The Blazar Sequence and Its Physical Understanding
Abstract
:1. Introduction: The Blazar Paradigm
- A supermassive black hole with a mass between 10 to 10, located in the center of an elliptical galaxy;
- A flow of mass feeding the black hole, named the accretion disk;
- Two highly collimated jets arising from the proximity of the central object and extending to several kpcs. Within the jet, there are regions where particles are accelerated to ultra-relativistic energies;
- In FSRQs, an obscuring torus of dust that surrounds the accretion disc.
2. Blazar Emission
2.1. Emission Models
- -
- One zone, leptonic [27], which considers that most (but not all) luminosity is produced in a well-defined zone at some distance from the central engine by relativistic electrons;
- -
- One zone, hadronic (e.g., [28]), which assumes that the relativistic protons are responsible for the emission, even if not directly (except for the proton–synchrotron model). Proton–proton collisions, or more likely, photo-hadronic interactions, can produce electron positron relativistic pairs that can then radiate;
- -
- Multi zone, either leptonic or hadronic (e.g., [29]), assumes that the particles are accelerated and radiate all along the jet in a more or less continuous way. These models consider that the density of the emitting particles and the magnetic field are a (power–law) function of the distance from the black hole. In these models, the jet geometry (paraboloidal or conical) plays a crucial role.
- The accretion regime is not radiatively efficient;
- This corresponds to a paucity of ionizing radiation, corresponding to the absence of broad emission lines;
- There is no molecular torus, as first suggested by Chiaberge et al. [33];
- All these properties can be understood if the accretion luminosity, in units of the Eddington one, is smaller than some critical value ().
2.2. Energy Budget
2.3. Key Observational Features
- Radio:
- The radio emission of blazars is dominated by the beamed jet emission, and only at the sub-GHz frequency is there an emergence of radiation produced in the extended structures, such as hot spots and lobes. The radio spectrum is flat, i.e., with a spectral index of around zero. This is due to the superposition of different jet zones self-absorbing at different frequencies. This was thought to be a “cosmic conspiracy” in the old days [36], but now it can be understood on the bases of simple conservation laws: the conservation of emitting particles along the jet demands that their density (where R is the distance from the start of the jet), while the conservation of the Poynting flux demands that the magnetic field . With these scalings, one derives a flat synchrotron radio spectrum and a self-absorption frequency . This implies that at smaller frequencies, the emitting region is larger and the flux is less rapidly variable.
- IR:
- In the IR band, we can have the contribution of the jet, and for FSRQs, of the molecular torus. For FSRQs, the sub-mm band is where the synchrotron peaks, and this corresponds to the self-absorption frequency of the innermost emitting region.
- Optical:
- In the optical band, we have the contribution of the jet continuum, and for FSRQs, of the low-frequency part of the accretion disk. This component usually dilutes the polarization of the synchrotron component. For low-power BL Lacs, we also have the contribution of the host galaxy.
- UV:
- For FSRQs in the UV band, we have the contribution of the steep tail of the synchrotron component and of the accretion disk, which becomes increasingly dominant as the total power increases. For BL Lacs, we only have the synchrotron emission: if the spectrum is rising (in ) we call these objects High-frequency peak BL Lacs (HBLs) or “blue” BL Lacs; if the spectrum is decreasing, we have a Low-frequency peak BL Lac (LBL) or “red” BL Lac. We note, however, that both FSRQ and LBL classes hold transitional objects with mixed properties whose classification is somehow arbitrary.
- X-ray:
- In FSRQs, the X-ray spectrum is increasing (in ) with a spectral index of around 0.5, generally flatter than what is expected for a thermal X-ray corona (for which ∼0.7–1). For BL Lacs, we can have a rising spectrum for LBLs, while in the case of HBLs, the spectrum can peak in the X-ray band.
- Gamma rays:
- In the -ray band, we have a contribution only from the non-thermal beamed component of the jet. In the sub-TeV band, the FSRQs usually show a steep (i.e., spectrum, while HBLs can have their high-energy peak there or even at larger energies. In the latter case, we call these objects “extreme” BL Lacs. At these energies, the Extra-galactic IR and optical Background Light (EBL) can absorb (through photon–photon collisions producing electron–positron pairs (e.g., see [37]) high-energy photons, making the observed spectrum decrease almost exponentially. Since the level of the EBL is still uncertain [38], detailed observations of blazars can help to fix it.
