The Interplay between Radio AGN Activity and Their Host Galaxies
Abstract
:1. Introduction
2. Galaxy Interactions as Triggers of Radio AGN Activity
Individual Studies
3. Radio-Mode Feedback in Galaxies
3.1. Complex Gas Kinematics
3.2. Radio Bubbles
3.3. Molecular Gas
3.4. Models and Simulations
3.5. Signatures of Shocks Due to Radio Jets
3.6. Feedback Power and Scaling Relations
4. Statistical Studies and Higher Redshift Sources
5. Feedback Perpendicular to the Radio Jet Orientation
6. Maintenance Mode Feedback-Red Geysers
7. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef] [Green Version]
- Hlavacek-Larrondo, J.; Fabian, A.C.; Edge, A.C.; Ebeling, H.; Allen, S.W.; Sanders, J.S.; Taylor, G.B. The rapid evolution of AGN feedback in brightest cluster galaxies: Switching from quasar-mode to radio-mode feedback. Mon. Not. R. Astron. Soc. 2013, 431, 1638–1658. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, G.R.; Combes, F.; Oonk, J.B.R.; Russell, H.R.; McDonald, M.A.; Gaspari, M.; Husemann, B.; Nulsen, P.E.J.; McNamara, B.R.; Hamer, S.L.; et al. A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole. Astrophys. J. 2018, 865, 13. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Morganti, R.; Tadhunter, C.N.; Oosterloo, T.A. Fast neutral outflows in powerful radio galaxies: A major source of feedback in massive galaxies. Astron. Astrophys. 2005, 444, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Veilleux, S.; Oosterloo, T.; Teng, S.H.; Rupke, D. Another piece of the puzzle: The fast H I outflow in Mrk 231. Astron. Astrophys. 2016, 593, A30. [Google Scholar] [CrossRef]
- Jetha, N.N.; Hardcastle, M.J.; Ponman, T.J.; Sakelliou, I. Shock heating in the group atmosphere of the radio galaxy B2 0838+32A. Mon. Not. R. Astron. Soc. 2008, 391, 1052–1062. [Google Scholar] [CrossRef] [Green Version]
- Thimmappa, R.; Stawarz, Ł.; Neilsen, J.; Ostrowski, M.; Reville, B. X-Ray Spectral Analysis of the Jet Termination Shock in Pictor A on Subarcsecond Scales with Chandra. Astrophys. J. 2022, 941, 204. [Google Scholar] [CrossRef]
- Allington-Smith, J.; Murray, G.; Content, R.; Dodsworth, G.; Davies, R.; Miller, B.W.; Jorgensen, I.; Hook, I.; Crampton, D.; Murowinski, R. Integral Field Spectroscopy with the Gemini Multiobject Spectrograph. I. Design, Construction, and Testing. Publ. Astron. Soc. Pac. 2002, 114, 892–912. [Google Scholar] [CrossRef]
- Bacon, R.; Accardo, M.; Adjali, L.; Anwand, H.; Bauer, S.; Biswas, I.; Blaizot, J.; Boudon, D.; Brau-Nogue, S.; Brinchmann, J.; et al. The MUSE second-generation VLT instrument. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy III, San Diego, CA, USA, 14 July 2010; Conference Series. McLean, I.S., Ramsay, S.K., Takami, H., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2010; Volume 7735, p. 773508. [Google Scholar] [CrossRef]
- Carrasco, E.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.; García Vargas, M.L.; Arrillaga, X.; Avilés, J.L.; Bouquin, A.; Carbajo, J.; et al. MEGARA, the R = 6000–20,000 IFU and MOS of GTC. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy VII, Austin, TX, USA, 10–15 June 2018; Conference Series. Evans, C.J., Simard, L., Takami, H., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 2018; Volume 10702, p. 1070216. [Google Scholar] [CrossRef]
- Wootten, A.; Thompson, A.R. The Atacama Large Millimeter/Submillimeter Array. IEEE Proc. 2009, 97, 1463–1471. [Google Scholar] [CrossRef] [Green Version]
