Center of NGC 404 with VLBI. Astrophys. J. 2014, 791, 2. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gurvits, L.I.; Paragi, Z.; Frey, S.; Conway, J.E.; Liu, X.; Cui, L. A parsec-scale radio jet launched by the central intermediate-mass black hole in the dwarf galaxy SDSS J090613.77+561015.2. Mon. Not. R. Astron. Soc. 2020, 495, L71–L75. [Google Scholar] [CrossRef]
- Terashima, Y.; Wilson, A.S. Chandra Snapshot Observations of Low-Luminosity Active Galactic Nuclei with a Compact Radio Source. Astrophys. J. 2003, 583, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, X.; Wrobel, J.M.; Paragi, Z.; Gurvits, L.I.; Ho, L.C.; Nyland, K.; Fan, L.; Tafoya, D. Is there a sub-parsec-scale jet base in the nearby dwarf galaxy NGC 4395? Mon. Not. R. Astron. Soc. 2022, 514, 6215–6224. [Google Scholar] [CrossRef]
- Nyland, K.; Marvil, J.; Wrobel, J.M.; Young, L.M.; Zauderer, B.A. The Intermediate-mass Black Hole Candidate in the Center of NGC 404: New Evidence from Radio Continuum Observations. Astrophys. J. 2012, 753, 103. [Google Scholar] [CrossRef] [Green Version]
- Esin, A.A.; McClintock, J.E.; Narayan, R. Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991. Astrophys. J. 1997, 489, 865–889. [Google Scholar] [CrossRef] [Green Version]
- Romero, G.E.; Boettcher, M.; Markoff, S.; Tavecchio, F. Relativistic Jets in Active Galactic Nuclei and Microquasars. Space Sci. Rev. 2017, 207, 5–61. [Google Scholar] [CrossRef]
- Fender, R.P.; Belloni, T.M.; Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 2004, 355, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Ruan, J.J.; Anderson, S.F.; Eracleous, M.; Green, P.J.; Haggard, D.; MacLeod, C.L.; Runnoe, J.C.; Sobolewska, M.A. The Analogous Structure of Accretion Flows in Supermassive and Stellar Mass Black Holes: New Insights from Faded Changing-look Quasars. Astrophys. J. 2019, 883, 76. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Shende, M.B.; Subramanian, P.; Sachdeva, N. Episodic Jets from Black Hole Accretion Disks. Astrophys. J. 2019, 877, 130. [Google Scholar] [CrossRef] [Green Version]
- Vierdayanti, K.; Sadowski, A.; Mineshige, S.; Bursa, M. Inner disc obscuration in GRS 1915+105 based on relativistic slim disc model. Mon. Not. R. Astron. Soc. 2013, 436, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Gladstone, J.C.; Roberts, T.P.; Done, C. The ultraluminous state. Mon. Not. R. Astron. Soc. 2009, 397, 1836–1851. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, J.; Guainazzi, M.; Merloni, A. AGN spectral states from simultaneous UV and X-ray observations by XMM-Newton. Astron. Astrophys. 2017, 603, A127. [Google Scholar] [CrossRef] [Green Version]
- Falcke, H.; Körding, E.; Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 2004, 414, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.C. On the Relationship between Radio Emission and Black Hole Mass in Galactic Nuclei. Astrophys. J. 2002, 564, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Broderick, J.W.; Fender, R.P. Is there really a dichotomy in active galactic nucleus jet power? Mon. Not. R. Astron. Soc. 2011, 417, 184–197. [Google Scholar] [CrossRef] [Green Version]
- McHardy, I.M.; Koerding, E.; Knigge, C.; Uttley, P.; Fender, R.P. Active galactic nuclei as scaled-up Galactic black holes. Nature 2006, 444, 730–732. [Google Scholar] [CrossRef] [Green Version]
- Körding, E.G.; Jester, S.; Fender, R. Accretion states and radio loudness in active galactic nuclei: Analogies with X-ray binaries. Mon. Not. R. Astron. Soc. 2006, 372, 1366–1378. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Debnath, D.; Chakrabarti, S.K. Inference on Accretion Flow Dynamics Using TCAF Solution from the Analysis of Spectral Evolution of H 1743-322 during the 2010 Outburst. Astrophys. J. 2014, 786, 4. [Google Scholar] [CrossRef] [Green Version]