- Neutrinos:
3. The Blazar Sequence: Observational Approach
3.1. The Original Blazar Sequence
- -
- The radio luminosity strongly correlates with . In this study, the authors ruled out a possible bias due to z by performing detailed tests;
- -
- correlates with both and , which means that knowledge of either of the two indices allows for a first estimate of , at least in the range of 10–10 Hz;
- -
- also correlates strongly with the -ray dominance. This indicates that sources with a synchrotron peak at small frequencies are brighter -ray emitters.
3.2. The Fermi Blazar Sequence
3.3. The TeV Blazar Sequence
4. At the Extremes of the Blazar Sequence
4.1. Extreme TeV Blazars
4.2. MeV Blazars
5. The Blazar Sequence: Theoretical Approach
Physical Parameters
6. Criticisms of the Blazar Sequence
7. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, M. 3C 273: A Star-Like Object with Large Red-Shift. Nature 1963, 197, 1040. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. 2020, 247, 33. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef] [Green Version]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron Astrophys 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. ASP 1995, 107, 803. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Igumenshchev, I.V.; Abramowicz, M.A. Self-similar Accretion Flows with Convection. Astrophys. J. 2000, 539, 798–808. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Begelman, M.C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. RAS 1999, 303, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Garcia, M.R.; McClintock, J.E. Advection-dominated Accretion and Black Hole Event Horizons. Astrophys. J. Lett. 1997, 478, L79–L82. [Google Scholar] [CrossRef]
- Mahadevan, R. Scaling Laws for Advection-dominated Flows: Applications to Low-Luminosity Galactic Nuclei. Astrophys. J. 1997, 477, 585–601. [Google Scholar] [CrossRef] [Green Version]
- MAGIC Collaboration; Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; et al. Detection of the blazar S4 0954+65 at very-high-energy with the MAGIC telescopes during an exceptionally high optical state. Astron. Astrophys. 2018, 617, A30. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F. Gamma-Ray Astrophysics in the Time Domain. Galaxies 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. RAS 1998, 299, 433–448. [Google Scholar] [CrossRef]
- Bonnoli, G.; Ghisellini, G.; Foschini, L.; Tavecchio, F.; Ghirlanda, G. The γ-ray brightest days of the blazar 3C 454.3. Mon. Not. RAS 2011, 410, 368–380. [Google Scholar] [CrossRef]
- Tavecchio, F.; Maraschi, L.; Pian, E.; Chiappetti, L.; Celotti, A.; Fossati, G.; Ghisellini, G.; Palazzi, E.; Raiteri, C.M.; Sambruna, R.M.; et al. Theoretical Implications from the Spectral Evolution of Markarian 501 Observed with BeppoSAX. Astrophys. J. 2001, 554, 725–733. [Google Scholar] [CrossRef]
- Schonfelder, V.; Aarts, H.; Bennett, K.; Deboer, H.; Clear, J.; Collmar, W.; Connors, A.; Deerenberg, A.; Diehl, R.; Von Dordrecht, A.; et al. Instrument Description and Performance of the Imaging Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory. Astrophys. J. Suppl. 1993, 86, 657. [Google Scholar] [CrossRef]
- Thompson, D.J.; Bertsch, D.L.; Fichtel, C.E.; Hartman, R.C.; Hofstadter, R.; Hughes, E.B.; Hunter, S.D.; Hughlock, B.W.; Kanbach, G.; Kniffen, D.A.; et al. Calibration of the Energetic Gamma-Ray Experiment Telescope (EGRET) for the Compton Gamma-Ray Observatory. Astrophys. J. Suppl. 1993, 86, 629. [Google Scholar] [CrossRef]
- Giacconi, R. History of X-ray telescopes and astronomy. Exp. Astron. 2009, 25, 143–156. [Google Scholar] [CrossRef]