- Ramos Almeida, C.; Tadhunter, C.N.; Inskip, K.J.; Morganti, R.; Holt, J.; Dicken, D. The optical morphologies of the 2 Jy sample of radio galaxies: Evidence for galaxy interactions. Mon. Not. R. Astron. Soc. 2011, 410, 1550–1576. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, M.E.; Harrison, C.M.; Thomson, A.P.; Circosta, C.; Mainieri, V.; Alexander, D.M.; Edge, A.C.; Lansbury, G.B.; Molyneux, S.J.; Mullaney, J.R. Prevalence of radio jets associated with galactic outflows and feedback from quasars. Mon. Not. R. Astron. Soc. 2019, 485, 2710–2730. [Google Scholar] [CrossRef] [Green Version]
- Couto, G.S.; Storchi-Bergmann, T.; Siemiginowska, A.; Riffel, R.A.; Morganti, R. Powerful ionized gas outflows in the interacting radio galaxy 4C+29.30. Mon. Not. R. Astron. Soc. 2020, 497, 5103–5117. [Google Scholar] [CrossRef]
- Comerón, S.; Knapen, J.H.; Ramos Almeida, C.; Watkins, A.E. The complex multi-component outflow of the Seyfert galaxy NGC 7130. Astron. Astrophys. 2021, 645, A130. [Google Scholar] [CrossRef]
- Ruschel-Dutra, D.; Storchi-Bergmann, T.; Schnorr-Müller, A.; Riffel, R.A.; Dall’Agnol de Oliveira, B.; Lena, D.; Robinson, A.; Nagar, N.; Elvis, M. AGNIFS survey of local AGN: GMOS-IFU data and outflows in 30 sources. Mon. Not. R. Astron. Soc. 2021, 507, 74–89. [Google Scholar] [CrossRef]
- Venturi, G.; Cresci, G.; Marconi, A.; Mingozzi, M.; Nardini, E.; Carniani, S.; Mannucci, F.; Marasco, A.; Maiolino, R.; Perna, M.; et al. MAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 2021, 648, A17. [Google Scholar] [CrossRef]
- Cheung, E.; Bundy, K.; Cappellari, M.; Peirani, S.; Rujopakarn, W.; Westfall, K.; Yan, R.; Bershady, M.; Greene, J.E.; Heckman, T.M.; et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 2016, 533, 504–508. [Google Scholar] [CrossRef] [Green Version]
- Roy, N.; Moravec, E.; Bundy, K.; Hardcastle, M.J.; Gürkan, G.; Diego Baldi, R.; Leslie, S.K.; Masters, K.; Gelfand, J.; Riffel, R.; et al. Radio Morphology of Red Geysers. Astrophys. J. 2021, 922, 230. [Google Scholar] [CrossRef]
- Treister, E.; Schawinski, K.; Urry, C.M.; Simmons, B.D. Major Galaxy Mergers Only Trigger the Most Luminous Active Galactic Nuclei. Astrophys. J. 2012, 758, L39. [Google Scholar] [CrossRef] [Green Version]
- Menci, N.; Gatti, M.; Fiore, F.; Lamastra, A. Triggering active galactic nuclei in hierarchical galaxy formation: Disk instability vs. interactions. Astron. Astrophys. 2014, 569, A37. [Google Scholar] [CrossRef] [Green Version]
- Storchi-Bergmann, T.; Schnorr-Müller, A. Observational constraints on the feeding of supermassive black holes. Nat. Astron. 2019, 3, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Colina, L.; de Juan, L. Collisions of Ellipticals and the Onset of Fanaroff-Riley Type I Radio Sources. Astrophys. J. 1995, 448, 548. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P. Are all radio galaxies genuine ellipticals? Astron. Astrophys. 2001, 375, 791–796. [Google Scholar] [CrossRef]
- Inskip, K.J.; Tadhunter, C.N.; Morganti, R.; Holt, J.; Ramos Almeida, C.; Dicken, D. A near-IR study of the host galaxies of 2 Jy radio sources at 0.03 <~z <~0.5 - I. The data. Mon. Not. R. Astron. Soc. 2010, 407, 1739–1766. [Google Scholar] [CrossRef] [Green Version]
- Ellison, S.L.; Patton, D.R.; Simard, L.; McConnachie, A.W. Galaxy Pairs in the Sloan Digital Sky Survey. I. Star Formation, Active Galactic Nucleus Fraction, and the Mass-Metallicity Relation. Astron. J. 2008, 135, 1877–1899. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.J.; Pontzen, A.; Crain, R.A. Galaxy mergers can initiate quenching by unlocking an AGN-driven transformation of the baryon cycle. Mon. Not. R. Astron. Soc. 2022, 515, 1430–1443. [Google Scholar] [CrossRef]
