Gamma-Ray Cosmology and Tests of Fundamental Physics
Abstract
:1. The Extragalactic Gamma-Ray Sky
2. A Gamma-Ray Journey through Cosmic Ages
3. Probing the Content of the Intergalactic Medium
4. Deviations from the Standard Model at Ultra-High and Ultra-Low Masses
5. Knowns, Expectations and Hopes from Gamma-Ray Cosmology
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1EG | First EGRET gamma-ray catalog |
1FGL | First Fermi-LAT catalog |
1FLGC | First Fermi-LAT gamma-ray burst catalog |
1FLT | First Fermi-LAT catalog of long-term gamma-ray transient sources |
2FLGC | Second Fermi-LAT gamma-ray burst catalog |
3EG | Third EGRET catalog of high-energy gamma-ray sources |
3FGL | Third Fermi-LAT catalog |
4FGL-DR2 | Fourth Fermi-LAT catalog, data release 2 |
AGN | Active galactic nucleus |
AGU | Active galactic nucleus of uncertain type (source type) |
ALP | Axion-like particle |
AMEGO | All-sky medium energy gamma-ray observatory (instrument) |
BCU | Blazar of uncertain type (source type) |
BH | Black hole |
BLL | BLLac source (source type) |
BLR | Broad-line region |
CAST | CERN axion solar telescope (instrument) |
CAT | Cherenkov array at Themis (instrument) |
CGRO | Compton gamma-ray observatory (instrument) |
CIB | Cosmic infrared background, from mid to far infrared |
CMB | Cosmic microwave background |
COB | Cosmic optical background, from near ultraviolet to near infrared |
CPT | Charge, parity and time-reversal symmetries |
CSFH | Cosmic star-formation history |
CSS | Compact steep spectrum source (source type) |
CTA | Cherenkov Telescope Array (instrument) |
DEVILS | Deep extragalactic visible legacy survey |
dSph | Dwarf spheroidal galaxy |
e-ASTROGAM | Enhanced ASTROGAM mission (instrument) |
EBL | Extragalactic background light, from near ultraviolet to far infrared |
EGRET | Energetic gamma ray experiment telescope (instrument) |
EW | Electroweak |
Fermi-GBM | Fermi gamma-ray burst monitor (instrument) |
Fermi-LAT | Fermi large area telescope (instrument) |
FSRQ | Flat-spectrum radio quasar (source type) |
GAL | Normal galaxy (source type) |
Gal. Cen. | Galactic center |
Gal. Cl. | Galaxy cluster |
GAMA | Galaxy and mass assembly survey |
GMF | Galactic magnetic field |
GRB | Gamma-ray burst (source type) |
H.E.S.S. | High energy stereoscopic system (instrument) |
HAWC | High-altitude water Cherenkov observatory (instrument) |
HEGRA | High-energy-gamma-ray astronomy (instrument) |
ICRC | International cosmic-ray conference |
IGL | Integrated galaxy light |
IGMF | Intergalactic magnetic field |
JWST | James Webb Space Telescope (instrument) |
lGRB | Long gamma-ray burst (source type) |
LHAASO | Large high altitude air shower observatory (instrument) |
LI | Lorentz invariance |
LIV | Lorentz-invariance violation |
LOFAR | Low-Frequency Array (instrument) |
MAGCOW | Magnetized cosmic web project |
MAGIC | Major atmospheric gamma imaging Cherenkov telescopes (instrument) |
NLSY1 | Narrow-line Seyfert 1 galaxy (source type) |
PVLAS | Polarizzazione del vuoto con laser (instrument) |
QCD | Quantum chromodynamics |
RDG | Radio galaxy (source type) |
SBG | Starburst galaxy (source type) |
SEY | Seyfert galaxy (source type) |
sGRB | Short gamma-ray burst (source type) |
SKA | Square Kilometer Array (instrument) |
SN | Supernova (source type) |
SSRQ | Steep-spectrum radio quasar (source type) |
SVOM | Space variable objects monitor (instrument) |
TAIGA | Tunka advanced instrument for cosmic ray physics and gamma astronomy (instrument) |
TeVCat | TeV catalogue |
UV | Ultraviolet |
VERITAS | Very energetic radiation imaging telescope array system (instrument) |
WIMP | Weakly interacting massive particle |
CDM | Lambda cold dark matter model |
1 | See [13] for historical gamma-ray lightcurves of Mrk421. |
2 | See http://tevcat2.uchicago.edu/ and references catalogued therein. |
3 | To see how axions change Maxwell’s equations, we refer the reader to [59]. |
4 | For , the coefficients are and for one finds . |
5 | A recent study based on the stacking of gamma-ray images in the direction of radio galaxies claimed the exclusion of IGMF strengths larger than G [122], which is the complementary of the range tentatively excluded with conventional approaches. If confirmed, such an exclusion of the entire IGMF parameter space may rule out inverse-Compton cooling in favor of beam plasma instabilities, as initially proposed by these authors in [123]. The stacking constraints nonetheless rely on parametrizations of the luminosity function and gamma-ray spectrum of blazars and radio galaxies across the AGN unification scheme, whose present understanding appears to preclude a definite claim. |
6 | The observation was ruled out a year later by the PVLAS collaboration after several experimental updates [128]. See also [129] for a recent review of the PVLAS experiment. It should be noted that photon-ALP oscillations in astrophysical environments had also been investigated prior to the PVLAS tentative signal. See, e.g., [130,131] for ALP-induced gamma-rays from the supernova SN1987A, [132,133] for type Ia supernovae dimming, and [134] for ultra-high-energy photons that could be observed beyond the threshold energy of pair production with CMB and radio photons. |
7 | As pointed out in [164], a cell-like model has the peculiarity that can be zero in the strong mixing regime for a certain alignment of the magnetic field. |
8 | The CAST bound could be avoided in scenarios discussed in [154]. |
9 | See also [186] for a debate on the efficiency of ALP production during the core collapse. |
References
- Hill, R.; Masui, K.W.; Scott, D. The Spectrum of the Universe. Appl. Spectrosc. 2018, 72, 663–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Salvato, M. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G. Radiative Processes in High Energy Astrophysics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 873. [Google Scholar]
- Atwood, W.B.; et al. [Fermi-LAT Collaboration] The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Hinton, J.A.; Hofmann, W. Teraelectronvolt Astronomy. Annu. Rev. Astron. Astrophys. 2009, 47, 523–565. [Google Scholar] [CrossRef] [Green Version]
- Degrange, B.; Fontaine, G. Introduction to high-energy gamma-ray astronomy. Comptes Rendus Phys. 2015, 16, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Dermer, C.D.; Giebels, B. Active galactic nuclei at gamma-ray energies. Comptes Rendus Phys. 2016, 17, 594–616. [Google Scholar] [CrossRef]