- Chadwick, P. 35 Years of Ground-Based Gamma-ray Astronomy. Universe 2021, 7, 432. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef] [Green Version]
- Bernlöhr, K.; Carrol, O.; Cornils, R.; Elfahem, S.; Espigat, P.; Gillessen, S.; Heinzelmann, G.; Hermann, G.; Hofmann, W.; Horns, D.; et al. The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes. Part I: Layout and components of the system. Astropart. Phys. 2003, 20, 111–128. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barcelo, M.; Barrio, J.A.; González, J.B.; Bednarek, W.; et al. The major upgrade of the MAGIC telescopes, Part I: The hardware improvements and the commissioning of the system. Astropart. Phys. 2016, 72, 61–75. [Google Scholar] [CrossRef] [Green Version]
- Holder, J.; Atkins, R.W.; Badran, H.M.; Blaylock, G.; Bradbury, S.M.; Buckley, J.H.; Byrum, K.L.; Carter-Lewis, D.A.; Celik, O.; Chow, Y.C.; et al. The first VERITAS telescope. Astropart. Phys. 2006, 25, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.E.; Fox, D.B.; Cowen, D.F.; Mészáros, P.; Tešić, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, A.; Jogesh Babu, G.; et al. The Astrophysical Multimessenger Observatory Network (AMON). Astropart. Phys. 2013, 45, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Möller, A.; Peloton, J.; Ishida, E.E.; Arnault, C.; Bachelet, E.; Blaineau, T.; Boutigny, D.; Chauhan, A.; Gangler, E.; Hernandez, F.; et al. FINK, a new generation of broker for the LSST community. Mon. Not. RAS 2021, 501, 3272–3288. [Google Scholar] [CrossRef]
- Ghisellini, G.; Maraschi, L.; Treves, A. Inhomogeneous synchrotron-self-compton models and the problem of relativistic beaming of BL Lac objects. Astron. Astrophys. 1985, 146, 204–212. [Google Scholar]
- Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A. Leptonic and Hadronic Modeling of Fermi-detected Blazars. Astrophys. J. 2013, 768, 54. [Google Scholar] [CrossRef] [Green Version]
- Potter, W.J.; Cotter, G. Synchrotron and inverse-Compton emission from blazar jets - IV. BL Lac type blazars and the physical basis for the blazar sequence. Mon. Not. RAS 2013, 436, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Giroletti, M.; Giovannini, G.; Feretti, L.; Cotton, W.D.; Edwards, P.G.; Lara, L.; Marscher, A.P.; Mattox, J.R.; Piner, B.G.; Venturi, T. Parsec-Scale Properties of Markarian 501. Astrophys. J. 2004, 600, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Grandi, P.; Torresi, E.; Stanghellini, C. The γ-Ray Emission Region in the Fanaroff-Riley II Radio Galaxy 3C 111. Astrophys. J. Lett. 2012, 751, L3. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Tavecchio, F.; Chiaberge, M. Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties. Astron. Astrophys. 2005, 432, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Chiaberge, M.; Capetti, A.; Celotti, A. The HST view of FR I radio galaxies: Evidence for non-thermal nuclear sources. Astron. Astrophys. 1999, 349, 77–87. [Google Scholar]
- Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemmen, R.S.; Georganopoulos, M.; Guiriec, S.; Meyer, E.T.; Gehrels, N.; Sambruna, R.M. A Universal Scaling for the Energetics of Relativistic Jets from Black Hole Systems. Science 2012, 338, 1445. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.D.; Wittels, J.J.; Shapiro, I.I.; Marcaide, J.; Owen, F.N.; Spangler, S.R.; Rius, A.; Angulo, C.; Clark, T.A.; Knight, C.A. The very flat radio spectrum of 0735 plus 178—A cosmic conspiracy. Astrophys. J. Lett. 1980, 238, L123–L128. [Google Scholar] [CrossRef]
- Stecker, F.W.; de Jager, O.C.; Salamon, M.H. TeV Gamma Rays from 3C 279: A Possible Probe of Origin and Intergalactic Infrared Radiation Fields. Astrophys. J. Lett. 1992, 390, L49. [Google Scholar] [CrossRef]
