Adherence to Quality Indicators for Breast Cancer Management in a Multidisciplinary Training Program
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Diagnosis
3.2. Waiting Time and Treatment
3.3. Aesthetic and Functional Quality Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann. Oncol. 2017, 28, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Magnoni, F.; Tinterri, C.; Corso, G.; Curigliano, G.; Leonardi, M.C.; Toesca, A.; Rocco, N.; Catalano, F.; Bianchi, B.; Lauria, F.; et al. The multicenter experience in the multidisciplinary Italian breast units: A review and update. Eur. J. Cancer Prev. 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Harrison, J.D.; Young, J.M.; Butow, P.N.; Solomon, M.J.; Masya, L. What are the current barriers to effective cancer care coordination? A qualitative study. BMC Health Serv. Res. 2010, 10, 132. [Google Scholar] [CrossRef] [PubMed]
- Del Turco, M.R.; Ponti, A.; Bick, U.; Biganzoli, L.; Cserni, G.; Cutuli, B.; Decker, T.; Dietel, M.; Gentilini, O.; Kuehn, T.; et al. Quality indicators in breast cancer care. Eur. J. Cancer 2010, 46, 2344–2356. [Google Scholar] [CrossRef] [PubMed]
- Biganzoli, L.; Marotti, L.; Hart, C.D.; Cataliotti, L.; Cutuli, B.; Kühn, T.; Mansel, R.E.; Ponti, A.; Poortmans, P.; Regitnig, P.; et al. Quality indicators in breast cancer care: An update from the EUSOMA working group. Eur. J. Cancer 2017, 86, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Mano, M.; Ponti, A.; Tomatis, M.; Baiocchi, D.; Barca, A.; Berti, R.; Bordon, R.; Casella, D.; Delrio, D.; Donati, G.; et al. Audit system on Quality of breast cancer diagnosis and Treatment (QT): Results of quality indicators on screen-detected lesions in Italy for 2006 and preliminary results for 2007. Epidemiol. Prev. 2009, 33 (Suppl. S2), 83–90. [Google Scholar]
- Pillay, B.; Wootten, A.C.; Crowe, H.; Corcoran, N.; Tran, B.; Bowden, P.; Crowe, J.; Costello, A.J. The impact of multidisciplinary team meetings on patient assessment, management and outcomes in oncology settings: A systematic review of the literature. Cancer Treat Rev. 2016, 42, 56–72. [Google Scholar] [CrossRef]
- Kesson, E.M.; Allardice, G.M.; George, W.D.; Burns, H.J.; Morrison, D.S. Effects of multidisciplinary team working on breast cancer survival: Retrospective, comparative, interventional cohort study of 13,722 women. BMJ 2012, 344, e2718. [Google Scholar] [CrossRef]
- Walraven, J.E.W.; van der Hel, O.L.; van der Hoeven, J.J.M.; Lemmens, V.E.P.P.; Verhoeven, R.H.A.; Desar, I.M.E. Factors influencing the quality and functioning of oncological multidisciplinary team meetings: Results of a systematic review. BMC Health Serv. Res. 2022, 22, 829. [Google Scholar] [CrossRef]
- Houssami, N.; Sainsbury, R. Breast cancer: Multidisciplinary care and clinical outcomes. Eur. J. Cancer 2006, 42, 2480–2491. [Google Scholar] [CrossRef]
- Kočo, L.; Siebers, C.C.N.; Schlooz, M.; Meeuwis, C.; Oldenburg, H.S.A.; Prokop, M.; Mann, R.M. Mapping Current Organizational Structure and Improvement Points of Breast Cancer Multidisciplinary Team Meetings—An Interview Study. J. Multidiscip. Healthc. 2022, 15, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Bevers, T.B.; Niell, B.L.; Baker, J.L.; Bennett, D.L.; Bonaccio, E.; Camp, M.S.; Chikarmane, S.; Conant, E.F.; Eghtedari, M.; Flanagan, M.R.; et al. NCCN Guidelines® Insights: Breast Cancer Screening and Diagnosis, Version 1.2023. J. Natl. Compr. Cancer Netw. 2023, 21, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.reteoncologica.it (accessed on 1 September 2023).
- Indicatori di Qualità per la Cura del Carcinoma Mammario Nelle Breast Unit in Italia: Una Proposta Congiunta GISMa-Senonetwork. From the Italian Mammographic Screening Group. November 2013. Available online: https://www.senonetwork.it/C_Common/Download.asp?file=/$Site$/files/doc/Documenti/raccomandazioni/Indicatori_di_qualita_per_la_cura_del_carcinoma_mammario_nelle_B.U._11.2013_6k3aslhb.pdf (accessed on 1 September 2023).
