Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context
Abstract
:1. Introduction
2. Composite Spectra for Spectral Type B1 Quasars
3. Analysis
3.1. Line Profiles
3.2. Diagnostics of Metallicity and Photo-Ionization Modeling
4. Results
4.1. Composite Spectra
4.2. A Typical RL Source at High z
5. Discussion: Metal Enrichment along the Quasar Main Sequence
- RQ Pop. B sources show slightly subsolar or solar metallicities;
- in the same spectral bin along the MS, RL sources show definitely subsolar chemical abundances, lower with respect to RQ. The difference is not marginal and is supported by several diagnostic indicators consistently observed to be lower in RL sources. It is also consistent with the location of the RL template in the MS, displaced toward broader H and lower with respect to the RQ one;
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nucleus |
BC | Broad Component |
BLR | Broad Line Region |
FWHM | Full Width Half-Maximum |
MS | Main Sequence |
NLSy1 | Narrow-Line Seyfert 1 |
RL | Radio loud |
RQ | Radio quiet |
SDSS | Sloan Digital Sky Survey |
SED | Spectral energy distribution |
S/N | Signal-to-noise ratio |
VBC | Very Broad Component |
VBLR | Very Broad Line Region |
1 | N() × N(U) = 425. The overall number of models includes 14 values of metallicity, and for RL and RQ SEDs, is 6358. |
References
- Netzer, H. AGN emission lines. In Active Galactic Nuclei; Blandford, R.D., Netzer, H., Woltjer, L., Courvoisier, T.J.-L., Mayor, M., Eds.; Springer: Berlin, Germany, 1990; pp. 57–160. [Google Scholar]
- Peterson, B.M. An Introduction to Active Galactic Nuclei; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Osterbrock, D.E.; Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Mill Valley, CA, USA, 2006. [Google Scholar]
- Kaler, J.B. Stars and Their Spectra, an Introduction to the Spectral Sequence; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Peterson, B.M. Measuring the Masses of Supermassive Black Holes. SpScieRev 2014, 183, 253–275. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.M.; Hu, C.; Ho, L.C.; Li, Y.R.; Bai, J.M. The Fundamental Plane of the Broad-line Region in Active Galactic Nuclei. Astrophys. J. Lett. 2016, 818, L14. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Stirpe, G.M.; Dultzin, D.; Del Olmo, A.; Martínez-Carballo, M.A. Blue outliers among intermediate redshift quasars. Astrophys. Space Sci. 2016, 361, 3. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the Quasar Main Sequence in the Optical Plane. Astrophys. J. 2018, 866, 115. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. Astrophys. J. 2019, 882, 79. [Google Scholar] [CrossRef] [Green Version]
- Ferland, G.J.; Done, C.; Jin, C.; Landt, H.; Ward, M.J. State-of-the-art AGN SEDs for photoionization models: BLR predictions confront the observations. Mon. Not. R. Astron. Soc. 2020, 494, 5917–5922. [Google Scholar] [CrossRef]
- Panda, S. Physical Conditions in the Broad-Line Regions of Active Galaxies. Ph.D. Thesis, Polish Academy of Sciences, Institute of Physics, Warsaw, Poland, 2021. [Google Scholar]
- Boroson, T.A.; Green, R.F. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. Astrophys. J. Suppl. Ser. 1992, 80, 109. [Google Scholar] [CrossRef]
- Sulentic, J.; Marziani, P. Quasars in the 4D Eigenvector 1 Context: A stroll down memory lane. Front. Astron. Space Sci. 2015, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Shen, Y.; Ho, L.C. The diversity of quasars unified by accretion and orientation. Nature 2014, 513, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Marziani, P.; Zamanov, R.; Bachev, R.; Calvani, M.; Dultzin-Hacyan, D. Average Quasar Spectra in the Context of Eigenvector 1. Astrophys. J. 2002, 566, L71–L75. [Google Scholar] [CrossRef]