- Schmidt, M. The discovery of quasars. In Modern Cosmology in Retrospect; Bertotti, B., Balbinot, R., Bergia, S., Eds.; Cambridge University Press: Cambridge, UK, 1990; p. 347. [Google Scholar]
- Swanenburg, B.N.; Bennett, K.; Bignami, G.F.; Caraveo, P.; Hermsen, W.; Kanbach, G.; Wills, R.D. COS B observation of high-energy γ radiation from 3C273. Nature 1978, 275, 298. [Google Scholar] [CrossRef]
- Hartman, R.C.; Bertsch, D.L.; Bloom, S.D.; Chen, A.W.; Deines-Jones, P.; Esposito, J.A.; Fichtel, C.E.; Friedlander, D.P.; Hunter, S.D.; McDonald, L.M.; et al. The Third EGRET Catalog of High-Energy Gamma-Ray Sources. Astrophys. J. Suppl. Ser. 1999, 123, 79–202. [Google Scholar] [CrossRef] [Green Version]
- Punch, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; Gaidos, J.A.; Hagan, J.; Hillas, A.M.; Jiang, Y.; et al. Detection of TeV photons from the active galaxy Markarian 421. Nature 1992, 358, 477–478. [Google Scholar] [CrossRef] [Green Version]
- Weekes, T.C.; Cawley, M.F.; Fegan, D.J.; Gibbs, K.G.; Hillas, A.M.; Kowk, P.W.; Lamb, R.C.; Lewis, D.A.; Macomb, D.; Porter, N.A.; et al. Observation of TeV Gamma Rays from the Crab Nebula Using the Atmospheric Cerenkov Imaging Technique. Astrophys. J. 1989, 342, 379. [Google Scholar] [CrossRef]
- Tluczykont, M.; Bernardini, E.; Satalecka, K.; Clavero, R.; Shayduk, M.; Kalekin, O. Long-term lightcurves from combined unified very high energy γ-ray data. Astron. Astrophys. 2010, 524, A48. [Google Scholar] [CrossRef] [Green Version]
- Wakely, S.P.; Horan, D. TeVCat: An online catalog for Very High Energy Gamma-Ray Astronomy. In International Cosmic Ray Conference; 2008; Volume 3, pp. 1341–1344. Available online: https://ui.adsabs.harvard.edu/abs/2008ICRC....3.1341W/abstract (accessed on 5 January 2021).
- Fichtel, C.E.; Bertsch, D.L.; Chiang, J.; Dingus, B.L.; Esposito, J.A.; Fierro, J.M.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; Kniffen, D.A.; et al. The First Energetic Gamma-Ray Experiment Telescope (EGRET) Source Catalog. Astrophys. J. Suppl. Ser. 1994, 94, 551. [Google Scholar] [CrossRef]
- Abdo, A.A.; et al. [Fermi-LAT Collaboration] Fermi Large Area Telescope First Source Catalog. Astrophys. J. Suppl. Ser. 2010, 188, 405–436. [Google Scholar] [CrossRef] [Green Version]
- Acero, F.; et al. [Fermi-LAT Collaboration] Fermi Large Area Telescope Third Source Catalog. Astrophys. J. Suppl. Ser. 2015, 218, 23. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, M.; et al. [Fermi-LAT Collaboration] The First Fermi-LAT Gamma-Ray Burst Catalog. Astrophys. J. Suppl. Ser. 2013, 209, 11. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, S.; et al. [Fermi-LAT Collaboration] Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef] [Green Version]
- Baldini, L.; et al. [Fermi-LAT Collaboration] Catalog of Long-term Transient Sources in the First 10 yr of Fermi-LAT Data. Astrophys. J. Suppl. Ser. 2021, 256, 13. [Google Scholar] [CrossRef]
- Ajello, M.; et al. [Fermi-LAT Collaboration] A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog. Astrophys. J. 2019, 878, 52. [Google Scholar] [CrossRef] [Green Version]
- McCall, M.L. A Council of Giants. Mon. Not. R. Astron. Soc. 2014, 440, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.J. Space detectors for gamma rays (100 MeV-100 GeV): From EGRET to Fermi LAT. Comptes Rendus Phys. 2015, 16, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Righi, C.; Costamante, L.; Tavecchio, F. The Fermi blazar sequence. Mon. Not. R. Astron. Soc. 2017, 469, 255–266. [Google Scholar] [CrossRef]
- Wagner, S.; Rani, B.; [HESS Collaboration]. Enhanced HE and VHE gamma-ray activity from the FSRQ PKS 0346-27. Astron. Telegr. 2021, 15020, 1. [Google Scholar]
- Kreter, M.; Gokus, A.; Krauss, F.; Kadler, M.; Ojha, R.; Buson, S.; Böttcher, M. Search for High-redshift Blazars with Fermi/LAT. Astrophys. J. 2020, 903, 128. [Google Scholar] [CrossRef]
- D’Ammando, F. Relativistic Jets in Gamma-Ray-Emitting Narrow-Line Seyfert 1 Galaxies. Galaxies 2019, 7, 87. [Google Scholar] [CrossRef] [Green Version]
- Foschini, L. Jetted Narrow-Line Seyfert 1 Galaxies & Co.: Where Do We Stand? Universe 2020, 6, 136. [Google Scholar]
- Abdo, A.A.; et al. [Fermi-LAT and Fermi-GBM Collaborations] Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science 2009, 323, 1688. [Google Scholar] [CrossRef]
- Blanch, O.; et al. [MAGIC Collaboration] GRB 201216C: MAGIC detection in very high energy gamma rays. GRB Coord. Netw. 2020, 29075, 1. [Google Scholar]
- Goldoni, P.; Pita, S.; Boisson, C.; Max-Moerbeck, W.; Kasai, E.; Williams, D.A.; D’Ammando, F.; Navarro-Aranguiz, V.; Backes, M.; Barres de Almeida, U.; et al. Optical spectroscopy of blazars for the Cherenkov Telescope Array. Astron. Astrophys. 2021, 650, A106. [Google Scholar] [CrossRef]
- Franceschini, A. Photon-Photon Interactions and the Opacity of the Universe in Gamma Rays. Universe 2021, 7, 146. [Google Scholar] [CrossRef]
- Burrows, A.S. Spectra as windows into exoplanet atmospheres. Proc. Natl. Acad. Sci. USA 2014, 111, 12601–12609. [Google Scholar] [CrossRef] [Green Version]
- Gould, R.J.; Schréder, G.P. Opacity of the Universe to High-Energy Photons. Phys. Rev. 1967, 155, 1408–1411. [Google Scholar] [CrossRef]
- Nikishov, A.I. Absorption of High-Enegy Photons in the Universe. Sov. Phys. JETP 1962, 14, 393–394. [Google Scholar]
- Goldrelch, P.; Morrison, P. On the absorption of gamma rays in intergalactic space. Sov. Phys. JETP 1964, 18, 239. [Google Scholar]
- Jelley, J.V. High-Energy γ-Ray Absorption in Space by a 3.5°K Microwave Field. Phys. Rev. Lett. 1966, 16, 479–481. [Google Scholar] [CrossRef]
- Gould, R.J.; Schréder, G. Opacity of the Universe to High-Energy Photons. Phys. Rev. Lett. 1966, 16, 252–254. [Google Scholar] [CrossRef]
- Jelley, J.V. Absorption of High-energy Gamma-rays within Quasars and other Radio Sources. Nature 1966, 211, 472–475. [Google Scholar] [CrossRef]
- Gould, R.J.; Schréder, G.P. Pair Production in Photon-Photon Collisions. Phys. Rev. 1967, 155, 1404–1407. [Google Scholar] [CrossRef]
- Finke, J.D. External Compton Scattering in Blazar Jets and the Location of the Gamma-Ray Emitting Region. Astrophys. J. 2016, 830, 94. [Google Scholar] [CrossRef] [Green Version]