- Jana, A.; Debnath, D.; Chakrabarti, S.K.; Mondal, S.; Molla, A.A. Accretion Flow Dynamics of MAXI J1836-194 During Its 2011 Outburst from TCAF Solution. Astrophys. J. 2016, 819, 107. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.L.; Yuan, W.; Pan, H.W.; Liu, Z. Universal Scaling of the 3:2 Twin-peak Quasi-periodic Oscillation Frequencies With Black Hole Mass and Spin Revisited. Astrophys. J. 2015, 798, L5. [Google Scholar] [CrossRef] [Green Version]
- Reines, A.E.; Condon, J.J.; Darling, J.; Greene, J.E. A New Sample of (Wandering) Massive Black Holes in Dwarf Galaxies from High-resolution Radio Observations. Astrophys. J. 2020, 888, 36. [Google Scholar] [CrossRef] [Green Version]
- Condon, J.J.; Cotton, W.D.; Greisen, E.W.; Yin, Q.F.; Perley, R.A.; Taylor, G.B.; Broderick, J.J. The NRAO VLA Sky Survey. Astron. J. 1998, 115, 1693–1716. [Google Scholar] [CrossRef]
- Becker, R.H.; White, R.L.; Helfand, D.J. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters. Astrophys. J. 1995, 450, 559. [Google Scholar] [CrossRef]
- Davis, T.A.; Nguyen, D.D.; Seth, A.C.; Greene, J.E.; Nyland, K.; Barth, A.J.; Bureau, M.; Cappellari, M.; den Brok, M.; Iguchi, S.; et al. Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations. Mon. Not. R. Astron. Soc. 2020, 496, 4061–4078. [Google Scholar] [CrossRef]
- Baldassare, V.F.; Reines, A.E.; Gallo, E.; Greene, J.E. X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies. Astrophys. J. 2017, 836, 20. [Google Scholar] [CrossRef] [Green Version]
- Soria, R.; Kolehmainen, M.; Graham, A.W.; Swartz, D.A.; Yukita, M.; Motch, C.; Jarrett, T.H.; Miller-Jones, J.C.A.; Plotkin, R.M.; Maccarone, T.J.; et al. A Chandra Virgo cluster survey of spiral galaxies—I. Introduction to the survey and a new ULX sample. Mon. Not. R. Astron. Soc. 2022, 512, 3284–3311. [Google Scholar] [CrossRef]
- Moran, E.C.; Eracleous, M.; Leighly, K.M.; Chartas, G.; Filippenko, A.V.; Ho, L.C.; Blanco, P.R. Extreme X-Ray Behavior of the Low-Luminosity Active Nucleus in NGC 4395. Astron. J. 2005, 129, 2108–2118. [Google Scholar] [CrossRef] [Green Version]
- Gültekin, K.; Nyland, K.; Gray, N.; Fehmer, G.; Huang, T.; Sparkman, M.; Reines, A.E.; Greene, J.E.; Cackett, E.M.; Baldassare, V. Intermediate-mass black holes and the Fundamental Plane of black hole accretion. Mon. Not. R. Astron. Soc. 2022, 516, 6123–6131. [Google Scholar] [CrossRef]
- Saikia, P.; Körding, E.; Coppejans, D.L.; Falcke, H.; Williams, D.; Baldi, R.D.; Mchardy, I.; Beswick, R. 15-GHz radio emission from nearby low-luminosity active galactic nuclei. Astron. Astrophys. 2018, 616, A152. [Google Scholar] [CrossRef] [Green Version]
- O’Dea, C.P.; Saikia, D.J. Compact steep-spectrum and peaked-spectrum radio sources. Astron. Astrophys. Rev. 2021, 29, 3. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Ostorero, L.; Begelman, M.C.; Moderski, R.; Kataoka, J.; Wagner, S. Evolution of and High-Energy Emission from GHz-Peaked Spectrum Sources. Astrophys. J. 2008, 680, 911–925. [Google Scholar] [CrossRef] [Green Version]
- Gültekin, K.; King, A.L.; Cackett, E.M.; Nyland, K.; Miller, J.M.; Di Matteo, T.; Markoff, S.; Rupen, M.P. The Fundamental Plane of Black Hole Accretion and Its Use as a Black Hole-Mass Estimator. Astrophys. J. 2019, 871, 80. [Google Scholar] [CrossRef]
- Fischer, T.C.; Secrest, N.J.; Johnson, M.C.; Dorland, B.N.; Cigan, P.J.; Fernandez, L.C.; Hunt, L.R.; Koss, M.; Schmitt, H.R.; Zacharias, N. Fundamental Reference AGN Monitoring Experiment (FRAMEx). I. Jumping Out of the Plane with the VLBA. Astrophys. J. 2021, 906, 88. [Google Scholar] [CrossRef]
- Corbel, S.; Fender, R.P.; Tzioumis, A.K.; Nowak, M.; McIntyre, V.; Durouchoux, P.; Sood, R. Coupling of the X-ray and radio emission in the black hole candidate and compact jet source GX 339-4. Astron. Astrophys. 2000, 359, 251–268. [Google Scholar] [CrossRef]
- Yang, X. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China. 2023; in preparation.