- Zamfir, S.; Sulentic, J.W.; Marziani, P. New insights on the QSO radio-loud/radio-quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space. Mon. Not. R. Astron. Soc. 2008, 387, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Berton, M.; Panda, S.; Bon, E. Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei. Universe 2021, 7, 484. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Zamanov, R.; Calvani, M.; Dultzin-Hacyan, D.; Bachev, R.; Zwitter, T. An Optical Spectroscopic Atlas of Low-Redshift Active Galactic Nuclei. Astrophys. J. Suppl. Ser. 2003, 145, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Bachev, R.; Marziani, P.; Negrete, C.A.; Dultzin, D. C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. Astrophys. J. 2007, 666, 757–777. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Stirpe, G.M.; Zamfir, S.; Calvani, M. VLT/ISAAC spectra of the Hβ region in intermediate-redshift quasars. III. Hβ broad-line profile analysis and inferences about BLR structure. Astron. Astrophys. 2009, 495, 83–112. [Google Scholar] [CrossRef] [Green Version]
- Snedden, S.A.; Gaskell, C.M. The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei. Astrophys. J. 2007, 669, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.M.; Ferland, G.J. An accretion event in the Seyfert galaxy NGC 5548. Nature 1986, 324, 345–347. [Google Scholar] [CrossRef]
- Brotherton, M.S.; Wills, B.J.; Francis, P.J.; Steidel, C.C. The intermediate line region of QSOs. Astrophys. J. 1994, 430, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Sulentic, J.W.; Zwitter, T.; Marziani, P.; Dultzin-Hacyan, D. Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei. Astrophys. J. 2000, 536, L5–L9. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Y. Strong Response of the Very Broad Hβ Emission Line in the Luminous Radio-quiet Quasar PG 1416-129. Astrophys. J. Lett. 2011, 742, L12. [Google Scholar] [CrossRef] [Green Version]
- Zamfir, S.; Sulentic, J.W.; Marziani, P.; Dultzin, D. Detailed characterization of Hβ emission line profile in low-z SDSS quasars. Mon. Not. R. Astron. Soc. 2010, 403, 1759. [Google Scholar] [CrossRef] [Green Version]
- Kriss, G. Fitting Models to UV and Optical Spectral Data. Astron. Data Anal. Softw. Syst. III A.S.P. Conf. Ser. 1994, 61, 437. [Google Scholar]
- Negrete, A.; Dultzin, D.; Marziani, P.; Sulentic, J. BLR Physical Conditions in Extreme Population A Quasars: A Method to Estimate Central Black Hole Mass at High Redshift. Astron. Astrophys. 2012, 757, 62. [Google Scholar]
- Negrete, C.A.; Dultzin, D.; Marziani, P.; Sulentic, J.W. Reverberation and Photoionization Estimates of the Broad-line Region Radius in Low-z Quasars. Astrophys. J. 2013, 771, 31. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Negrete, C.A.; Dultzin, D.; Del Olmo, A.; Martínez Carballo, M.A.; Zwitter, T.; Bachev, R. UV spectral diagnostics for low redshift quasars: Estimating physical conditions and radius of the broad line region. Astrophys. Space Sci. 2015, 356, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Chieffi, A.; Limongi, M. Pre-supernova Evolution of Rotating Solar Metallicity Stars in the Mass Range 13-120 M ⊙ and their Explosive Yields. Astrophys. J. 2013, 764, 21. [Google Scholar] [CrossRef]
- Śniegowska, M.; Marziani, P.; Czerny, B.; Panda, S.; Martínez-Aldama, M.L.; del Olmo, A.; D’Onofrio, M. High Metal Content of Highly Accreting Quasars. Astrophys. J. 2021, 910, 115. [Google Scholar] [CrossRef]
- Garnica, K.; Negrete, C.A.; Marziani, P.; Dultzin, D.; Śniegowska, M.; Panda, S. High metal content of highly accreting quasars: Analysis of an extended sample. Astron. Astrophys. 2022, 667, A105. [Google Scholar] [CrossRef]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofís. 2017, 53, 385–438. [Google Scholar]
- Laor, A.; Fiore, F.; Elvis, M.; Wilkes, B.J.; McDowell, J.C. The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results. Astron. Astrophys. 1997, 477, 93. [Google Scholar] [CrossRef]
- Baldwin, J.; Ferland, G.; Korista, K.; Verner, D. Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines. Astrophys. J. 1995, 455, L119. [Google Scholar] [CrossRef] [Green Version]