- Moen, E.L.; Kapadia, N.S.; O’Malley, A.J.; Onega, T. Evaluating breast cancer care coordination at a rural National Cancer Institute Comprehensive Cancer Center using network analysis and geospatial methods. Cancer Epidemiol. Biomark. Prev. 2019, 28, 455–461. [Google Scholar] [CrossRef]
- Wilson, A.R.M.; Marotti, L.; Bianchi, S.; Biganzoli, L.; Claassen, S.; Decker, T.; Frigerio, A.; Goldhirsch, A.; Gustafsson, E.G.; Mansel, R.E.; et al. The requirements of a specialist Breast Centre. Eur. J. Cancer 2013, 49, 3579–3587. [Google Scholar] [CrossRef] [PubMed]
- Maes-Carballo, M.; Gómez-Fandiño, Y.; Estrada-López, C.R.; Reinoso-Hermida, A.; Khan, K.S.; Martín-Díaz, M.; Bueno-Cavanillas, A. Breast Cancer Care Quality Indicators in Spain: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6411. [Google Scholar] [CrossRef]
- Pinder, S.E. Ductal carcinoma in situ (DCIS): Pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod. Pathol. 2010, 23, S8–S13. [Google Scholar] [CrossRef]
- D’Alfonso, T.M.; Ho, D.J.; Hanna, M.G.; Grabenstetter, A.; Yarlagadda, D.V.K.; Geneslaw, L.; Ntiamoah, P.; Fuchs, T.J.; Tan, L.K. Multi-magnification-based machine learning as an ancillary tool for the pathologic assessment of shaved margins for breast carcinoma lumpectomy specimens. Mod. Pathol. 2021, 34, 1487–1494. [Google Scholar] [CrossRef]
- Greenwood, H.I.; Freimanis, R.I.; Carpentier, B.M.; Joe, B.N. Clinical Breast Magnetic Resonance Imaging: Technique, Indications, and Future Applications. In Seminars in Ultrasound, CT and MRI; WB Saunders: Philadelphia, PA, USA, 2018; Volume 39, pp. 45–59. [Google Scholar]
- Schwarz, J.; Schmidt, H. Technology for Intraoperative Margin Assessment in Breast Cancer. Ann. Surg. Oncol. 2020, 27, 2278–2287. [Google Scholar] [CrossRef]
- Lin, C.; Wang, K.Y.; Chen, H.L.; Xu, Y.H.; Pan, T.; Chen, Y.D. Specimen mammography for intraoperative margin assessment in breast conserving surgery: A meta-analysis. Sci. Rep. 2022, 12, 18440. [Google Scholar] [CrossRef]
- Li, W.; Li, X. Development of intraoperative assessment of margins in breast conserving surgery: A narrative review. Gland Surg. 2022, 11, 258–269. [Google Scholar] [CrossRef]
- Baù, M.G.; Surace, A.; Gregori, G.; De Sanctis, C.; Marra, V.; Marengo, C.; Tota, D.; Borella, F.; Benedetto, C.; Mano, M.P. Vacuum intraoperative specimen mammography: A novel technique. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vissio, E.; Falco, E.C.; Collemi, G.; Borella, F.; Papotti, M.; Scarmozzino, A. Impact of COVID-19 lockdown measures on oncological surgical activity: Analysis of the surgical pathology caseload of a tertiary referral hospital in Northwestern Italy. J. Surg. Oncol. 2021, 123, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Baù, M.G.; Carosso, M.; Stura, I.; Borella, F.; Giordano, L.; Monitillo, I.; Mondino, A.; Benedetto, C.; Surace, A. Impact of COVID-19 on surgical treatment patterns in breast cancer: A retrospective Italian North-west tertiary referral breast unit analysis. Minerva Surg. 2023, 78, 576–577. [Google Scholar] [CrossRef] [PubMed]
- Vanni, G.; Pellicciaro, M.; Materazzo, M.; Palombi, L.; Buonomo, O.C. Breast Cancer Diagnosis in Coronavirus-Era: Alert from Italy. Front. Oncol. 2020, 22, 938. [Google Scholar] [CrossRef]
- Casella, D.; Fusario, D.; Cassetti, D.; Miccoli, S.; Pesce, A.L.; Bernini, A.; Neri, A. The patient’s pathway for breast cancer in the COVID-19 era: An Italian single-center experience. Breast J. 2020, 26, 1589–1592. [Google Scholar] [CrossRef]
- Fortunato, L.; d’Amati, G.; Taffurelli, M.; Tinterri, C.; Marotti, L.; Cataliotti, L. Severe Impact of COVID-19 Pandemic on Breast Cancer Care in Italy: A Senonetwork National Survey. Clin. Breast Cancer 2021, 21, e165–e167. [Google Scholar] [CrossRef]
- