The Neuro-Ophthalmologic Manifestations of SPG7-Associated Disease
Abstract
1. Introduction
2. Hereditary Spastic Paraplegias: Clinical and Diagnostic Overview
3. SPG7-Associated HSP
4. Neuro-Ophthalmologic Findings
4.1. Afferent Visual System
4.2. Efferent Visual System
5. Other Mitochondria-Associated Nuclear Genes with Neuro-Ophthalmologic Manifestations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koppen, M.; Metodiev, M.D.; Casari, G.; Rugarli, E.I.; Langer, T. Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol. Cell Biol. 2007, 27, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, D.; Lazzaro, F.; Brusco, A.; Plumari, M.; Battaglia, G.; Pastore, A.; Finardi, A.; Cagnoli, C.; Tempia, F.; Frontali, M.; et al. Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat. Genet. 2010, 42, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Sacco, T.; Boda, E.; Hoxha, E.; Pizzo, R.; Cagnoli, C.; Brusco, A.; Tempia, F. Mouse brain expression patterns of Spg7, Afg3l1, and Afg3l2 transcripts, encoding for the mitochondrial m-AAA protease. BMC Neurosci. 2010, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Atorino, L.; Silvestri, L.; Koppen, M.; Cassina, L.; Ballabio, A.; Marconi, R.; Langer, T.; Casari, G. Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell Biol. 2003, 163, 777–787. [Google Scholar] [CrossRef]
- De Michele, G.; De Fusco, M.; Cavalcanti, F.; Filla, A.; Marconi, R.; Volpe, G.; Monticelli, A.; Ballabio, A.; Casari, G.; Cocozza, S. A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am. J. Hum. Genet. 1998, 63, 135–139. [Google Scholar] [CrossRef]
- Bogdanova-Mihaylova, P.; Chen, H.; Plapp, H.M.; Gorman, C.; Alexander, M.D.; McHugh, J.C.; Moran, S.; Early, A.; Cassidy, L.; Lynch, T.; et al. Neurophysiological and ophthalmological findings of SPG7-related spastic ataxia: A phenotype study in an Irish cohort. J. Neurol. 2021, 268, 3897–3907. [Google Scholar] [CrossRef]
- Klebe, S.; Depienne, C.; Gerber, S.; Challe, G.; Anheim, M.; Charles, P.; Fedirko, E.; Lejeune, E.; Cottineau, J.; Brusco, A.; et al. Spastic paraplegia gene 7 in patients with spasticity and/or optic neuropathy. Brain 2012, 135 Pt 10, 2980–2993. [Google Scholar] [CrossRef]
- Pfeffer, G.; Gorman, G.S.; Griffin, H.; Kurzawa-Akanbi, M.; Blakely, E.L.; Wilson, I.; Sitarz, K.; Moore, D.; Murphy, J.L.; Alston, C.L.; et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 2014, 137 Pt 5, 1323–1336. [Google Scholar] [CrossRef]
- McDermott, C.J.; Dayaratne, R.K.; Tomkins, J.; Lusher, M.E.; Lindsey, J.C.; Johnson, M.A.; Casari, G.; Turnbull, D.M.; Bushby, K.; Shaw, P.J. Paraplegin gene analysis in hereditary spastic paraparesis (HSP) pedigrees in northeast England. Neurology 2001, 56, 467–471. [Google Scholar] [CrossRef]
- Panza, E.; Meyyazhagan, A.; Orlacchio, A. Hereditary spastic paraplegia: Genetic heterogeneity and common pathways. Exp. Neurol. 2022, 357, 114203. [Google Scholar] [CrossRef]
- Saputra, L.; Kumar, K.R. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr. Neurol. Neurosci. Rep. 2021, 21, 15. [Google Scholar] [CrossRef]
- Casari, G.; De Fusco, M.; Ciarmatori, S.; Zeviani, M.; Mora, M.; Fernandez, P.; De Michele, G.; Filla, A.; Cocozza, S.; Marconi, R.; et al. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998, 93, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Salinas, S.; Proukakis, C.; Crosby, A.; Warner, T.T. Hereditary spastic paraplegia: Clinical features and pathogenetic mechanisms. Lancet Neurol. 2008, 7, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, N.; Depienne, C.; Benomar, A.; Hernandez, A.M.; Ferrer, X.; Fontaine, B.; Grid, D.; Tallaksen, C.M.; Zemmouri, R.; Stevanin, G.; et al. Mutation analysis of the paraplegin gene (SPG7) in patients with hereditary spastic paraplegia. Neurology 2006, 66, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.W.; Schaefer, A.M.; Barron, M.J.; McFarland, R.; Turnbull, D.M. The diagnosis of mitochondrial muscle disease. Neuromuscul. Disord. 2004, 14, 237–245. [Google Scholar] [CrossRef]