- Korista, K.; Baldwin, J.; Ferland, G.; Verner, D. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines. Astrophys. J. Suppl. Ser. 1997, 108, 401. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Shen, Y.; He, Z.; Wang, T.; Liu, X.; Wang, S.; Sun, M.; Yang, Q.; Kong, M.; Sheng, Z. Understanding Broad Mg II Variability in Quasars with Photoionization: Implications for Reverberation Mapping and Changing-look Quasars. Astrophys. J. 2020, 888, 58. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W. Evidence for a very broad line region in PG 1138+222. Astron. Astrophys. 1993, 409, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Olmo, A.d.; Negrete, C.A.; Dultzin, D.; Piconcelli, E.; Vietri, G.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; et al. The Intermediate-ionization Lines as Virial Broadening Estimators for Population A Quasars. Astrophys. J. Suppl. Ser. 2022, 261, 30. [Google Scholar] [CrossRef]
- Sulentic, J.W.; del Olmo, A.; Marziani, P.; Martínez-Carballo, M.A.; D’Onofrio, M.; Dultzin, D.; Perea, J.; Martínez-Aldama, M.L.; Negrete, C.A.; Stirpe, G.M.; et al. What does CIVλ1549 tell us about the physical driver of the Eigenvector quasar sequence? Astron. Astrophys. 2017, 608, A122. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Zamanov, R.K.; Sulentic, J.W.; Calvani, M. Searching for the physical drivers of eigenvector 1: Influence of black hole mass and Eddington ratio. Mon. Not. R. Astron. Soc. 2003, 345, 1133–1144. [Google Scholar] [CrossRef] [Green Version]
- Punsly, B. The Redshifted Excess in Quasar C IV Broad Emission Lines. Astrophys. J. 2010, 713, 232–238. [Google Scholar] [CrossRef]
- Vanden Berk, D.E.; Wilhite, B.C.; Kron, R.G.; Anderson, S.F.; Brunner, R.J.; Hall, P.B.; Ivezić, Ž.; Richards, G.T.; Schneider, D.P.; York, D.G.; et al. The Ensemble Photometric Variability of ~25,000 Quasars in the Sloan Digital Sky Survey. Astrophys. J. 2004, 601, 692–714. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Is Mg II 2800 a Reliable Virial Broadening Estimator for Quasars? Astron. Astrophys. 2013, 555, 89. [Google Scholar] [CrossRef] [Green Version]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Punsly, B.; Marziani, P.; Bennert, V.N.; Nagai, H.; Gurwell, M.A. Revealing the Broad Line Region of NGC 1275: The Relationship to Jet Power. Astrophys. J. 2018, 869, 143. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Negrete, C.A.; Dultzin, D.; Zamfir, S.; Bachev, R. Broad-line region physical conditions along the quasar eigenvector 1 sequence. Mon. Not. R. Astron. Soc. 2010, 409, 1033–1048. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, M.; Marziani, P. A multimessenger view of galaxies and quasars from now to mid-century. Front. Astron. Space Sci. 2018, 5, 31. [Google Scholar] [CrossRef]
- Padovani, P.; Matteucci, F. Stellar Mass Loss in Elliptical Galaxies and the Fueling of Active Galactic Nuclei. Astrophys. J. 1993, 416, 26. [Google Scholar] [CrossRef]
- Fraix-Burnet, D.; Marziani, P.; D’Onofrio, M.; Dultzin, D. The Phylogeny of Quasars and the Ontogeny of Their Central Black Holes. Front. Astron. Space Sci. 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.G.H.; Shabala, S.S.; Hardcastle, M.J.; Bicknell, G.V.; Böhringer, H.; Chon, G.; Nawaz, M.A.; Sarzi, M.; Wagner, A.Y. How frequent are close supermassive binary black holes in powerful jet sources? Mon. Not. R. Astron. Soc. 2019, 482, 240–261. [Google Scholar] [CrossRef] [Green Version]
- Marziani, P.; Sulentic, J.W.; Zwitter, T.; Dultzin-Hacyan, D.; Calvani, M. Searching for the Physical Drivers of the Eigenvector 1 Correlation Space. Astron. Astrophys. 2001, 558, 553–560. [Google Scholar] [CrossRef]
- Padovani, P.; Ghisellini, G.; Fabian, A.C.; Celotti, A. Radio-loud AGN and the extragalactic gamma-ray background. Mon. Not. R. Astron. Soc. 1993, 260, L21–L24. [Google Scholar] [CrossRef] [Green Version]
- La Franca, F.; Gregorini, L.; Cristiani, S.; de Ruiter, H.; Owen, F. Deep VLA Observations of an Optically Selected Sample of Intermediate Redshift QSOs and the Optical Luminosity Function of the Radio Loud QSOs. Astron. J. 1994, 108, 1548. [Google Scholar] [CrossRef]