- Franceschini, A.; Rodighiero, G. The extragalactic background light revisited and the cosmic photon-photon opacity. Astron. Astrophys. 2017, 603, A34. [Google Scholar] [CrossRef]
- Stecker, F.W.; Done, C.; Salamon, M.H.; Sommers, P. High-energy neutrinos from active galactic nuclei. Phys. Rev. Lett. 1991, 66, 2697–2700. [Google Scholar] [CrossRef]
- Hughes, E.B.; Hofstadter, R.; Johansson, A.; Rolfe, J.; Bertsch, D.L.; Cruickshank, W.J.; Ehrmann, C.H.; Fichtel, C.E.; Hartman, R.C.; Kniffen, D.A. Characteristics of the telescope for high energy gamma-ray astronomy selected for definition studies on the Gamma Ray Observatory. IEEE Trans. Nucl. Sci. 1980, 27, 364–369. [Google Scholar] [CrossRef]
- Elvis, M.; Plummer, D.; Schachter, J.; Fabbiano, G. The Einstein Slew Survey. Astrophys. J. Suppl. 1992, 80, 257. [Google Scholar] [CrossRef]
- Kuehr, H.; Witzel, A.; Pauliny-Toth, I.I.K.; Nauber, U. A catalogue of extragalactic radio sources having flux densities greater than 1 Jy at 5 GHz. Astrophys. J. Suppl. 1981, 45, 367–430. [Google Scholar]
- Padovani, P.; Urry, C.M. Luminosity Functions, Relativistic Beaming, and Unified Theories of High-Luminosity Radio Sources. Astrophys. J. 1992, 387, 449. [Google Scholar] [CrossRef]
- Wall, J.V.; Peacock, J.A. Bright extragalactic radio sources at 2.7 GHz- III. The all-sky catalogue. Mon. Not. RAS 1985, 216, 173–192. [Google Scholar] [CrossRef] [Green Version]
- Donato, D.; Ghisellini, G.; Tagliaferri, G.; Fossati, G. Hard X-ray properties of blazars. Astron. Astrophys. 2001, 375, 739–751. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Righi, C.; Costamante, L.; Tavecchio, F. The Fermi blazar sequence. Mon. Not. RAS 2017, 469, 255–266. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. The blazar sequence: A new perspective. Mon. Not. RAS 2008, 387, 1669–1680. [Google Scholar] [CrossRef]
- Paiano, S.; Landoni, M.; Falomo, R.; Treves, A.; Scarpa, R.; Righi, C. On the Redshift of TeV BL Lac Objects. Astrophys. J. 2017, 837, 144. [Google Scholar] [CrossRef]
- Biteau, J.; Prandini, E.; Costamante, L.; Lemoine, M.; Padovani, P.; Pueschel, E.; Resconi, E.; Tavecchio, F.; Taylor, A.; Zech, A. Progress in unveiling extreme particle acceleration in persistent astrophysical jets. Nat. Astron. 2020, 4, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Tagliaferri, G.; Ghisellini, G.; Perri, M.; Hayashida, M.; Balokovic, M.; Covino, S.; Giommi, P.; Madejski, G.M.; Puccetti, S.; Sbarrato, T.; et al. NuSTAR and Multifrequency Study of the Two High-redshift Blazars S5 0836+710 and PKS 2149-306. Astrophys. J. 2015, 807, 167. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Bi, B.Y.; Bi, X.J.; Cao, Z.; Chen, S.Z.; Chen, Y.; Chiavassa, A.; Cui, X.H.; Dai, Z.G.; della Volpe, D.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper—2021 Edition. arXiv 2019, arXiv:1905.02773. [Google Scholar]
- Albert, A.; Alfaro, R.; Ashkar, H.; Alvarez, C.; Álvarez, J.; Arteaga-Velázquez, J.C.; Solares, H.A.; Arceo, R.; Bellido, J.A.; BenZvi, S.; et al. Science Case for a Wide Field-of-View Very-High-Energy Gamma-Ray Observatory in the Southern Hemisphere. arXiv 2019, arXiv:1902.08429. [Google Scholar]
- Pintore, F.; Giuliani, A.N.; Belfiore, A.; Paizis, A.D.; Mereghetti, S.; La Palombara, N.I.; Crestan, S.; Sidoli, L.; Lombardi, S.; D’Aì, A.N.; et al. Scientific prospects for a mini-array of ASTRI telescopes: A γ-ray TeV data challenge. J. High Energy Astrophys. 2020, 26, 83–94. [Google Scholar] [CrossRef]
- Cherenkov Telescope Array Consortium. Science with the Cherenkov Telescope Array; World Scientific. 2019. Available online: https://www.worldscientific.com/doi/pdf/10.1142/10986 (accessed on 5 December 2021).
