Association of oXiris® Therapy with Lower Vasopressor Requirements and Modulation of Hemodynamic, Inflammatory, and Perfusion Markers in Septic Shock: A Retrospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Temporal Evolution of Key Variables
3.3. Therapeutic Success Rates
3.4. Mortality Assessment
3.5. Analysis of Subgroups
3.6. Factors Associated with Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M.; for the Sepsis Definitions Task Force. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Arina, P.; Singer, M. Pathophysiology of sepsis. Curr. Opin. Anaesthesiol. 2021, 34, 77–84. [Google Scholar] [CrossRef]
- Kumar, A. An alternate pathophysiologic paradigm of sepsis and septic shock: Implications for optimizing antimicrobial therapy. Virulence 2014, 5, 80–97. [Google Scholar] [CrossRef]
- Vincent, J.L.; van der Poll, T.; Marshall, J.C. The End of “One Size Fits All” Sepsis Therapies: Toward an Individualized Approach. Biomedicines 2022, 10, 2260. [Google Scholar] [CrossRef]
- Antonucci, E.; Polo, T.; Giovini, M.; Girardis, M.; Martin-Loeches, I.; Nielsen, N.D.; Lozsán, F.J.C.; Ferrer, R.; Lakbar, I.; Leone, M. Refractory septic shock and alternative wordings: A systematic review of literature. J. Crit. Care 2023, 75, 154258. [Google Scholar] [CrossRef]
- Meresse, Z.; Medam, S.; Mathieu, C.; Duclos, G.; Vincent, J.L.; Leone, M. Vasopressors to treat refractory septic shock. Minerva Anestesiol. 2020, 86, 537–545. [Google Scholar] [CrossRef]
- Turani, F.; Barchetta, R.; Falco, M.; Busatti, S.; Weltert, L. Continuous Renal Replacement Therapy with the Adsorbing Filter oXiris in Septic Patients: A Case Series. Blood Purif. 2019, 47 (Suppl. 3), 54–58. [Google Scholar] [CrossRef] [PubMed]
- Ramasco, F.; Nieves-Alonso, J.; García-Villabona, E.; Vallejo, C.; Kattan, E.; Méndez, R. Challenges in Septic Shock: From New Hemodynamics to Blood Purification Therapies. J. Pers. Med. 2024, 14, 176. [Google Scholar] [CrossRef]
- Ramasco, F.; Aguilar, G.; Aldecoa, C.; Bakker, J.; Carmona, P.; Dominguez, D.; Galiana, M.; Hernández, G.; Kattan, E.; Olea, C.; et al. Towards the personalization of septic shock resuscitation: The fundamentals of ANDROMEDA-SHOCK-2 trial. Rev. Esp. Anestesiol. Reanim. 2024, 71, 112–124. [Google Scholar] [CrossRef]
- Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Pallavicini, F.M.B.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA 2009, 301, 2445–2452. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Villa, G.; Zaragoza, J.J.; Sharma, A.; Neri, M.; De Gaudio, A.R.; Ronco, C. Cytokine removal with high cut-off membrane: Review of literature. Blood Purif. 2014, 38, 167–173. [Google Scholar] [CrossRef]
- Ankawi, G.; Neri, M.; Zhang, J.; Breglia, A.; Ricci, Z.; Ronco, C. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: The promises and the pitfalls. Crit. Care 2018, 22, 262. [Google Scholar] [CrossRef]
- Broman, M.E.; Hansson, F.; Vincent, J.L.; Bodelsson, M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PLoS ONE 2019, 14, e0220444. [Google Scholar] [CrossRef]
- Monard, C.; Rimmelé, T.; Ronco, C. Extracorporeal Blood Purification Therapies for Sepsis. Blood Purif. 2019, 47 (Suppl. 3), 2–15. [Google Scholar] [CrossRef]