- Potter, W.J.; Cotter, G. New constraints on the structure and dynamics of black hole jets. Mon. Not. R. Astron. Soc. 2015, 453, 4070–4088. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Cerruti, M. Leptonic and Hadronic Radiative Processes in Supermassive-Black-Hole Jets. Galaxies 2020, 8, 72. [Google Scholar] [CrossRef]
- Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J.K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L. The host galaxies of active galactic nuclei with powerful relativistic jets. Mon. Not. R. Astron. Soc. 2016, 460, 3202–3220. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Primack, J.R.; Rosario, D.J.; Prada, F.; Gilmore, R.C.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Pérez-Torres, M.A.; Pérez-González, P.; et al. Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. Mon. Not. R. Astron. Soc. 2011, 410, 2556–2578. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, G.R.; Gould, R.J. Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases. Rev. Mod. Phys. 1970, 42, 237–271. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Coppi, P.S.; Voelk, H.J. Very High Energy Gamma Rays from Active Galactic Nuclei: Cascading on the Cosmic Background Radiation Fields and the Formation of Pair Halos. Astrophys. J. Lett. 1994, 423, L5. [Google Scholar] [CrossRef]
- Plaga, R. Detecting intergalactic magnetic fields using time delays in pulses of γ-rays. Nature 1995, 374, 430–432. [Google Scholar] [CrossRef]
- Durrer, R.; Neronov, A. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 2013, 21, 62. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Weinberg, S. A new light boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The not-so-harmless axion. Phys. Lett. B 1983, 120, 137–141. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the “Invisible” Axion. Phys. Rev. Lett. 1983, 51, 1415–1417. [Google Scholar] [CrossRef]
- Abbott, L.F.; Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 1983, 120, 133–136. [Google Scholar] [CrossRef]
- Arias, P.; Cadamuro, D.; Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A. WISPy cold dark matter. J. Cosmol. Astropart. Phys. 2012, 2012, 013. [Google Scholar] [CrossRef]
- Jaeckel, J.; Ringwald, A. The Low-Energy Frontier of Particle Physics. Annu. Rev. Nucl. Part. Sci. 2010, 60, 405–437. [Google Scholar] [CrossRef] [Green Version]
- Visinelli, L. Axion-Electromagnetic Waves. Mod. Phys. Lett. A 2013, 28, 1350162. [Google Scholar] [CrossRef] [Green Version]
- Raffelt, G.; Stodolsky, L. Mixing of the photon with low-mass particles. Phys. Rev. D 1988, 37, 1237–1249. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; et al. [Planck Collaboration] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Hooper, D.; Serpico, P.D. Detecting Axionlike Particles with Gamma Ray Telescopes. Phys. Rev. Lett. 2007, 99, 231102. [Google Scholar] [CrossRef] [Green Version]
- Bassan, N.; Mirizzi, A.; Roncadelli, M. Axion-like particle effects on the polarization of cosmic high-energy gamma sources. J. Cosmol. Astropart. Phys. 2010, 2010, 010. [Google Scholar] [CrossRef]
- Dobrynina, A.; Kartavtsev, A.; Raffelt, G. Photon-photon dispersion of TeV gamma rays and its role for photon-ALP conversion. Phys. Rev. D 2015, 91, 083003. [Google Scholar] [CrossRef] [Green Version]
- Addazi, A.; Alvarez-Muniz, J.; Alves Batista, R.; Amelino-Camelia, G.; Antonelli, V.; Arzano, M.; Asorey, M.; Atteia, J.L.; Bahamonde, S.; Bajardi, F.; et al. Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. arXiv 2021, arXiv:2111.05659. [Google Scholar] [CrossRef]
- Martínez-Huerta, H.; Lang, R.G.; de Souza, V. Lorentz Invariance Violation Tests in Astroparticle Physics. Symmetry 2020, 12, 1232. [Google Scholar] [CrossRef]
- Terzić, T.; Kerszberg, D.; Strišković, J. Probing Quantum Gravity with Imaging Atmospheric Cherenkov Telescopes. Universe 2021, 7, 345. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of quantum gravity from observations of γ-ray bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Albert, A.; et al. [HAWC Collaboration] Constraints on Lorentz Invariance Violation from HAWC Observations of Gamma Rays above 100 TeV. Phys. Rev. Lett. 2020, 124, 131101. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; et al. [The LHAASO Collaboration] Exploring Lorentz Invariance Violation from Ultra-high-energy Gamma Rays Observed by LHAASO. arXiv 2021, arXiv:2106.12350. [Google Scholar]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760–6774. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F.W.; Scully, S.T. Searching for new physics with ultrahigh energy cosmic rays. New J. Phys. 2009, 11, 085003. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T. Is the Universe More Transparent to Gamma Rays Than Previously Thought? Astrophys. J. Lett. 2009, 691, L91–L94. [Google Scholar] [CrossRef] [Green Version]
- Jacob, U.; Piran, T. Lorentz-violation-induced arrival delays of cosmological particles. J. Cosmol. Astropart. Phys. 2008, 2008, 031. [Google Scholar] [CrossRef]
- Rosati, G.; Amelino-Camelia, G.; Marcianò, A.; Matassa, M. Planck-scale-modified dispersion relations in FRW spacetime. Phys. Rev. D 2015, 92, 124042. [Google Scholar] [CrossRef] [Green Version]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef] [Green Version]
- Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science 2010, 328, 73. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.M.; Vovk, I.; Neronov, A. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astron. Astrophys. 2011, 529, A144. [Google Scholar] [CrossRef] [Green Version]
- Abeysekara, A.U.; et al. [VERITAS, SPOL, ASAS-SN, OVRO, NuSTAR and CRTS Collaborations] Gamma-Rays from the Quasar PKS 1441+25: Story of an Escape. Astrophys. J. Lett. 2015, 815, L22. [Google Scholar] [CrossRef] [Green Version]
- Ahnen, M.L.; et al. [MAGIC Collaboration] Very High Energy γ-Rays from the Universe’s Middle Age: Detection of the z = 0.940 Blazar PKS 1441+25 with MAGIC. Astrophys. J. Lett. 2015, 815, L23. [Google Scholar] [CrossRef] [Green Version]
- Ajello, M.; et al. [Fermi-LAT Collaboration] The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2020, 892, 105. [Google Scholar] [CrossRef]
- Goldoni, P. Review of Redshift Values of Bright AGNs with Hard Spectra in 4LAC Catalog. 2021. Available online: https://10.5281/zenodo.5512660 (accessed on 1 December 2021).