- Emonts, B.H.C.; Morganti, R.; Tadhunter, C.N.; Holt, J.; Oosterloo, T.A.; van der Hulst, J.M.; Wills, K.A. Timescales of merger, starburst and AGN activity in radio galaxy B2 0648+27. Astron. Astrophys. 2006, 454, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Urrutia, T.; Lacy, M.; Becker, R.H. Evidence for Quasar Activity Triggered by Galaxy Mergers in HST Observations of Dust-reddened Quasars. Astrophys. J. 2008, 674, 80–96. [Google Scholar] [CrossRef] [Green Version]
- Bessiere, P.S.; Tadhunter, C.N.; Ramos Almeida, C.; Villar Martín, M.; Cabrera-Lavers, A. Young stellar populations in type II quasars: Timing the onset of star formation and nuclear activity. Mon. Not. R. Astron. Soc. 2017, 466, 3887–3917. [Google Scholar] [CrossRef] [Green Version]
- Calabrò, A.; Daddi, E.; Puglisi, A.; Oliva, E.; Gobat, R.; Cassata, P.; Amorín, R.; Arimoto, N.; Boquien, M.; Carraro, R.; et al. Deciphering an evolutionary sequence of merger stages in infrared-luminous starburst galaxies at z ∼ 0.7. Astron. Astrophys. 2019, 623, A64. [Google Scholar] [CrossRef] [Green Version]
- van Dokkum, P.G. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers. Astron. J. 2005, 130, 2647–2665. [Google Scholar] [CrossRef]
- Tal, T.; van Dokkum, P.G.; Nelan, J.; Bezanson, R. The Frequency of Tidal Features Associated with Nearby Luminous Elliptical Galaxies From a Statistically Complete Sample. Astron. J. 2009, 138, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Gordon, Y.A.; Pimbblet, K.A.; Kaviraj, S.; Owers, M.S.; O’Dea, C.P.; Walmsley, M.; Baum, S.A.; Crossett, J.P.; Fraser-McKelvie, A.; Lintott, C.J.; et al. The Effect of Minor and Major Mergers on the Evolution of Low-excitation Radio Galaxies. Astrophys. J. 2019, 878, 88. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.C.S.; Tadhunter, C.N.; Ramos Almeida, C.; Bessiere, P.S.; Rose, M. Do AGN triggering mechanisms vary with radio power? - I. Optical morphologies of radio-intermediate HERGs. Mon. Not. R. Astron. Soc. 2019, 487, 5490–5507. [Google Scholar] [CrossRef]
- Sanders, D.B.; Mirabel, I.F. Luminous Infrared Galaxies. Annu. Rev. Astron. Astrophys. 1996, 34, 749. [Google Scholar] [CrossRef] [Green Version]
- Heisler, C.A.; Vader, J.P. Galaxies With Spectral Energy Distribution Peaking Near 60microns. II. Optical Broadband Properties. Astron. J. 1994, 107, 35. [Google Scholar] [CrossRef]
- Beasley, M.A.; Bridges, T.; Peng, E.; Harris, W.E.; Harris, G.L.H.; Forbes, D.A.; Mackie, G. A 2dF spectroscopic study of globular clusters in NGC 5128: Probing the formation history of the nearest giant elliptical. Mon. Not. R. Astron. Soc. 2008, 386, 1443–1463. [Google Scholar] [CrossRef]
- Wang, J.; Hammer, F.; Rejkuba, M.; Crnojević, D.; Yang, Y. A recent major merger tale for the closest giant elliptical galaxy Centaurus A. Mon. Not. R. Astron. Soc. 2020, 498, 2766–2777. [Google Scholar] [CrossRef]
- Jamrozy, M.; Konar, C.; Saikia, D.J.; Stawarz, Ł.; Mack, K.H.; Siemiginowska, A. Intermittent jet activity in the radio galaxy 4C29.30? Mon. Not. R. Astron. Soc. 2007, 378, 581–593. [Google Scholar] [CrossRef]
- Liuzzo, E.; Giovannini, G.; Giroletti, M.; Taylor, G.B. The Bologna complete sample of nearby radio sources. II. Phase referenced observations of faint nuclear sources. Astron. Astrophys. 2009, 505, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Frank, B.S.; Morganti, R.; Oosterloo, T.; Nyland, K.; Serra, P. A rare example of low surface-brightness radio lobes in a gas-rich early-type galaxy: The story of NGC 3998. Astron. Astrophys. 2016, 592, A94. [Google Scholar] [CrossRef] [Green Version]