- Casari, G.; Marconi, R. Spastic Paraplegia 7. In GeneReviews (®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Hedera, P. Uncomplicated (Pure) Hereditary Spastic Paraplegia Overview. In GeneReviews (®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Sánchez-Ferrero, E.; Coto, E.; Beetz, C.; Gámez, J.; Corao, A.I.; Díaz, M.; Esteban, J.; del Castillo, E.; Moris, G.; Infante, J.; et al. SPG7 mutational screening in spastic paraplegia patients supports a dominant effect for some mutations and a pathogenic role for p.A510V. Clin. Genet. 2013, 83, 257–262. [Google Scholar] [CrossRef]
- Méreaux, J.L.; Banneau, G.; Papin, M.; Coarelli, G.; Valter, R.; Raymond, L.; Kol, B.; Ariste, O.; Parodi, L.; Tissier, L.; et al. Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 2022, 145, 1029–1037. [Google Scholar] [CrossRef]
- Erfanian Omidvar, M.; Torkamandi, S.; Rezaei, S.; Alipoor, B.; Omrani, M.D.; Darvish, H.; Ghaedi, H. Genotype-phenotype associations in hereditary spastic paraplegia: A systematic review and meta-analysis on 13,570 patients. J. Neurol. 2021, 268, 2065–2082. [Google Scholar] [CrossRef]
- Coarelli, G.; Schule, R.; van de Warrenburg, B.P.C.; De Jonghe, P.; Ewenczyk, C.; Martinuzzi, A.; Synofzik, M.; Hamer, E.G.; Baets, J.; Anheim, M.; et al. Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with SPG7. Neurology 2019, 92, e2679–e2690. [Google Scholar] [CrossRef]
- Hewamadduma, C.A.; Hoggard, N.; O’Malley, R.; Robinson, M.K.; Beauchamp, N.J.; Segamogaite, R.; Martindale, J.; Rodgers, T.; Rao, G.; Sarrigiannis, P.; et al. Novel genotype-phenotype and MRI correlations in a large cohort of patients with SPG7 mutations. Neurol. Genet. 2018, 4, e279. [Google Scholar] [CrossRef]
- Marcotulli, C.; Leonardi, L.; Tessa, A.; De Negris, A.M.; Cornia, R.; Pierallini, A.; Haggiag, S.; Pierelli, F.; Santorelli, F.M.; Casali, C. Early-onset optic neuropathy as initial clinical presentation in SPG7. J. Neurol. 2014, 261, 1820–1821. [Google Scholar] [CrossRef]
- Eriksen, K.O.; Wigers, A.R.; Wedding, I.M.; Erichsen, A.K.; Baroy, T.; Soberg, K.; Jorstad, O.K. A novel homozygous variant in the SPG7 gene presenting with childhood optic nerve atrophy. Am. J. Ophthalmol. Case Rep. 2022, 26, 101400. [Google Scholar] [CrossRef]
- Charif, M.; Chevrollier, A.; Gueguen, N.; Bris, C.; Goudenege, D.; Desquiret-Dumas, V.; Leruez, S.; Colin, E.; Meunier, A.; Vignal, C.; et al. Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy. Neurol. Genet. 2020, 6, e428. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.A.; Ko, M.W.; Mackay, D.D.; Bursztyn, L.; Grossman, S.N. Spastic Paraplegia Type 7-Associated Optic Neuropathy: A Case Series. J. Neuroophthalmol. 2024, 44, 488–496. [Google Scholar] [CrossRef]
- Jauregui, R.; Abreu, N.J.; Golan, S.; Panarelli, J.F.; Sigireddi, M.; Nayak, G.K.; Gold, D.M.; Rucker, J.C.; Galetta, S.L.; Grossman, S.N. Neuro-Ophthalmologic Variability in Presentation of Genetically Confirmed Wolfram Syndrome: A Case Series and Review. Brain Sci. 2023, 13, 1030. [Google Scholar] [CrossRef] [PubMed]
- Newman, N.J. Hereditary optic neuropathies: From the mitochondria to the optic nerve. Am. J. Ophthalmol. 2005, 140, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Ehses, S.; Raschke, I.; Mancuso, G.; Bernacchia, A.; Geimer, S.; Tondera, D.; Martinou, J.C.; Westermann, B.; Rugarli, E.I.; Langer, T. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 2009, 187, 1023–1036. [Google Scholar] [CrossRef]
- Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, P.; Li, S.; Long, Y.; Jiang, Y.; Guo, D.; Jia, X.; Liu, M.; Zeng, Y.; Xiao, X.; et al. Clinical and genetic landscape of optic atrophy in 826 families: Insights from 50 nuclear genes. Brain 2024, 148, 1604–1620. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Griffiths, P.G.; Chinnery, P.F. Mitochondrial optic neuropathies—Disease mechanisms and therapeutic strategies. Prog. Retin. Eye Res. 2011, 30, 81–114. [Google Scholar] [CrossRef]