- Abdollahi, S.; et al. [Fermi-LAT Collaboration] A gamma-ray determination of the Universe’s star formation history. Science 2018, 362, 1031–1034. [Google Scholar]
- Koushan, S.; Driver, S.P.; Bellstedt, S.; Davies, L.J.; Robotham, A.S.G.; del P. Lagos, C.; Hashemizadeh, A.; Obreschkow, D.; Thorne, J.E.; Bremer, M.; et al. GAMA/DEVILS: Constraining the cosmic star formation history from improved measurements of the 0.3–2.2 μm extragalactic background light. Mon. Not. R. Astron. Soc. 2021, 503, 2033–2052. [Google Scholar] [CrossRef]
- Quashnock, J.M.; Loeb, A.; Spergel, D.N. Magnetic Field Generation during the Cosmological QCD Phase Transition. Astrophys. J. Lett. 1989, 344, L49. [Google Scholar] [CrossRef]
- Vachaspati, T. Progress on cosmological magnetic fields. Rep. Prog. Phys. 2021, 84, 074901. [Google Scholar] [CrossRef] [PubMed]
- Pueschel, E.; Biteau, J. Cosmology with Very-High-Energy Gamma Rays. In Advances in Very High Energy Astrophysics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2022. [Google Scholar]
- Alves Batista, R.; Saveliev, A. The Gamma-Ray Window to Intergalactic Magnetism. Universe 2021, 7, 223. [Google Scholar] [CrossRef]
- Bonafede, A.; Feretti, L.; Murgia, M.; Govoni, F.; Giovannini, G.; Dallacasa, D.; Dolag, K.; Taylor, G.B. The Coma cluster magnetic field from Faraday rotation measures. Astron. Astrophys. 2010, 513, A30. [Google Scholar] [CrossRef] [Green Version]
- de Jager, O.C.; Stecker, F.W.; Salamon, M.H. Estimate of the intergalactic infrared radiation field from γ-ray observations of the galaxy Mrk421. Nature 1994, 369, 294–296. [Google Scholar] [CrossRef]
- Dwek, E.; Slavin, J. On the Determination of the Cosmic Infrared Background Radiation from the High-Energy Spectrum of Extragalactic Gamma-Ray Sources. Astrophys. J. 1994, 436, 696. [Google Scholar] [CrossRef]
- Aharonian, F.; et al. [HESS Collaboration] A low level of extragalactic background light as revealed by γ-rays from blazars. Nature 2006, 440, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Mattila, K.; Väisänen, P. Extragalactic background light: Inventory of light throughout the cosmic history. Contemp. Phys. 2019, 60, 23–44. [Google Scholar] [CrossRef]
- Driver, S.P. Measuring energy production in the Universe over all wavelengths and all time. arXiv 2021, arXiv:2102.12089. [Google Scholar]
- Lauer, T.R.; Postman, M.; Weaver, H.A.; Spencer, J.R.; Stern, S.A.; Buie, M.W.; Durda, D.D.; Lisse, C.M.; Poppe, A.R.; Binzel, R.P.; et al. New Horizons Observations of the Cosmic Optical Background. Astrophys. J. 2021, 906, 77. [Google Scholar] [CrossRef]
- Ackermann, M.; et al. [Fermi-LAT Collaboration] The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars. Science 2012, 338, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramowski, A.; et al. [HESS Collaboration] Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S. Astron. Astrophys. 2013, 550, A4. [Google Scholar]
- Biasuzzi, B.; Hervet, O.; Williams, D.A.; Biteau, J. Normalization of the extragalactic background light from high-energy γ-ray observations. Astron. Astrophys. 2019, 627, A110. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Raue, M.; Mazin, D.; Horns, D. Limits on the extragalactic background light in the Fermi era. Astron. Astrophys. 2012, 542, A59. [Google Scholar] [CrossRef] [Green Version]
- Biteau, J.; Williams, D.A. The Extragalactic Background Light, the Hubble Constant, and Anomalies: Conclusions from 20 Years of TeV Gamma-ray Observations. Astrophys. J. 2015, 812, 60. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; et al. [HESS Collaboration] Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars. Astron. Astrophys. 2017, 606, A59. [Google Scholar]
- Abeysekara, A.U.; et al. [VERITAS Collaboration] Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS. Astrophys. J. 2019, 885, 150. [Google Scholar] [CrossRef]
- Acciari, V.A.; et al. [MAGIC Collaboration] Measurement of the extragalactic background light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z = 1. Mon. Not. R. Astron. Soc. 2019, 486, 4233–4251. [Google Scholar] [CrossRef]
- Desai, A.; Helgason, K.; Ajello, M.; Paliya, V.; Domínguez, A.; Finke, J.; Hartmann, D. A GeV-TeV Measurement of the Extragalactic Background Light. Astrophys. J. Lett. 2019, 874, L7. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Wojtak, R.; Finke, J.; Ajello, M.; Helgason, K.; Prada, F.; Desai, A.; Paliya, V.; Marcotulli, L.; Hartmann, D.H. A New Measurement of the Hubble Constant and Matter Content of the Universe Using Extragalactic Background Light γ-Ray Attenuation. Astrophys. J. 2019, 885, 137. [Google Scholar] [CrossRef] [Green Version]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension-a review of solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Franceschini, A.; Rodighiero, G. The extragalactic background light revisited and the cosmic photon-photon opacity. Astron. Astrophys. 2017, 603, A34. [Google Scholar] [CrossRef]
- Andrews, S.K.; Driver, S.P.; Davies, L.J.M.; del P. Lagos, C.; Robotham, A.S.G. Modelling the cosmic spectral energy distribution and extragalactic background light over all time. Mon. Not. R. Astron. Soc. 2018, 474, 898–916. [Google Scholar] [CrossRef] [Green Version]
- Khaire, V.; Srianand, R. New synthesis models of consistent extragalactic background light over cosmic time. Mon. Not. R. Astron. Soc. 2019, 484, 4174–4199. [Google Scholar] [CrossRef] [Green Version]
- van de Weygaert, R.; Schaap, W. The Cosmic Web: Geometric Analysis. In Data Analysis in Cosmology; Martínez, V.J., Saar, E., Martínez-González, E., Pons-Bordería, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 665, pp. 291–413. [Google Scholar]
- Vafin, S.; Rafighi, I.; Pohl, M.; Niemiec, J. The Electrostatic Instability for Realistic Pair Distributions in Blazar/EBL Cascades. Astrophys. J. 2018, 857, 43. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Broderick, A.E.; Pfrommer, C. The Cosmological Impact of Luminous TeV Blazars. II. Rewriting the Thermal History of the Intergalactic Medium. Astrophys. J. 2012, 752, 23. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, C.; Chang, P.; Broderick, A.E. The Cosmological Impact of Luminous TeV Blazars. III. Implications for Galaxy Clusters and the Formation of Dwarf Galaxies. Astrophys. J. 2012, 752, 24. [Google Scholar] [CrossRef] [Green Version]
- Lamberts, A.; Chang, P.; Pfrommer, C.; Puchwein, E.; Broderick, A.E.; Shalaby, M. Patchy Blazar Heating: Diversifying the Thermal History of the Intergalactic Medium. Astrophys. J. 2015, 811, 19. [Google Scholar] [CrossRef] [Green Version]
- Upton Sanderbeck, P.R.; D’Aloisio, A.; McQuinn, M.J. Models of the thermal evolution of the intergalactic medium after reionization. Mon. Not. R. Astron. Soc. 2016, 460, 1885–1897. [Google Scholar] [CrossRef] [Green Version]
- Biteau, J.; Prandini, E.; Costamante, L.; Lemoine, M.; Padovani, P.; Pueschel, E.; Resconi, E.; Tavecchio, F.; Taylor, A.; Zech, A. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat. Astron. 2020, 4, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Aharonian, F.; et al. [HESS Collaboration] New constraints on the mid-IR EBL from the HESS discovery of VHE γ-rays from 1ES 0229+200. Astron. Astrophys. 2007, 475, L9–L13. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; et al. [Cherenkov Telescope Array Consortium] Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation. J. Cosmol. Astropart. Phys. 2021, 2021, 048. [Google Scholar] [CrossRef]
- Ackermann, M.; et al. [Fermi-LAT Collaboration] The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. Astrophys. J. Suppl. Ser. 2018, 237, 32. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Tiede, P.; Chang, P.; Lamberts, A.; Pfrommer, C.; Puchwein, E.; Shalaby, M.; Werhahn, M. Missing Gamma-Ray Halos and the Need for New Physics in the Gamma-Ray Sky. Astrophys. J. 2018, 868, 87. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Chang, P.; Pfrommer, C. The Cosmological Impact of Luminous TeV Blazars. I. Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. Astrophys. J. 2012, 752, 22. [Google Scholar] [CrossRef]
- Jedamzik, K.; Saveliev, A. Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation. Phys. Rev. Lett. 2019, 123, 021301. [Google Scholar] [CrossRef] [Green Version]
- Pshirkov, M.S.; Tinyakov, P.G.; Urban, F.R. New Limits on Extragalactic Magnetic Fields from Rotation Measures. Phys. Rev. Lett. 2016, 116, 191302. [Google Scholar] [CrossRef] [Green Version]
- Doro, M.; Sánchez-Conde, M.A.; Hütten, M. Fundamental Physics Searches with IACTs. arXiv 2021, arXiv:2111.01198. [Google Scholar]
- Zavattini, E.; et al. [PVLAS Collaboration] Experimental Observation of Optical Rotation Generated in Vacuum by a Magnetic Field. Phys. Rev. Lett. 2006, 96, 110406. [Google Scholar] [CrossRef] [Green Version]
- Zavattini, E.; et al. [PVLAS Collaboration] New PVLAS results and limits on magnetically induced optical rotation and ellipticity in vacuum. Phys. Rev. D 2008, 77, 032006. [Google Scholar] [CrossRef] [Green Version]
- Ejlli, A.; Della Valle, F.; Gastaldi, U.; Messineo, G.; Pengo, R.; Ruoso, G.; Zavattini, G. The PVLAS experiment: A 25 year effort to measure vacuum magnetic birefringence. Phys. Rep. 2020, 871, 1–74. [Google Scholar] [CrossRef]
- Grifols, J.A.; Massó, E.; Toldrà, R. Gamma Rays from SN 1987A due to Pseudoscalar Conversion. Phys. Rev. Lett. 1996, 77, 2372–2375. [Google Scholar] [CrossRef] [Green Version]
- Brockway, J.W.; Carlson, E.D.; Raffelt, G.G. SN 1987A gamma-ray limits on the conversion of pseudoscalars. Phys. Lett. B 1996, 383, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Mirizzi, A.; Raffelt, G.G.; Serpico, P.D. Photon-axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion. Phys. Rev. D 2005, 72, 023501. [Google Scholar] [CrossRef] [Green Version]
- Östman, L.; Mörtsell, E. Limiting the dimming of distant type Ia supernovae. J. Cosmol. Astropart. Phys. 2005, 2005, 005. [Google Scholar] [CrossRef] [Green Version]
- Csáki, C.; Kaloper, N.; Peloso, M.; Terning, J. Super-GZK photons from photon-axion mixing. J. Cosmol. Astropart. Phys. 2003, 2003, 005. [Google Scholar] [CrossRef]
- Mirizzi, A.; Raffelt, G.G.; Serpico, P.D. Signatures of axionlike particles in the spectra of TeV gamma-ray sources. Phys. Rev. D 2007, 76, 023001. [Google Scholar] [CrossRef] [Green Version]
- Hochmuth, K.A.; Sigl, G. Effects of axion-photon mixing on gamma-ray spectra from magnetized astrophysical sources. Phys. Rev. D 2007, 76, 123011. [Google Scholar] [CrossRef] [Green Version]
- Simet, M.; Hooper, D.; Serpico, P.D. Milky Way as a kiloparsec-scale axionscope. Phys. Rev. D 2008, 77, 063001. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Roncadelli, M.; Galanti, G.; Bonnoli, G. Evidence for an axion-like particle from PKS 1222+216? Phys. Rev. D 2012, 86, 085036. [Google Scholar] [CrossRef] [Green Version]
- Mena, O.; Razzaque, S. Hints of an axion-like particle mixing in the GeV gamma-ray blazar data? J. Cosmol. Astropart. Phys. 2013, 2013, 023. [Google Scholar] [CrossRef] [Green Version]
- Meyer, M.; Montanino, D.; Conrad, J. On detecting oscillations of gamma rays into axion-like particles in turbulent and coherent magnetic fields. J. Cosmol. Astropart. Phys. 2014, 2014, 003. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Roncadelli, M.; Galanti, G. Photons to axion-like particles conversion in Active Galactic Nuclei. Phys. Lett. B 2015, 744, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Meyer, M.; Cotter, G. Relevance of jet magnetic field structure for blazar axionlike particle searches. Phys. Rev. D 2021, 103, 023008. [Google Scholar] [CrossRef]
- Zamaninasab, M.; Clausen-Brown, E.; Savolainen, T.; Tchekhovskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 2014, 510, 126–128. [Google Scholar] [CrossRef]
- Davies, J.; Meyer, M.; Cotter, G. Relevance of photon-photon dispersion within the jet for blazar axionlike particle searches. Phys. Rev. D 2021, 105, 023017. [Google Scholar] [CrossRef]
- Acharyya, A.; et al. [Cherenkov Telescope Array Consortium] Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre. J. Cosmol. Astropart. Phys. 2021, 2021, 057. [Google Scholar] [CrossRef]
- Ackermann, M.; et al. [Fermi-LAT Collaboration] Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Phys. Rev. Lett. 2015, 115, 231301. [Google Scholar] [CrossRef]
- O’Hare, C. Cajohare/AxionLimits: AxionLimits. 2020. Available online: https://10.5281/zenodo.3932430 (accessed on 1 December 2021).