- Couto, G.S.; Storchi-Bergmann, T.; Robinson, A.; Riffel, R.A.; Kharb, P.; Lena, D.; Schnorr-Müller, A. Integral field spectroscopy of the circum-nuclear region of the radio Galaxy Pictor A. Mon. Not. R. Astron. Soc. 2016, 458, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Salomé, Q.; Longinotti, A.L.; Krongold, Y.; Feruglio, C.; Chavushyan, V.; Vega, O.; García-Burillo, S.; Fuente, A.; Olguín-Iglesias, A.; Patiño-Álvarez, V.M.; et al. Evidence of galaxy interaction in the narrow-line Seyfert 1 galaxy IRAS 17020+4544 seen by NOEMA. Mon. Not. R. Astron. Soc. 2021, 501, 219–228. [Google Scholar] [CrossRef]
- Siemiginowska, A.; Stawarz, Ł.; Cheung, C.C.; Aldcroft, T.L.; Bechtold, J.; Burke, D.J.; Evans, D.; Holt, J.; Jamrozy, M.; Migliori, G. Deep Chandra X-Ray Imaging of a nearby Radio Galaxy 4C+29.30: X-Ray/Radio Connection. Astrophys. J. 2012, 750, 124. [Google Scholar] [CrossRef] [Green Version]
- Sobolewska, M.A.; Siemiginowska, A.; Migliori, G.; Stawarz, Ł.; Jamrozy, M.; Evans, D.; Cheung, C.C. Nuclear X-Ray Properties of the Peculiar Radio-loud Hidden AGN 4C+29.30. Astrophys. J. 2012, 758, 90. [Google Scholar] [CrossRef]
- Croston, J.H.; Kraft, R.P.; Hardcastle, M.J. Shock Heating in the Nearby Radio Galaxy NGC 3801. Astrophys. J. 2007, 660, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Hota, A.; Rey, S.C.; Kang, Y.; Kim, S.; Matsushita, S.; Chung, J. NGC 3801 caught in the act: A post-merger star-forming early-type galaxy with AGN-jet feedback. Mon. Not. R. Astron. Soc. 2012, 422, L38–L42. [Google Scholar] [CrossRef] [Green Version]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef] [Green Version]
- Chiaberge, M.; Gilli, R.; Lotz, J.M.; Norman, C. Radio Loud AGNs are Mergers. Astrophys. J. 2015, 806, 147. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.S.; Colbert, E.J.M. The Difference between Radio-loud and Radio-quiet Active Galaxies. Astrophys. J. 1995, 438, 62. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. Astrophys. J. 2010, 711, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Volonteri, M.; Sikora, M.; Lasota, J.P.; Merloni, A. The Evolution of Active Galactic Nuclei and their Spins. Astrophys. J. 2013, 775, 94. [Google Scholar] [CrossRef]
- Donoso, E.; Li, C.; Kauffmann, G.; Best, P.N.; Heckman, T.M. Clustering of radio galaxies and quasars. Mon. Not. R. Astron. Soc. 2010, 407, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Wylezalek, D.; Galametz, A.; Stern, D.; Vernet, J.; De Breuck, C.; Seymour, N.; Brodwin, M.; Eisenhardt, P.R.M.; Gonzalez, A.H.; Hatch, N.; et al. Galaxy Clusters around Radio-loud Active Galactic Nuclei at 1.3 < z < 3.2 as Seen by Spitzer. Astrophys. J. 2013, 769, 79. [Google Scholar] [CrossRef] [Green Version]
- Hatch, N.A.; Wylezalek, D.; Kurk, J.D.; Stern, D.; De Breuck, C.; Jarvis, M.J.; Galametz, A.; Gonzalez, A.H.; Hartley, W.G.; Mortlock, A.; et al. Why z > 1 radio-loud galaxies are commonly located in protoclusters. Mon. Not. R. Astron. Soc. 2014, 445, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Villalba, D.; Orsi, Á.A.; Bonoli, S.; Lacey, C.G.; Baugh, C.M.; Griffin, A.J. The environment of radio galaxies: A signature of AGN feedback at high redshifts. Mon. Not. R. Astron. Soc. 2018, 480, 1340–1352. [Google Scholar] [CrossRef]
- Cecil, G. Kinematics of Spatially Extended High-Velocity Outflow from the Nucleus of M51. Astrophys. J. 1988, 329, 38. [Google Scholar] [CrossRef]
- Lena, D.; Robinson, A.; Storchi-Bergman, T.; Schnorr-Müller, A.; Seelig, T.; Riffel, R.A.; Nagar, N.M.; Couto, G.S.; Shadler, L. The Complex Gas Kinematics in the Nucleus of the Seyfert 2 Galaxy NGC 1386: Rotation, Outflows, and Inflows. Astrophys. J. 2015, 806, 84. [Google Scholar] [CrossRef] [Green Version]
- Mahony, E.K.; Oonk, J.B.R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B.H.C.; Oosterloo, T.A. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293. Mon. Not. R. Astron. Soc. 2016, 455, 2453–2460. [Google Scholar] [CrossRef] [Green Version]
- Wylezalek, D.; Flores, A.M.; Zakamska, N.L.; Greene, J.E.; Riffel, R.A. Ionized gas outflow signatures in SDSS-IV MaNGA active galactic nuclei. Mon. Not. R. Astron. Soc. 2020, 492, 4680–4696. [Google Scholar] [CrossRef]
- Balmaverde, B.; Capetti, A.; Marconi, A.; Venturi, G.; Chiaberge, M.; Baldi, R.D.; Baum, S.; Gilli, R.; Grandi, P.; Meyer, E.; et al. The MURALES survey. II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results. Astron. Astrophys. 2019, 632, A124. [Google Scholar] [CrossRef] [Green Version]
- Balmaverde, B.; Capetti, A.; Marconi, A.; Venturi, G.; Chiaberge, M.; Baldi, R.D.; Baum, S.; Gilli, R.; Grandi, P.; Meyer, E.T.; et al. The MURALES survey. III. Completing the MUSE observations of 37 3C low-z radio galaxies. Astron. Astrophys. 2021, 645, A12. [Google Scholar] [CrossRef]
- Riffel, R.A. Powerful multiphase outflows in the central region of Cygnus A. Mon. Not. R. Astron. Soc. 2021, 506, 2950–2962. [Google Scholar] [CrossRef]
- Zovaro, H.R.M.; Nesvadba, N.P.H.; Sharp, R.; Bicknell, G.V.; Groves, B.; Mukherjee, D.; Wagner, A.Y. Searching for signs of jet-driven negative feedback in the nearby radio galaxy UGC 05771. Mon. Not. R. Astron. Soc. 2019, 489, 4944–4961. [Google Scholar] [CrossRef]
- Couto, G.S.; Storchi-Bergmann, T.; Axon, D.J.; Robinson, A.; Kharb, P.; Riffel, R.A. Kinematics and excitation of the nuclear spiral in the active galaxy Arp 102B. Mon. Not. R. Astron. Soc. 2013, 435, 2982–3000. [Google Scholar] [CrossRef] [Green Version]
- Schnorr-Müller, A.; Storchi-Bergmann, T.; Nagar, N.M.; Robinson, A.; Lena, D.; Riffel, R.A.; Couto, G.S. Feeding and feedback in the inner kiloparsec of the active galaxy NGC 2110. Mon. Not. R. Astron. Soc. 2014, 437, 1708–1724. [Google Scholar] [CrossRef] [Green Version]
- Riffel, R.A.; Storchi-Bergmann, T.; Riffel, R. Feeding versus feedback in active galactic nuclei from near-infrared integral field spectroscopy - X. NGC 5929. Mon. Not. R. Astron. Soc. 2015, 451, 3587–3605. [Google Scholar] [CrossRef]
- Heywood, I.; Camilo, F.; Cotton, W.D.; Yusef-Zadeh, F.; Abbott, T.D.; Adam, R.M.; Aldera, M.A.; Bauermeister, E.F.; Booth, R.S.; Botha, A.G.; et al. Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event. Nature 2019, 573, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Cecil, G.; Bland-Hawthorn, J.; Veilleux, S.; Filippenko, A.V. Jet- and Wind-driven Ionized Outflows in the Superbubble and Star-forming Disk of NGC 3079. Astrophys. J. 2001, 555, 338–355. [Google Scholar] [CrossRef]
- Hota, A.; Saikia, D.J. Radio bubbles in the composite AGN-starburst galaxy NGC6764. Mon. Not. R. Astron. Soc. 2006, 371, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; et al. Ionised outflows in z ~2.4 quasar host galaxies. Astron. Astrophys. 2015, 580, A102. [Google Scholar] [CrossRef] [Green Version]
- Fiore, F.; Feruglio, C.; Shankar, F.; Bischetti, M.; Bongiorno, A.; Brusa, M.; Carniani, S.; Cicone, C.; Duras, F.; Lamastra, A.; et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 2017, 601, A143. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Paraschos, G.F.; Bisbas, T.G.; Combes, F.; Fernández-Ontiveros, J.A. Insights into the collapse and expansion of molecular clouds in outflows from observable pressure gradients. Nat. Astron. 2022, 6, 1077–1084. [Google Scholar] [CrossRef]
- Audibert, A.; Combes, F.; García-Burillo, S.; Hunt, L.; Eckart, A.; Aalto, S.; Casasola, V.; Boone, F.; Krips, M.; Viti, S.; et al. ALMA captures feeding and feedback from the active galactic nucleus in NGC 613. Astron. Astrophys. 2019, 632, A33. [Google Scholar] [CrossRef] [Green Version]
- Zovaro, H.R.M.; Sharp, R.; Nesvadba, N.P.H.; Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y.; Groves, B.; Krishna, S. Jets blowing bubbles in the young radio galaxy 4C 31.04. Mon. Not. R. Astron. Soc. 2019, 484, 3393–3409. [Google Scholar] [CrossRef]
- Ruffa, I.; Davis, T.A.; Prandoni, I.; Laing, R.A.; Paladino, R.; Parma, P.; de Ruiter, H.; Casasola, V.; Bureau, M.; Warren, J. The AGN fuelling/feedback cycle in nearby radio galaxies - II. Kinematics of the molecular gas. Mon. Not. R. Astron. Soc. 2019, 489, 3739–3757. [Google Scholar] [CrossRef] [Green Version]
- Aalto, S.; Costagliola, F.; Muller, S.; Sakamoto, K.; Gallagher, J.S.; Dasyra, K.; Wada, K.; Combes, F.; García-Burillo, S.; Kristensen, L.E.; et al. A precessing molecular jet signaling an obscured, growing supermassive black hole in NGC 1377? Astron. Astrophys. 2016, 590, A73. [Google Scholar] [CrossRef]
- Fernández-Ontiveros, J.A.; Dasyra, K.M.; Hatziminaoglou, E.; Malkan, M.A.; Pereira-Santaella, M.; Papachristou, M.; Spinoglio, L.; Combes, F.; Aalto, S.; Nagar, N.; et al. A CO molecular gas wind 340 pc away from the Seyfert 2 nucleus in ESO 420-G13 probes an elusive radio jet. Astron. Astrophys. 2020, 633, A127. [Google Scholar] [CrossRef]
- Pereira-Santaella, M.; Álvarez-Márquez, J.; García-Bernete, I.; Labiano, A.; Colina, L.; Alonso-Herrero, A.; Bellocchi, E.; García-Burillo, S.; Hönig, S.F.; Ramos Almeida, C.; et al. Low-power jet-interstellar medium interaction in NGC 7319 revealed by JWST/MIRI MRS. Astron. Astrophys. 2022, 665, L11. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V. Relativistic Jet Feedback in Evolving Galaxies. Astrophys. J. 2011, 728, 29. [Google Scholar] [CrossRef]
- Mukherjee, D.; Wagner, A.Y.; Bicknell, G.V.; Morganti, R.; Oosterloo, T.; Nesvadba, N.; Sutherland, R.S. The jet-ISM interactions in IC 5063. Mon. Not. R. Astron. Soc. 2018, 476, 80–95. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback - III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Bourne, M.A.; Sijacki, D. Blandford-Znajek jets in galaxy formation simulations: Method and implementation. Mon. Not. R. Astron. Soc. 2021, 504, 3619–3650. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Wagner, A.Y.; Nesvadba, N.P.H.; Bicknell, G.V.; Morganti, R.; Janssen, R.M.J.; Sutherland, R.S.; Mandal, A. Modelling observable signatures of jet-ISM interaction: Thermal emission and gas kinematics. Mon. Not. R. Astron. Soc. 2022, 516, 766–786. [Google Scholar] [CrossRef]
- Heckman, T.M. An Optical and Radio Survey of the Nuclei of Bright Galaxies - Activity in the Normal Galactic Nuclei. Astron. Astrophys. 1980, 87, 152. [Google Scholar]
- Baldwin, J.A.; Phillips, M.M.; Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Publ. Astron. Soc. Pac. 1981, 93, 5–19. [Google Scholar] [CrossRef]
- Dopita, M.A.; Sutherland, R.S. Spectral Signatures of Fast Shocks. II. Optical Diagnostic Diagrams. Astrophys. J. 1995, 455, 468. [Google Scholar] [CrossRef]
- Allen, M.G.; Groves, B.A.; Dopita, M.A.; Sutherland, R.S.; Kewley, L.J. The MAPPINGS III Library of Fast Radiative Shock Models. Astrophys. J. Suppl. Ser. 2008, 178, 20–55. [Google Scholar] [CrossRef] [Green Version]
- Couto, G.S.; Storchi-Bergmann, T.; Schnorr-Müller, A. Gas rotation, shocks and outflow within the inner 3 kpc of the radio galaxy 3C 33. Mon. Not. R. Astron. Soc. 2017, 469, 1573–1586. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Oosterloo, T.A.; Tinti, S.; Tadhunter, C.N.; Wills, K.A.; van Moorsel, G. Large-scale gas disk around the radio galaxy Coma A. Astron. Astrophys. 2002, 387, 830–837. [Google Scholar] [CrossRef]