- Costamante, L. TeV-peaked candidate BL Lac objects. Mon. Not. RAS 2020, 491, 2771–2778. [Google Scholar] [CrossRef] [Green Version]
- Sbarrato, T.; Ghisellini, G.; Giovannini, G.; Giroletti, M. Jetted radio-quiet quasars at z > 5. arXiv 2021, arXiv:2109.08156. [Google Scholar] [CrossRef]
- De Angelis, A.; Tatischeff, V.; Grenier, I.A.; McEnery, J.; Mallamaci, M.; Tavani, M.A.; Oberlack, U.; Hanlon, L.; Walter, R.; Argan, A.N.; et al. Science with e-ASTROGAM. A space mission for MeV-GeV gamma-ray astrophysics. J. High Energy Astrophys. 2018, 19, 1–106. [Google Scholar] [CrossRef]
- McEnery, J.; Barrio, J.A.; Agudo, I.; Ajello, M.; Álvarez, J.M.; Ansoldi, S.; Anton, S.; Auricchio, N.; Stephen, J.B.; Baldini, L.; et al. All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe. Bull. Am. Astron. Soc. 2019, 51, 245. [Google Scholar]
- Tomsick, J.; Zoglauer, A.; Sleator, C.; Lazar, H.; Beechert, J.; Boggs, S.; Roberts, J.; Siegert, T.; Lowell, A.; Wulf, E.; et al. The Compton Spectrometer and Imager. Bull. Am. Astron. Soc. 2019, 51, 98. [Google Scholar]
- Ghisellini, G.; Celotti, A.; Fossati, G.; Maraschi, L.; Comastri, A. A theoretical unifying scheme for gamma-ray bright blazars. Mon. Not. RAS 1998, 301, 451–468. [Google Scholar] [CrossRef] [Green Version]
- Celotti, A.; Ghisellini, G. The power of blazar jets. Mon. Not. RAS 2008, 385, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G.; Maraschi, L.; Celotti, A. General physical properties of bright Fermi blazars. Mon. Not. RAS 2010, 402, 497–518. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F. Fermi/LAT broad emission line blazars. Mon. Not. RAS 2015, 448, 1060–1077. [Google Scholar] [CrossRef]
- Costamante, L.; Cutini, S.; Tosti, G.; Antolini, E.; Tramacere, A. On the origin of gamma-rays in Fermi blazars: Beyond the broad-line region. Mon. Not. RAS 2018, 477, 4749–4767. [Google Scholar] [CrossRef]
- Poutanen, J.; Stern, B. GeV Breaks in Blazars as a Result of Gamma-ray Absorption within the Broad-line Region. Astrophys. J. Lett. 2010, 717, L118–L121. [Google Scholar] [CrossRef]
- Fan, J.H.; Yang, J.H.; Xiao, H.B.; Lin, C.; Constantin, D.; Luo, G.Y.; Pei, Z.Y.; Hao, J.M.; Mao, Y.W. Intrinsic Correlations for Flaring Blazars Detected by Fermi. Astrophys. J. Lett. 2017, 835, L38. [Google Scholar] [CrossRef] [Green Version]
- Nieppola, E.; Valtaoja, E.; Tornikoski, M.; Hovatta, T.; Kotiranta, M. Blazar sequence—An artefact of Doppler boosting. Astron. Astrophys. 2008, 488, 867–872. [Google Scholar] [CrossRef]
- Readhead, A.C.S. Equipartition Brightness Temperature and the Inverse Compton Catastrophe. Astrophys. J. 1994, 426, 51. [Google Scholar] [CrossRef]
- Potter, W.J.; Cotter, G. New constraints on the structure and dynamics of black hole jets. Mon. Not. RAS 2015, 453, 4070–4088. [Google Scholar] [CrossRef] [Green Version]
- Keenan, M.; Meyer, E.T.; Georganopoulos, M.; Reddy, K.; French, O.J. The relativistic jet dichotomy and the end of the blazar sequence. Mon. Not. RAS 2021, 505, 4726–4745. [Google Scholar] [CrossRef]