- Horns, D.; Meyer, M. Indications for a pair-production anomaly from the propagation of VHE gamma-rays. J. Cosmol. Astropart. Phys. 2012, 2012, 033. [Google Scholar] [CrossRef] [Green Version]
- Feretti, L.; Giovannini, G.; Govoni, F.; Murgia, M. Clusters of galaxies: Observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 2012, 20, 54. [Google Scholar] [CrossRef]
- Abramowski, A.; et al. [HESS Collaboration] Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum. Phys. Rev. D 2013, 88, 102003. [Google Scholar] [CrossRef] [Green Version]
- Ajello, M.; et al. [Fermi-LAT Collaboration] Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116, 161101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liang, Y.F.; Li, S.; Liao, N.H.; Feng, L.; Yuan, Q.; Fan, Y.Z.; Ren, Z.Z. New bounds on axionlike particles from the Fermi Large Area Telescope observation of PKS 2155-304. Phys. Rev. D 2018, 97, 063009. [Google Scholar] [CrossRef] [Green Version]
- Malyshev, D.; Neronov, A.; Semikoz, D.; Santangelo, A.; Jochum, J. Improved limit on axion-like particles from gamma-ray data on Perseus cluster. arXiv 2018, arXiv:1805.04388. [Google Scholar]
- Gautham, A.P.; Calore, F.; Carenza, P.; Giannotti, M.; Horns, D.; Kuhlmann, J.; Majumdar, J.; Mirizzi, A.; Ringwald, A.; Sokolov, A.; et al. Reconciling hints on axion-like-particles from high-energy gamma rays with stellar bounds. J. Cosmol. Astropart. Phys. 2021, 2021, 036. [Google Scholar] [CrossRef]
- Cheng, J.G.; He, Y.J.; Liang, Y.F.; Lu, R.J.; Liang, E.W. Revisiting the analysis of axion-like particles with the Fermi-LAT gamma-ray observation of NGC1275. Phys. Lett. B 2021, 821, 136611. [Google Scholar] [CrossRef]
- Libanov, M.; Troitsky, S. On the impact of magnetic-field models in galaxy clusters on constraints on axion-like particles from the lack of irregularities in high-energy spectra of astrophysical sources. Phys. Lett. B 2020, 802, 135252. [Google Scholar] [CrossRef]
- de Angelis, A.; Roncadelli, M.; Mansutti, O. Evidence for a new light spin-zero boson from cosmological gamma-ray propagation? Phys. Rev. D 2007, 76, 121301. [Google Scholar] [CrossRef] [Green Version]
- de Angelis, A.; Mansutti, O.; Roncadelli, M. Axion-like particles, cosmic magnetic fields and gamma-ray astrophysics. Phys. Lett. B 2008, 659, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Mirizzi, A.; Montanino, D. Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields. J. Cosmol. Astropart. Phys. 2009, 2009, 004. [Google Scholar] [CrossRef] [Green Version]
- de Angelis, A.; Mansutti, O.; Persic, M.; Roncadelli, M. Photon propagation and the very high energy γ-ray spectra of blazars: How transparent is the Universe? Mon. Not. R. Astron. Soc. 2009, 394, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Montanino, D.; Vazza, F.; Mirizzi, A.; Viel, M. Enhancing the Spectral Hardening of Cosmic TeV Photons by Mixing with Axionlike Particles in the Magnetized Cosmic Web. Phys. Rev. Lett. 2017, 119, 101101. [Google Scholar] [CrossRef] [Green Version]
- Kartavtsev, A.; Raffelt, G.; Vogel, H. Extragalactic photon-ALP conversion at CTA energies. J. Cosmol. Astropart. Phys. 2017, 2017, 024. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Roncadelli, M. Extragalactic photon-axion-like particle oscillations up to 1000 TeV. J. High Energy Astrophys. 2018, 20, 1–17. [Google Scholar] [CrossRef]
- Meyer, M. Modelling gamma-ray-axion-like particle oscillations in turbulent magnetic fields: Relevance for observations with Cherenkov telescopes. arXiv 2014, arXiv:1412.2492. [Google Scholar]
- Sánchez-Conde, M.A.; Paneque, D.; Bloom, E.; Prada, F.; Domínguez, A. Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources. Phys. Rev. D 2009, 79, 123511. [Google Scholar] [CrossRef]
- de Angelis, A.; Galanti, G.; Roncadelli, M. Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D 2011, 84, 105030. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Sánchez-Conde, M.A.; Prada, F. Axion-like particle imprint in cosmological very-high-energy sources. J. Cosmol. Astropart. Phys. 2011, 2011, 020. [Google Scholar] [CrossRef]
- Meyer, M.; Horns, D. Impact of oscillations of photons into axion-like particles on the very-high energy gamma-ray spectrum of the blazar PKS1424+240. arXiv 2013, arXiv:1310.2058. [Google Scholar]
- Rubtsov, G.I.; Troitsky, S.V. Breaks in gamma-ray spectra of distant blazars and transparency of the Universe. Sov. J. Exp. Theor. Phys. Lett. 2014, 100, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Kohri, K.; Kodama, H. Axion-like particles and recent observations of the cosmic infrared background radiation. Phys. Rev. D 2017, 96, 051701. [Google Scholar] [CrossRef] [Green Version]
- Galanti, G.; Roncadelli, M.; De Angelis, A.; Bignami, G.F. Hint at an axion-like particle from the redshift dependence of blazar spectra. Mon. Not. R. Astron. Soc. 2020, 493, 1553–1564. [Google Scholar] [CrossRef]
- Meyer, M.; Horns, D.; Raue, M. First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations. Phys. Rev. D 2013, 87, 035027. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, A.; Ajello, M. Spectral Analysis of Fermi-LAT Blazars above 50 GeV. Astrophys. J. Lett. 2015, 813, L34. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, D.A.; Fegan, S.; Giebels, B. Evidence for a cosmological effect in γ-ray spectra of BL Lacertae. Astron. Astrophys. 2013, 554, A75. [Google Scholar] [CrossRef]
- Buehler, R.; Gallardo, G.; Maier, G.; Domínguez, A.; López, M.; Meyer, M. Search for the imprint of axion-like particles in the highest-energy photons of hard γ-ray blazars. J. Cosmol. Astropart. Phys. 2020, 2020, 027. [Google Scholar] [CrossRef]
- Jansson, R.; Farrar, G.R. A New Model of the Galactic Magnetic Field. Astrophys. J. 2012, 757, 14. [Google Scholar] [CrossRef]
- Wouters, D.; Brun, P. Anisotropy test of the axion-like particle Universe opacity effect: A case for the Cherenkov Telescope Array. J. Cosmol. Astropart. Phys. 2014, 2014, 016. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.; Laha, R.; Meyer, M. Diffuse axion-like particle searches. arXiv 2017, arXiv:1712.01839. [Google Scholar]
- Calore, F.; Carenza, P.; Eckner, C.; Fischer, T.; Giannotti, M.; Jaeckel, J.; Kotake, K.; Kuroda, T.; Mirizzi, A.; Sivo, F. 3D template-based Fermi-LAT constraints on axion-like particles. arXiv 2021, arXiv:2110.03679. [Google Scholar]
- Majumdar, J.; Calore, F.; Horns, D. Search for gamma-ray spectral modulations in Galactic pulsars. J. Cosmol. Astropart. Phys. 2018, 2018, 048. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.Q.; Zhang, C.; Liang, Y.F.; Feng, L.; Yuan, Q.; Fan, Y.Z.; Wu, J. Searching for spectral oscillations due to photon-axionlike particle conversion using the Fermi-LAT observations of bright supernova remnants. Phys. Rev. D 2018, 97, 063003. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.Q.; Liang, Y.F.; Feng, L.; Yuan, Q.; Fan, Y.Z.; Wu, J. Searching for the possible signal of the photon-axionlike particle oscillation in the combined GeV and TeV spectra of supernova remnants. Phys. Rev. D 2019, 100, 123004. [Google Scholar] [CrossRef] [Green Version]
- Anastassopoulos, V.; et al. [CAST Collaboration] New CAST limit on the axion-photon interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar]
- Payez, A.; Evoli, C.; Fischer, T.; Giannotti, M.; Mirizzi, A.; Ringwald, A. Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles. J. Cosmol. Astropart. Phys. 2015, 2015, 006. [Google Scholar] [CrossRef] [Green Version]
- Calore, F.; Carenza, P.; Giannotti, M.; Jaeckel, J.; Mirizzi, A. Bounds on axionlike particles from the diffuse supernova flux. Phys. Rev. D 2020, 102, 123005. [Google Scholar] [CrossRef]
- Bombaci, I.; Galanti, G.; Roncadelli, M. No axion-like particles from core-collapse supernovae? arXiv 2017, arXiv:1712.06205. [Google Scholar]
- Raffelt, G.G. Astrophysical Axion Bounds. In Axions; Kuster, M., Raffelt, G., Beltrán, B., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 741, p. 51. [Google Scholar]
- Cadamuro, D.; Redondo, J. Cosmological bounds on pseudo Nambu-Goldstone bosons. J. Cosmol. Astropart. Phys. 2012, 2012, 032. [Google Scholar] [CrossRef] [Green Version]
- Kalashev, O.E.; Kusenko, A.; Vitagliano, E. Cosmic infrared background excess from axionlike particles and implications for multimessenger observations of blazars. Phys. Rev. D 2019, 99, 023002. [Google Scholar] [CrossRef] [Green Version]
- Korochkin, A.; Neronov, A.; Semikoz, D. Search for decaying eV-mass axion-like particles using gamma-ray signal from blazars. J. Cosmol. Astropart. Phys. 2020, 2020, 064. [Google Scholar] [CrossRef] [Green Version]
- Korochkin, A.; Neronov, A.; Semikoz, D. Search for spectral features in extragalactic background light with gamma-ray telescopes. Astron. Astrophys. 2020, 633, A74. [Google Scholar] [CrossRef]
- Kifune, T. Invariance Violation Extends the Cosmic-Ray Horizon? Astrophys. J. Lett. 1999, 518, L21–L24. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F.W.; Glashow, S.L. New tests of Lorentz invariance following from observations of the highest energy cosmic /γ-rays. Astropart. Phys. 2001, 16, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Jacob, U.; Piran, T. Inspecting absorption in the spectra of extra-galactic gamma-ray sources for insight into Lorentz invariance violation. Phys. Rev. D 2008, 78, 124010. [Google Scholar] [CrossRef] [Green Version]
- Fairbairn, M.; Nilsson, A.; Ellis, J.; Hinton, J.; White, R. The CTA sensitivity to Lorentz-violating effects on the gamma-ray horizon. J. Cosmol. Astropart. Phys. 2014, 2014, 005. [Google Scholar] [CrossRef] [Green Version]
- Tavecchio, F.; Bonnoli, G. On the detectability of Lorentz invariance violation through anomalies in the multi-TeV γ-ray spectra of blazars. Astron. Astrophys. 2016, 585, A25. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, H.; et al. [HESS Collaboration] The 2014 TeV γ-Ray Flare of Mrk 501 Seen with H.E.S.S.: Temporal and Spectral Constraints on Lorentz Invariance Violation. Astrophys. J. 2019, 870, 93. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.G.; Martínez-Huerta, H.; de Souza, V. Improved limits on Lorentz invariance violation from astrophysical gamma-ray sources. Phys. Rev. D 2019, 99, 043015. [Google Scholar] [CrossRef] [Green Version]
- Guedes Lang, R.; Martínez-Huerta, H.; de Souza, V. Limits on the Lorentz Invariance Violation from UHECR Astrophysics. Astrophys. J. 2018, 853, 23. [Google Scholar] [CrossRef]
- Albert, J.; et al. [MAGIC Collaboration] Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope. Phys. Lett. B 2008, 668, 253–257. [Google Scholar] [CrossRef]
- Abramowski, A.; et al. [HESS Collaboration] Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944. Astropart. Phys. 2011, 34, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Acciari, V.A.; et al. [MAGIC Collaboration] Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature 2019, 575, 455–458. [Google Scholar]
- Abdalla, H.; et al. [HESS Collaboration] Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow. Science 2021, 372, 1081–1085. [Google Scholar]
- Acciari, V.A.; et al. [MAGIC Collaboration] MAGIC Observations of the Nearby Short Gamma-Ray Burst GRB 160821B. Astrophys. J. 2021, 908, 90. [Google Scholar] [CrossRef]
- Acciari, V.A.; et al. [MAGIC Collaboration] Bounds on Lorentz Invariance Violation from MAGIC Observation of GRB 190114C. Phys. Rev. Lett. 2020, 125, 021301. [Google Scholar] [CrossRef]
- Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Couturier, C.; Granot, J.; Stecker, F.W.; Cohen-Tanugi, J.; Longo, F. Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D 2013, 87, 122001. [Google Scholar] [CrossRef] [Green Version]
- Perennes, C.; Sol, H.; Bolmont, J. Modeling spectral lags in active galactic nucleus flares in the context of Lorentz invariance violation searches. Astron. Astrophys. 2020, 633, A143. [Google Scholar] [CrossRef]
- Pan, Y.; Qi, J.; Cao, S.; Liu, T.; Liu, Y.; Geng, S.; Lian, Y.; Zhu, Z.H. Model-independent Constraints on Lorentz Invariance Violation: Implication from Updated Gamma-Ray Burst Observations. Astrophys. J. 2020, 890, 169. [Google Scholar] [CrossRef] [Green Version]
- Du, S.S.; Lan, L.; Wei, J.J.; Zhou, Z.M.; Gao, H.; Jiang, L.Y.; Zhang, B.B.; Liu, Z.K.; Wu, X.F.; Liang, E.W. et al. Lorentz Invariance Violation Limits from the Spectral-lag Transition of GRB 190114C. Astrophys. J. 2021, 906, 8. [Google Scholar] [CrossRef]
- Agrawal, R.; Singirikonda, H.; Desai, S. Search for Lorentz Invariance Violation from stacked Gamma-Ray Burst spectral lag data. J. Cosmol. Astropart. Phys. 2021, 2021, 029. [Google Scholar] [CrossRef]
- Acharya, B.S.; et al. [Cherenkov Telescope Array Consortium] Science with the Cherenkov Telescope Array; World Scientific: Singapore, 2019. [Google Scholar] [CrossRef] [Green Version]
- Alves Batista, R.; Boncioli, D.; di Matteo, A.; van Vliet, A.; Walz, D. Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp. J. Cosmol. Astropart. Phys. 2015, 2015, 063. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; et al. [Pierre Auger Collaboration] Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV. Science 2017, 357, 1266–1270. [Google Scholar]
- Aab, A.; et al. [Pierre Auger Collaboration] An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources. Astrophys. J. Lett. 2018, 853, L29. [Google Scholar] [CrossRef]
- Vazza, F.; Locatelli, N.; Rajpurohit, K.; Banfi, S.; Domínguez-Fernández, P.; Wittor, D.; Angelinelli, M.; Inchingolo, G.; Brienza, M.; Hackstein, S.; et al. Magnetogenesis and the Cosmic Web: A joint challenge for radio observations and numerical simulations. Galaxies 2021, 9, 109. [Google Scholar] [CrossRef]
- Meyer, M.; Conrad, J. Sensitivity of the Cherenkov Telescope Array to the detection of axion-like particles at high gamma-ray opacities. J. Cosmol. Astropart. Phys. 2014, 2014, 016. [Google Scholar] [CrossRef] [Green Version]
- Budnev, N.; Astapov, I.; Bezyazeekov, P.; Bonvech, E.; Boreyko, V.; Borodin, A.; Brückner, M.; Bulan, A.; Chernov, D.; Chernykh, D.; et al. TAIGA—an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy in the Tunka valley. J. Instrum. 2020, 15, C09031. [Google Scholar] [CrossRef]
- Bai, X.; et al. [LHAASO Collaboration] The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper. arXiv 2019, arXiv:1905.02773. [Google Scholar]
- Liang, Y.F.; Zhang, X.F.; Cheng, J.G.; Zeng, H.D.; Fan, Y.Z.; Liang, E.W. Effect of axion-like particles on the spectrum of the extragalactic gamma-ray background. J. Cosmol. Astropart. Phys. 2021, 2021, 030. [Google Scholar] [CrossRef]
- Meyer, M.; Petrushevska, T.; Fermi-LAT Collaboration. Search for Axionlike-Particle-Induced Prompt γ -Ray Emission from Extragalactic Core-Collapse Supernovae with the Fermi Large Area Telescope. Phys. Rev. Lett. 2020, 124, 231101. [Google Scholar] [CrossRef] [PubMed]
- Farina, M.; Pappadopulo, D.; Rompineve, F.; Tesi, A. The photo-philic QCD axion. J. High Energy Phys. 2017, 2017, 95. [Google Scholar] [CrossRef] [Green Version]
- Di Luzio, L.; Gavela, B.; Quilez, P.; Ringwald, A. An even lighter QCD axion. J. High Energy Phys. 2021, 2021, 184. [Google Scholar] [CrossRef]
- Sokolov, A.V.; Ringwald, A. Photophilic hadronic axion from heavy magnetic monopoles. J. High Energy Phys. 2021, 2021, 123. [Google Scholar] [CrossRef]
- Meyer, M.; Davies, J.; Kuhlmann, J. gammaALPs: An open-source python package for computing photon-axion-like-particle oscillations in astrophysical environments. arXiv 2021, arXiv:2108.02061. [Google Scholar]
- Meyer, M.; Davies, J.; Kuhlmann, J. gammaALPs: Conversion Probability between Photons and Axions/Axionlike Particles. 2021. Available online: https://zenodo.org/record/4973513 (accessed on 1 December 2021).
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2018, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Kakuwa, J.; Murase, K.; Toma, K.; Inoue, S.; Yamazaki, R.; Ioka, K. Prospects for detecting gamma-ray bursts at very high energies with the Cherenkov Telescope Array. Mon. Not. R. Astron. Soc. 2012, 425, 514–526. [Google Scholar] [CrossRef]
- Gilmore, R.C.; Bouvier, A.; Connaughton, V.; Goldstein, A.; Otte, N.; Primack, J.R.; Williams, D.A. IACT observations of gamma-ray bursts: Prospects for the Cherenkov Telescope Array. Exp. Astron. 2013, 35, 413–457. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; et al. [Cherenkov Telescope Array Consortium] Gamma-ray burst science in the era of the Cherenkov Telescope Array. Astropart. Phys. 2013, 43, 252–275. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.M.; Qiao, B.Q.; Yao, Y.H.; Guo, Y.Q.; Hu, H.B.; Yao, Z.G. Prospective Annual Detection Rate of High-energy Gamma-Ray Bursts with LHAASO-WCDA. Astrophys. J. 2020, 900, 67. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biteau, J.; Meyer, M. Gamma-Ray Cosmology and Tests of Fundamental Physics. Galaxies 2022, 10, 39. https://doi.org/10.3390/galaxies10020039
Biteau J, Meyer M. Gamma-Ray Cosmology and Tests of Fundamental Physics. Galaxies. 2022; 10(2):39. https://doi.org/10.3390/galaxies10020039
Chicago/Turabian StyleBiteau, Jonathan, and Manuel Meyer. 2022. "Gamma-Ray Cosmology and Tests of Fundamental Physics" Galaxies 10, no. 2: 39. https://doi.org/10.3390/galaxies10020039
APA StyleBiteau, J., & Meyer, M. (2022). Gamma-Ray Cosmology and Tests of Fundamental Physics. Galaxies, 10(2), 39. https://doi.org/10.3390/galaxies10020039