- Villar-Martín, M.; Emonts, B.; Cabrera Lavers, A.; Tadhunter, C.; Mukherjee, D.; Humphrey, A.; Rodríguez Zaurín, J.; Ramos Almeida, C.; Pérez Torres, M.; Bessiere, P. Galaxy-wide radio-induced feedback in a radio-quiet quasar. Mon. Not. R. Astron. Soc. 2017, 472, 4659–4678. [Google Scholar] [CrossRef] [Green Version]
- Santoro, F.; Rose, M.; Morganti, R.; Tadhunter, C.; Oosterloo, T.A.; Holt, J. Probing multi-phase outflows and AGN feedback in compact radio galaxies: The case of PKS B1934-63. Astron. Astrophys. 2018, 617, A139. [Google Scholar] [CrossRef] [Green Version]
- Vagshette, N.D.; Naik, S.; Patil, M.K. Cavities, shocks and a cold front around 3C 320. Mon. Not. R. Astron. Soc. 2019, 485, 1981–1989. [Google Scholar] [CrossRef]
- Murthy, S.; Morganti, R.; Emonts, B.; Villar-Martín, M.; Oosterloo, T.; Peletier, R. Disc galaxy resolved in H I absorption against the radio lobe of 3C 433: Case study for future surveys. Astron. Astrophys. 2020, 643, A74. [Google Scholar] [CrossRef]
- Molina, M.; Reines, A.E.; Greene, J.E.; Darling, J.; Condon, J.J. Outflows, Shocks, and Coronal Line Emission in a Radio-selected AGN in a Dwarf Galaxy. Astrophys. J. 2021, 910, 5. [Google Scholar] [CrossRef]
- Holt, J.; Tadhunter, C.; Morganti, R.; Bellamy, M.; González Delgado, R.M.; Tzioumis, A.; Inskip, K.J. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy: Evidence for a high accretion rate and warm outflow. Mon. Not. R. Astron. Soc. 2006, 370, 1633–1650. [Google Scholar] [CrossRef]
- Peterson, B.M. An Introduction to Active Galactic Nuclei; IOP Publishing Ltd.: Bristol, UK, 1997. [Google Scholar]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, P.F.; Elvis, M. Quasar feedback: More bang for your buck. Mon. Not. R. Astron. Soc. 2010, 401, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Baron, D.; Netzer, H. Discovering AGN-driven winds through their infrared emission - II. Mass outflow rate and energetics. Mon. Not. R. Astron. Soc. 2019, 486, 4290–4303. [Google Scholar] [CrossRef] [Green Version]
- Dall’Agnol de Oliveira, B.; Storchi-Bergmann, T.; Kraemer, S.B.; Villar Martín, M.; Schnorr-Müller, A.; Schmitt, H.R.; Ruschel-Dutra, D.; Crenshaw, D.M.; Fischer, T.C. Gauging the effect of supermassive black holes feedback on quasar host galaxies. Mon. Not. R. Astron. Soc. 2021, 504, 3890–3908. [Google Scholar] [CrossRef]
- Richings, A.J.; Faucher-Giguère, C.A. Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Mon. Not. R. Astron. Soc. 2018, 478, 3100–3119. [Google Scholar] [CrossRef]
- Villar Martin, M.; Emonts, B.H.C.; Cabrera Lavers, A.; Bellocchi, E.; Alonso Herrero, A.; Humphrey, A.; Dall’Agnol de Oliveira, B.; Storchi-Bergmann, T. Interactions between large-scale radio structures and gas in a sample of optically selected type 2 quasars. Astron. Astrophys. 2021, 650, A84. [Google Scholar] [CrossRef]
- Wylezalek, D.; Zakamska, N.L. Evidence of suppression of star formation by quasar-driven winds in gas-rich host galaxies at z < 1? Mon. Not. R. Astron. Soc. 2016, 461, 3724–3739. [Google Scholar] [CrossRef] [Green Version]
- Mullaney, J.R.; Alexander, D.M.; Fine, S.; Goulding, A.D.; Harrison, C.M.; Hickox, R.C. Narrow-line region gas kinematics of 24 264 optically selected AGN: The radio connection. Mon. Not. R. Astron. Soc. 2013, 433, 622–638. [Google Scholar] [CrossRef] [Green Version]