- Honore, P.M.; Jacobs, R.; Joannes-Boyau, O.; De Waele, E.; Van Gorp, V.; Boer, W.; Verfaillie, L.; Spapen, H.D. Newly designed CRRT membranes for sepsis and SIRS--a pragmatic approach for bedside intensivists summarizing the more recent advances: A systematic structured review. ASAIO J. 2013, 59, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, P.; Chang, K.; Yang, M.; Deng, N.; Chen, S.; Su, B. Effect of Continuous Renal Replacement Therapy with the oXiris Hemofilter on Critically Ill Patients: A Narrative Review. J. Clin. Med. 2022, 11, 6719. [Google Scholar] [CrossRef] [PubMed]
- Schwindenhammer, V.; Girardot, T.; Chaulier, K.; Gregroire, A.; Monard, C.; Huriaux, L.; Illinger, J.; Leray, V.; Uberti, T.; Crozon-Clauzel, J.; et al. oXiris® Use in Septic Shock: Experience of Two French Centres. Blood Purif. 2019, 47 (Suppl. 3), 29–35. [Google Scholar] [CrossRef]
- Malard, B.; Hulko, M.; Koch, J.; Speidel, R.; Pouchoulin, D.; Echeverri, J.; Yessayan, L. Comparison of Different Membranes for Continuous Renal Replacement Therapies: An In Vitro Study. ASAIO J. 2025, 71, 510–518. [Google Scholar] [CrossRef]
- Mielnicki, W.; Dyla, A.; Zając, M.; Rokicka-Demitraszek, N.; Smereka, J. Does Continuous Renal Replacement Therapy with oXiris in Septic Shock Have Any Positive Impact? Single-Centre Experience with oXiris Therapy in Septic Shock Patients. J. Clin. Med. 2024, 13, 7527. [Google Scholar] [CrossRef]
- Leli, C.; Ferranti, M.; Moretti, A.; Al Dhahab, Z.S.; Cenci, E.; Mencacci, A. Procalcitonin levels in gram-positive, gram-negative, and fungal bloodstream infections. Dis. Markers 2015, 2015, 701480. [Google Scholar] [CrossRef]
- Gómez, N.F.P.; Del Pilar Sanz Martín, M.; Chong, M.A.S.; Cruz, N.D.Z.; Hernández, R.M.; Molina, I.G.; Sanz, I.G.; Tejerina, A.F.; Rueda, F.R. Usefulness of Procalcitonin Levels for Predicting the Microbiological Orientation in Patients with Sepsis. J. Pers. Med. 2024, 14, 208. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, C.; Ouyang, L.; Peng, Y.; Zhong, D.; Xiang, X.; Li, J. Application of oXiris-continuous hemofiltration adsorption in patients with sepsis and septic shock: A single-centre experience in China. Front. Public Health 2022, 10, 1012998. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, J.C.; Chiscano-Camón, L.; Bajaña, I.; Ruiz-Sanmartin, A.; Bastidas, J.; Maldonado, C.; Nicolás-Morales, P.; Cantenys-Molina, S.; González, J.J.; Larrosa, N.; et al. Endotoxin hemoadsorption in refractory septic shock with multiorgan dysfunction and extreme endotoxin activity. Crit. Care 2025, 29, 206. [Google Scholar] [CrossRef] [PubMed]
- He, S.Q.; Lou, J.; Li, Y.S.; Dou, Y.N.; Yang, L. Efficacy and prognostic analysis of the oXiris® filter in sepsis-associated acute kidney injury. Int. Urol. Nephrol. 2025, 57, 3387–3397. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; He, Y.; Guo, Q.; Zhao, Y.; He, J.; Chen, Y.; Chen, W.; Zhou, Y.; Peng, Z.; Deng, K.; et al. Continuous renal replacement therapy with the adsorptive oXiris filter may be associated with the lower 28-day mortality in sepsis: A systematic review and meta-analysis. Crit. Care 2023, 27, 275. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dong, Q.; Su, J.; Xiao, H.; Zan, D.; Chen, J.; Chen, X.; Wei, F.; Zeng, C.; Yong, Y. Clinical efficacy of oXiris-continuous hemofiltration adsorption in septic shock patients: A retrospective analysis. Med. Intensiv. 2025, 49, 135–144. [Google Scholar] [CrossRef]
- Hu, T.; Lv, H.; Jiang, Y. The association between four scoring systems and 30-day mortality among intensive care patients with sepsis: A cohort study. Sci. Rep. 2021, 11, 11214. [Google Scholar] [CrossRef]
- Grimaldi, D.; Vincent, J.L. Clinical trial research in focus: Rethinking trials in sepsis. Lancet Respir. Med. 2017, 5, 610–611. [Google Scholar] [CrossRef]
- Forni, L.G. Blood Purification Studies in the ICU: What Endpoints Should We Use? Blood Purif. 2022, 51, 990–996. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, R.; Espigares-López, M.I.; Miralles-Aguiar, F.; Gámiz-Sánchez, R.; Arroyo Fernández, F.J.; Pernia Romero, A.; Torres, L.; Seoane, E.C. Immunomodulation using CONVEHY® for COVID-19: From the storm to the cytokine anticyclone. Rev. Esp. Anestesiol. Reanim. 2021, 68, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cove, M.; Nguyen, B.G.; Lumlertgul, N.; Ganesh, K.; Chan, A.; Bui, G.T.H.; Guo, C.; Li, J.; Liu, S.; et al. Adsorptive hemofiltration for sepsis management: Expert recommendations based on the Asia Pacific experience. Chin. Med. J. 2021, 134, 2258–2260. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Z.; Gao, J.; Liu, Y.; Zhu, B.; Gao, Y.; Zhuang, Y.; Zhu, M. A multicentre, randomised controlled clinical trial evaluating the effect of the adsorptive filter oXiris on haemodynamics in abdominal septic shock patients requiring continuous renal replacement therapy (Oxiris for Abdominal SEptic Shock study). BMJ Open 2025, 15, e094792. [Google Scholar] [CrossRef]
- Ronco, C.; Chawla, L.; Husain-Syed, F.; Kellum, J.A. Rationale for sequential extracorporeal therapy (SET) in sepsis. Crit. Care 2023, 27, 50. [Google Scholar] [CrossRef]

| Variable | Abdominal Source (Median [IQR]) | Non-Abdominal Source (Median [IQR]) | p-Value |
|---|---|---|---|
| Age (years) | 71.00 [63.50–79.00] (n = 32) | 71.00 [68.00–76.25] (n = 13) | 0.9900 |
| CCI | 6.00 [2.50–7.00] (n = 32) | 5.00 [3.75–6.25] (n = 13) | 0.6316 |
| SBP at T0 (mmHg) | 100.00 [90.00–110.00] (n = 32) | 100.00 [95.00–120.00] (n = 13) | 0.5362 |
| DBP at T0 (mmHg) | 50.00 [43.50–54.00] (n = 32) | 45.00 [40.00–46.25] (n = 13) | 0.1113 |
| MAP at T0 (mmHg) | 65.84 [59.67–70.00] (n = 32) | 61.67 [60.00–73.33] (n = 13) | 0.8211 |
| P/F Ratio at T0 | 244.00 [188.00–299.00] (n = 32) | 232.00 [196.75–280.50] (n = 13) | 0.9401 |
| Creatinine at T0 (mg/dL) | 1.79 [1.06–2.47] (n = 32) | 1.87 [1.52–2.73] (n = 13) | 0.4156 |
| Arterial Lactate at T0 (mmol/L) | 2.85 [1.85–5.30] (n = 32) | 2.30 [1.00–3.42] (n = 13) | 0.1172 |
| Procalcitonin at T0 (ng/mL) | 6.57 [2.02–14.47] (n = 29) | 14.00 [0.81–71.02] (n = 13) | 0.9025 |
| proBNP at T0 (pg/mL) | 1654.00 [788.50–3862.75] (n = 3) | 5032.00 [2052.25–23008.00] (n = 3) | 0.4000 |
| Urea at T0 (mg/dL) | 61.50 [54.00–105.00] (n = 30) | 87.00 [45.75–109.75] (n = 13) | 0.7609 |
| SAPS II | 46.00 [34.50–57.00] (n = 32) | 47.00 [37.00–56.25] (n = 13) | 0.7828 |
| Predicted Mortality (%) | 36.93 [15.97–61.93] (n = 32) | 39.19 [19.64–60.30] (n = 13) | 0.7828 |
| SOFA at T0 | 9.00 [7.00–10.50] (n = 32) | 8.00 [5.75–9.25] (n = 13) | 0.2353 |
| Norepinephrine at T0 (mcg/kg/min) | 0.52 [0.30–0.95] (n = 32) | 0.42 [0.12–0.85] (n = 13) | 0.3667 |
| Variable | T0 Median [IQR] | T1 Median [IQR] | T2 Median [IQR] | p-Value |
|---|---|---|---|---|
| SBP (mmHg) | 100.00 [90.00–110.00] (n = 45) | 110.00 [99.50–119.25] (n = 45) | 115.00 [103.75–120.00] (n = 45) | 0.00019 |
| DBP (mmHg) | 45.00 [40.00–50.75] (n = 45) | 50.00 [45.00–59.25] (n = 45) | 55.00 [48.00–60.00] (n = 45) | 0.00467 |
| MAP (mmHg) | 63.33 [60.00–70.83] (n = 45) | 70.00 [63.25–75.67] (n = 45) | 73.00 [68.67–80.00] (n = 45) | <0.00001 |
| P/F Ratio | 232.00 [189.25–298.50] (n = 45) | 290.00 [233.50–311.50] (n = 45) | 300.00 [201.50–333.25] (n = 45) | 0.15031 |
| Creatinine (mg/dL) | 1.87 [1.25–2.55] (n = 45) | 1.48 [1.04–2.05] (n = 45) | 1.22 [0.83–1.53] (n = 45) | <0.00001 |
| Arterial Lactate (mmol/L) | 2.60 [1.48–5.05] (n = 45) | 1.80 [1.40–3.73] (n = 45) | 1.50 [1.20–2.50] (n = 45) | <0.00001 |
| Procalcitonin (ng/mL) | 4.10 [1.36–25.81] (n = 33) | 6.85 [1.01–31.44] (n = 33) | 4.50 * [0.84–21.50] (n = 33) | 0.00082 |
| Urea (mg/dL) | 71.00 [48.75–105.00] (n = 43) | 49.00 [40.00–76.00] (n = 43) | 45.00 [27.00–53.75] (n = 43) | <0.00001 |
| SOFA Score | 9.00 [7.00–10.00] (n = 45) | 8.00 [6.00–10.00] (n = 45) | 8.00 [6.00–10.25] (n = 45) | 0.19790 |
| Norepinephrine (mcg/kg/min) | 0.50 [0.29–0.93] (n = 45) | 0.31 [0.08–0.60] (n = 45) | 0.19 [0.05–0.37] (n = 45) | <0.00001 |
| Parameter | Time Point | Criterion Definition | Overall Success (N, %) | Success Abdominal Source (N, %) | Success Non-Abdominal Source (N, %) | p-Value |
|---|---|---|---|---|---|---|
| Norepinephrine Dose | T1 | ≥30% reduction at 24 h | 26 (57.8%) | 18 (56.2%) | 8 (61.5%) | 0.7475 |
| T2 | ≥30% reduction at 48 h | 28 (62.2%) | 21 (65.6%) | 7 (53.8%) | 0.4651 | |
| Lactate Levels | T1 | ≥20% reduction at 24 h | 20 (44.4%) | 16 (50.0%) | 4 (30.8%) | 0.2446 |
| T2 | ≥40% reduction at 48 h | 18 (40.0%) | 15 (46.9%) | 3 (23.1%) | 0.1442 |
| Source of Infection | Number of Cases (N) | 30-Day Mortality (Yes) N (%) | Survival (No) N (%) | p-Value |
|---|---|---|---|---|
| Total Population | 45 | 12 (26.7%) | 33 (73.3%) | N/A |
| Abdominal Source | 32 | 11 (34.4%) | 21 (65.6%) | 0.0697 |
| Non-Abdominal Source | 13 | 1 (7.7%) | 12 (92.3%) |
| Source of Infection | Number of Cases (N) | Mortality (Yes) N (%) | Survival (No) N (%) | p-Value |
|---|---|---|---|---|
| Total Population | 45 | 14 (31.1%) | 31 (68.9%) | N/A |
| Abdominal Source | 32 | 13 (40.6%) | 19 (59.4%) | 0.0325 |
| Non-Abdominal Source | 13 | 1 (7.7%) | 12 (92.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhshaliyeva, N.; Ramasco Rueda, F.; Estiragués Barreiro, A.; Olmos Alonso, M.Á. Association of oXiris® Therapy with Lower Vasopressor Requirements and Modulation of Hemodynamic, Inflammatory, and Perfusion Markers in Septic Shock: A Retrospective Cohort Study. J. Pers. Med. 2025, 15, 626. https://doi.org/10.3390/jpm15120626
Bakhshaliyeva N, Ramasco Rueda F, Estiragués Barreiro A, Olmos Alonso MÁ. Association of oXiris® Therapy with Lower Vasopressor Requirements and Modulation of Hemodynamic, Inflammatory, and Perfusion Markers in Septic Shock: A Retrospective Cohort Study. Journal of Personalized Medicine. 2025; 15(12):626. https://doi.org/10.3390/jpm15120626
Chicago/Turabian StyleBakhshaliyeva, Nazrin, Fernando Ramasco Rueda, Ana Estiragués Barreiro, and Miguel Ángel Olmos Alonso. 2025. "Association of oXiris® Therapy with Lower Vasopressor Requirements and Modulation of Hemodynamic, Inflammatory, and Perfusion Markers in Septic Shock: A Retrospective Cohort Study" Journal of Personalized Medicine 15, no. 12: 626. https://doi.org/10.3390/jpm15120626
APA StyleBakhshaliyeva, N., Ramasco Rueda, F., Estiragués Barreiro, A., & Olmos Alonso, M. Á. (2025). Association of oXiris® Therapy with Lower Vasopressor Requirements and Modulation of Hemodynamic, Inflammatory, and Perfusion Markers in Septic Shock: A Retrospective Cohort Study. Journal of Personalized Medicine, 15(12), 626. https://doi.org/10.3390/jpm15120626