- Nemmen, R.S.; Bower, R.G.; Babul, A.; Storchi-Bergmann, T. Models for jet power in elliptical galaxies: A case for rapidly spinning black holes. Mon. Not. R. Astron. Soc. 2007, 377, 1652–1662. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I. Advection-dominated Accretion: Underfed Black Holes and Neutron Stars. Astrophys. J. 1995, 452, 710. [Google Scholar] [CrossRef]
- Yuan, F.; Lin, J.; Wu, K.; Ho, L.C. A magnetohydrodynamical model for the formation of episodic jets. Mon. Not. R. Astron. Soc. 2009, 395, 2183–2188. [Google Scholar] [CrossRef] [Green Version]
- Nemmen, R.S.; Georganopoulos, M.; Guiriec, S.; Meyer, E.T.; Gehrels, N.; Sambruna, R.M. A Universal Scaling for the Energetics of Relativistic Jets from Black Hole Systems. Science 2012, 338, 1445. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.; McNamara, B.R.; Calzadilla, M.S.; Chen, C.T.; Gaspari, M.; Hickox, R.C.; Kara, E.; Korchagin, I. Observational Evidence for Enhanced Black Hole Accretion in Giant Elliptical Galaxies. Astrophys. J. 2021, 908, 85. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Q.; Fan, J.; Yu, X.; Ding, N.; Guo, X.; Xiong, D. Jet power, intrinsic γ-ray luminosity and accretion in jetted AGNs. Mon. Not. R. Astron. Soc. 2023, 519, 6199–6209. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Q.; Fan, J.; Zhou, H.; Yuan, Y.; Gu, W.; Wu, Q.; Xiong, D.; Guo, X.; Ding, N.; et al. The Powers of Relativistic Jets Depend on the Spin of Accreting Supermassive Black Holes. Astrophys. J. 2021, 913, 93. [Google Scholar] [CrossRef]
- Harrison, R.; Gottlieb, O.; Nakar, E. Numerically calibrated model for propagation of a relativistic unmagnetized jet in dense media. Mon. Not. R. Astron. Soc. 2018, 477, 2128–2140. [Google Scholar] [CrossRef] [Green Version]
Name | ||||
---|---|---|---|---|
(SDSS or Alias) | () | (erg s) | (erg s) | (erg s) |
J024656.39 − 003304.8 | < | |||
J090613.76 + 561015.1 | ||||
J095418.15 + 471725.1 | ||||
J144012.70 + 024743.5 | ||||
J152637.36 + 065941.6 | ||||
J160531.84 + 174826.1 | < | |||
J082443.28 + 295923.5 | ||||
J110501.98 + 594103.5 | ||||
J131659.37 + 035319.9 | ||||
J132428.24 + 044629.6 | ||||
J122112.82 + 182257.7 | < | |||
J111552.01 − 000436.1 | < | |||
NGC 404 | < | |||
NGC 4395 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Yang, J. Intermediate-Mass Black Holes: The Essential Population to Explore the Unified Model for Accretion and Ejection Processes. Galaxies 2023, 11, 53. https://doi.org/10.3390/galaxies11020053
Yang X, Yang J. Intermediate-Mass Black Holes: The Essential Population to Explore the Unified Model for Accretion and Ejection Processes. Galaxies. 2023; 11(2):53. https://doi.org/10.3390/galaxies11020053
Chicago/Turabian StyleYang, Xiaolong, and Jun Yang. 2023. "Intermediate-Mass Black Holes: The Essential Population to Explore the Unified Model for Accretion and Ejection Processes" Galaxies 11, no. 2: 53. https://doi.org/10.3390/galaxies11020053
APA StyleYang, X., & Yang, J. (2023). Intermediate-Mass Black Holes: The Essential Population to Explore the Unified Model for Accretion and Ejection Processes. Galaxies, 11(2), 53. https://doi.org/10.3390/galaxies11020053