- Delvecchio, I.; Smolčić, V.; Zamorani, G.; Lagos, C.D.P.; Berta, S.; Delhaize, J.; Baran, N.; Alexander, D.M.; Rosario, D.J.; Gonzalez-Perez, V.; et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z ≲ 6. Astron. Astrophys. 2017, 602, A3. [Google Scholar] [CrossRef] [Green Version]
- Finlez, C.; Nagar, N.M.; Storchi-Bergmann, T.; Schnorr-Müller, A.; Riffel, R.A.; Lena, D.; Mundell, C.G.; Elvis, M.S. The complex jet- and bar-perturbed kinematics in NGC 3393 as revealed with ALMA and GEMINI-GMOS/IFU. Mon. Not. R. Astron. Soc. 2018, 479, 3892–3908. [Google Scholar] [CrossRef] [Green Version]
- Comerford, J.M.; Negus, J.; Müller-Sánchez, F.; Eracleous, M.; Wylezalek, D.; Storchi-Bergmann, T.; Greene, J.E.; Barrows, R.S.; Nevin, R.; Roy, N.; et al. A Catalog of 406 AGNs in MaNGA: A Connection between Radio-mode AGNs and Star Formation Quenching. Astrophys. J. 2020, 901, 159. [Google Scholar] [CrossRef]
- Bundy, K.; Bershady, M.A.; Law, D.R.; Yan, R.; Drory, N.; MacDonald, N.; Wake, D.A.; Cherinka, B.; Sánchez-Gallego, J.R.; Weijmans, A.M.; et al. Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory. Astrophys. J. 2015, 798, 7. [Google Scholar] [CrossRef]
- Narayan, R.; McClintock, J.E. Advection-dominated accretion and the black hole event horizon. New Astron. Rev. 2008, 51, 733–751. [Google Scholar] [CrossRef] [Green Version]
- Nemmen, R.S.; Storchi-Bergmann, T.; Eracleous, M. Spectral models for low-luminosity active galactic nuclei in LINERs: The role of advection-dominated accretion and jets. Mon. Not. R. Astron. Soc. 2014, 438, 2804–2827. [Google Scholar] [CrossRef] [Green Version]
- Ilha, G.S.; Riffel, R.A.; Ricci, T.V.; Rembold, S.B.; Storchi-Bergmann, T.; Riffel, R.; Roy, N.; Bundy, K.; Nemmen, R.; Schimoia, J.S.; et al. Active galactic nuclei signatures in Red Geyser galaxies from Gemini GMOS-IFU observations. Mon. Not. R. Astron. Soc. 2022, 516, 1442–1461. [Google Scholar] [CrossRef]
- Riffel, R.A.; Nemmen, R.S.; Ilha, G.S.; Rembold, S.B.; Roy, N.; Storchi-Bergmann, T.; Riffel, R.; Bundy, K.A.; Machado, A.D.; Mallman, N.D.; et al. Precessing winds from the nucleus of the prototype Red Geyser? Mon. Not. R. Astron. Soc. 2019, 485, 5590–5597. [Google Scholar] [CrossRef] [Green Version]
- Randall, S.W.; Forman, W.R.; Giacintucci, S.; Nulsen, P.E.J.; Sun, M.; Jones, C.; Churazov, E.; David, L.P.; Kraft, R.; Donahue, M.; et al. Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback. Astrophys. J. 2011, 726, 86. [Google Scholar] [CrossRef]
- Mingo, B.; Hardcastle, M.J.; Croston, J.H.; Evans, D.A.; Hota, A.; Kharb, P.; Kraft, R.P. Markarian 6: Shocking the Environment of an Intermediate Seyfert. Astrophys. J. 2011, 731, 21. [Google Scholar] [CrossRef]
- Webster, B.; Croston, J.H.; Mingo, B.; Baldi, R.D.; Barkus, B.; Gürkan, G.; Hardcastle, M.J.; Morganti, R.; Röttgering, H.J.A.; Sabater, J.; et al. A population of galaxy-scale jets discovered using LOFAR. Mon. Not. R. Astron. Soc. 2021, 500, 4921–4936. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couto, G.S.; Storchi-Bergmann, T. The Interplay between Radio AGN Activity and Their Host Galaxies. Galaxies 2023, 11, 47. https://doi.org/10.3390/galaxies11020047
Couto GS, Storchi-Bergmann T. The Interplay between Radio AGN Activity and Their Host Galaxies. Galaxies. 2023; 11(2):47. https://doi.org/10.3390/galaxies11020047
Chicago/Turabian StyleCouto, Guilherme S., and Thaisa Storchi-Bergmann. 2023. "The Interplay between Radio AGN Activity and Their Host Galaxies" Galaxies 11, no. 2: 47. https://doi.org/10.3390/galaxies11020047
APA StyleCouto, G. S., & Storchi-Bergmann, T. (2023). The Interplay between Radio AGN Activity and Their Host Galaxies. Galaxies, 11(2), 47. https://doi.org/10.3390/galaxies11020047