- Fortuna, F.; Barboni, P.; Liguori, R.; Valentino, M.L.; Savini, G.; Gellera, C.; Mariotti, C.; Rizzo, G.; Tonon, C.; Manners, D.; et al. Visual system involvement in patients with Friedreich’s ataxia. Brain 2009, 132, 116–123. [Google Scholar] [CrossRef]
- Rouzier, C.; Bannwarth, S.; Chaussenot, A.; Chevrollier, A.; Verschueren, A.; Bonello-Palot, N.; Fragaki, K.; Cano, A.; Pouget, J.; Pellissier, J.F.; et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain 2012, 135, 23–34. [Google Scholar] [CrossRef]
- Pfeffer, G.; Pyle, A.; Griffin, H.; Miller, J.; Wilson, V.; Turnbull, L.; Fawcett, K.; Sims, D.; Eglon, G.; Hadjivassiliou, M.; et al. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology 2015, 84, 1174–1176. [Google Scholar] [CrossRef]
- Shemesh, A.A.; Zee, D.S. Eye Movement Disorders and the Cerebellum. J. Clin. Neurophysiol. 2019, 36, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, A.; Zee, D.S. Cerebellum and ocular motor control. Front. Neurol. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Shaikh, A.G. Acquired pendular nystagmus. J. Neurol. Sci. 2017, 375, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Hickman, J.L.; Lafreniere, M.; Bennett, J.L.; Forbes, E.; Feuerstein, J. Periodic Alternating Nystagmus, Ataxia, and Spasticity: A Unique Presentation of Spastic Paraplegia 7-Related Hereditary Spastic Paraplegia. Mov. Disord. Clin. Pract. 2024, 11, 441–443. [Google Scholar] [CrossRef]
- Jauregui, R.; Bhagat, D.; Garcia, M.R.; Miller, C.; Grossman, S.N. Treatment of Periodic Alternating Nystagmus as a Consequence of Ataxia-Telangiectasia. J. Neuroophthalmol. 2024, 44, e151–e152. [Google Scholar] [CrossRef]
- Hirano, M.; Pitceathly, R.D.S. Progressive external ophthalmoplegia. Handb. Clin. Neurol. 2023, 194, 9–21. [Google Scholar] [CrossRef]
- Copeland, W.C. Inherited mitochondrial diseases of DNA replication. Annu. Rev. Med. 2008, 59, 131–146. [Google Scholar] [CrossRef]
- Warnecke, T.; Duning, T.; Schwan, A.; Lohmann, H.; Epplen, J.T.; Young, P. A novel form of autosomal recessive hereditary spastic paraplegia caused by a new SPG7 mutation. Neurology 2007, 69, 368–375. [Google Scholar] [CrossRef]
- Milenkovic, I.; Klotz, S.; Zulehner, G.; Sycha, T.; Wiest, G. Slowed vertical saccades as a hallmark of hereditary spastic paraplegia type 7. Ann. Clin. Transl. Neurol. 2019, 6, 2127–2132. [Google Scholar] [CrossRef]
- Feroze, K.B.; Patel, B.C. Parinaud Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Sackmann, V.; Nassir, N.; Tanikawa, S.; Forrest, S.L.; Chasiotis, H.; Li, J.; Hanif, S.; Martinez-Valbuena, I.; Tartaglia, M.C.; Lang, A.E.; et al. Cell-specific mitochondrial response in progressive supranuclear palsy. Mitochondrion 2025, 84, 102043. [Google Scholar] [CrossRef]
- Albers, D.S.; Beal, M.F. Mitochondrial dysfunction in progressive supranuclear palsy. Neurochem. Int. 2002, 40, 559–564. [Google Scholar] [CrossRef]
- Thal, D.R.; Züchner, S.; Gierer, S.; Schulte, C.; Schöls, L.; Schüle, R.; Synofzik, M. Abnormal Paraplegin Expression in Swollen Neurites, τ- and α-Synuclein Pathology in a Case of Hereditary Spastic Paraplegia SPG7 with an Ala510Val Mutation. Int. J. Mol. Sci. 2015, 16, 25050–25066. [Google Scholar] [CrossRef]
- Lamantea, E.; Tiranti, V.; Bordoni, A.; Toscano, A.; Bono, F.; Servidei, S.; Papadimitriou, A.; Spelbrink, H.; Silvestri, L.; Casari, G.; et al. Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann. Neurol. 2002, 52, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Fadic, R.; Russell, J.A.; Vedanarayanan, V.V.; Lehar, M.; Kuncl, R.W.; Johns, D.R. Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology 1997, 49, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Spelbrink, J.N.; Li, F.Y.; Tiranti, V.; Nikali, K.; Yuan, Q.P.; Tariq, M.; Wanrooij, S.; Garrido, N.; Comi, G.; Morandi, L.; et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 2001, 28, 223–231. [Google Scholar] [CrossRef]
- Reitinger, J.C.; Mackay, D.D. Optic Neuropathy Associated with POLG Mutations: A Case Series and Literature Review. J. Neuroophthalmol. 2024, 44, 552–558. [Google Scholar] [CrossRef]
- de Heredia, M.L.; Cleries, R.; Nunes, V. Genotypic classification of patients with Wolfram syndrome: Insights into the natural history of the disease and correlation with phenotype. Genet. Med. 2013, 15, 497–506. [Google Scholar] [CrossRef]
- Rigoli, L.; Caruso, V.; Salzano, G.; Lombardo, F. Wolfram Syndrome 1: From Genetics to Therapy. Int. J. Environ. Res. Public Health 2022, 19, 3225. [Google Scholar] [CrossRef]
- Colavito, D.; Maritan, V.; Suppiej, A.; Del Giudice, E.; Mazzarolo, M.; Miotto, S.; Farina, S.; Dalle Carbonare, M.; Piermarocchi, S.; Leon, A. Non-syndromic isolated dominant optic atrophy caused by the p.R468C mutation in the AFG3 like matrix AAA peptidase subunit 2 gene. Biomed. Rep. 2017, 7, 451–454. [Google Scholar] [CrossRef]
- Caporali, L.; Magri, S.; Legati, A.; Del Dotto, V.; Tagliavini, F.; Balistreri, F.; Nasca, A.; La Morgia, C.; Carbonelli, M.; Valentino, M.L.; et al. ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy. Ann. Neurol. 2020, 88, 18–32. [Google Scholar] [CrossRef] [PubMed]
Manifestation | Localization of Pathology | Description/Characteristic |
---|---|---|
Optic atrophy (OA) | Optic Nerve | Can be seen as part of the complex phenotype of hereditary spastic paraplegia, or as isolated dominant OA |
Gaze-evoked nystagmus | Brainstem neural integrators (nucleus prepositus hypoglossi for horizontal and the interstitial nucleus of Cajal for vertical gaze holding); cerebellar flocculus/paraflocculus complex | Nystagmus triggered in an attempt to hold gaze in an eccentric (non-primary position) |
Saccadic pursuits | Cerebellar flocculus/paraflocculus complex, possible contribution from the vermis | Eyes attempt to track using saccades instead of smooth pursuits |
Dysmetric saccades | Cerebellar vermis | Inability to accurately target the end point of the saccade, either by under (hypometric) or overshooting (hypermetric) the target |
Pendular nystagmus | Brainstem, cerebellar flocculus/paraflocculus complex | Smooth, sinusoidal (resembling a pendulum) nystagmus with no distinct fast or slow phases |
Periodic alternating nystagmus | Cerebellar nodulus/uvula | Horizontal jerk nystagmus that reverses direction approximately every 90 s |
Progressive external ophthalmoplegia | Extraocular muscles | Weakness from extraocular muscles resulting in limited eye movement range in varying directions |
Supranuclear palsy | Brainstem | Impaired voluntary gaze, typically improved by reflexes such as the vestibulo-ocular reflex |
Slow saccades | Brain stem | Reduced speed of saccadic eye movements, upwards saccades areaffected more than downwards in SPG7-associated disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauregui, R.; Diaz Curbelo, C.; Galetta, S.L.; Grossman, S.N. The Neuro-Ophthalmologic Manifestations of SPG7-Associated Disease. J. Pers. Med. 2025, 15, 495. https://doi.org/10.3390/jpm15100495
Jauregui R, Diaz Curbelo C, Galetta SL, Grossman SN. The Neuro-Ophthalmologic Manifestations of SPG7-Associated Disease. Journal of Personalized Medicine. 2025; 15(10):495. https://doi.org/10.3390/jpm15100495
Chicago/Turabian StyleJauregui, Ruben, Christian Diaz Curbelo, Steven L. Galetta, and Scott N. Grossman. 2025. "The Neuro-Ophthalmologic Manifestations of SPG7-Associated Disease" Journal of Personalized Medicine 15, no. 10: 495. https://doi.org/10.3390/jpm15100495
APA StyleJauregui, R., Diaz Curbelo, C., Galetta, S. L., & Grossman, S. N. (2025). The Neuro-Ophthalmologic Manifestations of SPG7-Associated Disease. Journal of Personalized Medicine, 15(10), 495. https://doi.org/10.3390/jpm15100495