- Giommi, P.; Padovani, P.; Polenta, G.; Turriziani, S.; D’Elia, V.; Piranomonte, S. A simplified view of blazars: Clearing the fog around long-standing selection effects. Mon. Not. RAS 2012, 420, 2899–2911. [Google Scholar] [CrossRef]
- Merloni, A.; Predehl, P.; Becker, W.; Böhringer, H.; Boller, T.; Brunner, H.; Brusa, M.; Dennerl, K.; Freyberg, M.; Friedrich, P.; et al. eROSITA Science Book: Mapping the Structure of the Energetic Universe. arXiv 2012, arXiv:1209.3114. [Google Scholar]
- Rodrigues, X.; Fedynitch, A.; Gao, S.; Boncioli, D.; Winter, W. Neutrinos and Ultra-high-energy Cosmic-ray Nuclei from Blazars. Astrophys. J. 2018, 854, 54. [Google Scholar] [CrossRef]
- Murase, K.; Inoue, Y.; Dermer, C.D. Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar sequence. Phys. Rev. D 2014, 90, 023007. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Totani, T. The Blazar Sequence and the Cosmic Gamma-ray Background Radiation in the Fermi Era. Astrophys. J. 2009, 702, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Nandra, K.; Barret, D.; Barcons, X.; Fabian, A.; Herder, J.W.; Piro, L.; Watson, M.; Adami, C.; Aird, J.; Afonso, J.M.; et al. The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv 2013, arXiv:1306.2307. [Google Scholar]
- Braun, R.; Bourke, T.; Green, J.A.; Keane, E.; Wagg, J. Advancing Astrophysics with the Square Kilometre Array. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array (AASKA14), Giardini Naxos, Italy, 9–13 June 2014; p. 174. [Google Scholar]
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485–606. [Google Scholar] [CrossRef] [Green Version]
- Weisskopf, M.C.; Ramsey, B.; O’Dell, S.L.; Tennant, A.; Elsner, R.; Soffita, P.; Bellazzini, R.; Costa, E.; Kolodziejczak, J.; Kaspi, V.; et al. The Imaging X-ray Polarimetry Explorer (IXPE). In Proceedings of the Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, UK, 1–26 June 2016; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. den Herder, J.W.A., Takahashi, T., Bautz, M., Eds.; Volume 9905, p. 990517. [Google Scholar] [CrossRef] [Green Version]
Catalog | Sample | MeV-GeV | TeV |
---|---|---|---|
Detected | Detected | ||
X-ray BL Lac | 48 | 7 | 2 |
Radio BL Lac | 34 | 9 | 1 |
Radio FSRQ | 50 | 20 | 0 |
log [log(erg/s)] | [Hz] | [Hz] | CD | NAll | NFSRQ | NBL Lac |
---|---|---|---|---|---|---|
>48 | 15 | 49 | 47 (96%) | 2 | ||
47–48 | 4.8 | 202 | 177 (88%) | 25 | ||
46–47 | 2 | 182 | 144 (79%) | 38 | ||
45–46 | 0.6 | 174 | 52 (30%) | 122 | ||
44–45 | 0.35 | 111 | 19 (17%) | 92 | ||
<44 | 0.25 | 29 | 9 (31%) | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prandini, E.; Ghisellini, G. The Blazar Sequence and Its Physical Understanding. Galaxies 2022, 10, 35. https://doi.org/10.3390/galaxies10010035
Prandini E, Ghisellini G. The Blazar Sequence and Its Physical Understanding. Galaxies. 2022; 10(1):35. https://doi.org/10.3390/galaxies10010035
Chicago/Turabian StylePrandini, Elisa, and Gabriele Ghisellini. 2022. "The Blazar Sequence and Its Physical Understanding" Galaxies 10, no. 1: 35. https://doi.org/10.3390/galaxies10010035
APA StylePrandini, E., & Ghisellini, G. (2022). The Blazar Sequence and Its Physical Understanding. Galaxies, 10(1), 35. https://doi.org/10.3390/galaxies10010035