- Deconto-Machado, A.; del Olmo, A.; Marziani, P.; Perea, J.; Stirpe, G.M. High-redshift quasars along the Main Sequence. arXiv 2022, arXiv:2211.03853. [Google Scholar] [CrossRef]
- Cavaliere, A.; Vittorini, V. The Fall of the Quasar Population. Astrophys. J. 2000, 543, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Marconi, A.; Risaliti, G.; Gilli, R.; Hunt, L.K.; Maiolino, R.; Salvati, M. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 2004, 351, 169–185. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. Ser. 2006, 163, 1–49. [Google Scholar] [CrossRef]
- Bañados, E.; Mazzucchelli, C.; Momjian, E.; Eilers, A.C.; Wang, F.; Schindler, J.T.; Connor, T.; Andika, I.T.; Barth, A.J.; Carilli, C.; et al. The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82. Astrophys. J. 2021, 909, 80. [Google Scholar] [CrossRef]
- Ighina, L.; Caccianiga, A.; Moretti, A.; Belladitta, S.; Broderick, J.W.; Drouart, G.; Leung, J.K.; Seymour, N. New radio-loud QSOs at the end of the Re-ionization epoch. Mon. Not. R. Astron. Soc. 2023, 519, 2060–2068. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; del Olmo, A.; Dultzin, D.; Perea, J.; Alenka Negrete, C. GTC spectra of z ≈ 2.3 quasars: Comparison with local luminosity analogs. Astron. Astrophys. 2014, 570, A96. [Google Scholar] [CrossRef] [Green Version]
Line Id. | Comp. | ||
---|---|---|---|
RQ | RL | ||
Nv | BC | 0.257 ± 0.081 | 0.450 ± 0.142 |
VBC | 2.604 ± 0.701 | 1.646 ± 0.792 | |
Total | 1.323 ± 0.402 | 1.053 ± 0.320 | |
Siiv+ Oiv]1402 | BC | 0.667 ± 0.149 | 0.294 ± 0.053 |
VBC | 2.237 ± 0.403 | 0.961 ± 0.173 | |
Total | 1.380 ± 0.218 | 0.630 ± 0.100 | |
Civ | BC | 4.382 ± 0.620 | 2.545 ± 0.360 |
VBC | 7.158 ± 1.012 | 5.840 ± 0.826 | |
Total | 5.643 ± 0.399 | 4.207 ± 0.297 | |
Heii1640 | BC | 0.228 ± 0.072 | 0.238 ± 0.075 |
VBC | 2.099 ± 0.469 | 1.817 ± 0.406 | |
Total | 1.078 ± 0.222 | 1.034 ± 0.213 | |
Aliii | BC | 0.388 ± 0.123 | 0.150 ± 0.046 |
Total | 0.485 ± 0.100 | 0.156 ± 0.063 | |
Ciii] | BC | 0.556 ± 0.124 | 0.291 ± 0.064 |
VBC | 1.548 ± 0.346 | 0.951 ± 0.213 | |
Total | 1.007 ± 0.113 | 0.624 ± 0.070 | |
Feii4570 | Total | 0.344 ± 0.088 | 0.175 ± 0.088 |
Heii | BC | ≲0.1 | ≲0.1 |
VBC | 0.299 ± 0.152 | ≲1.299 | |
Total | 0.136 ± 0.068 | ≲0.655 |
Class | Region | log | |||||
---|---|---|---|---|---|---|---|
RQ | Tot. | −2.25 | −2.25–−2.25 | −0.30 | −0.70–0.00 | 9.50 | 8.50–9.75 |
RQ | BLR | −2.25 | −2.25–−1.75 | 0.30 | −0.70–1.00 | 10.25 | 9.25–10.75 |
RQ | VBLR | 0.00 | 0.00–0.00 | 0.70 | 0.70–0.70 | 9.50 | 9.50–9.75 |
RL | Tot. | −2.00 | −2.00–−0.75 | −1.30 | −2.00–−1.30 | 8.75 | 7.00–9.75 |
RL | BLR | −1.50 | −2.00–−0.75 | −1.70 | −2.00– −1.00 | 10.25 | 8.75–10.50 |
RL | VBLR | −0.75 | −1.25–−0.25 | −2.00 | −2.00–−1.70 | 7.75 | 7.00–10.25 |
Ratio Id. | Value |
---|---|
Civ/Heii1640 | 4.436 ± 0.627 |
(Siiv+ Oiv]1402)/Civ | 0.361 ± 0.051 |
(Siiv+ Oiv]1402)/Heii1640 | 1.603 ± 0.227 |
Civ/H | 3.460 ± 0.720 |
Aliii/Civ | 0.986 ± 0.139 |
Aliii/Siiii] | 0.642 ± 0.091 |
Siiii]/Ciii] | 6.034 ± 0.853 |
0.62 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marziani, P.; Panda, S.; Deconto Machado, A.; Del Olmo, A. Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context. Galaxies 2023, 11, 52. https://doi.org/10.3390/galaxies11020052
Marziani P, Panda S, Deconto Machado A, Del Olmo A. Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context. Galaxies. 2023; 11(2):52. https://doi.org/10.3390/galaxies11020052
Chicago/Turabian StyleMarziani, Paola, Swayamtrupta Panda, Alice Deconto Machado, and Ascension Del Olmo. 2023. "Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context" Galaxies 11, no. 2: 52. https://doi.org/10.3390/galaxies11020052
APA StyleMarziani, P., Panda, S., Deconto Machado, A., & Del Olmo, A. (2023). Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context. Galaxies, 11(2), 52. https://doi.org/10.3390/galaxies11020052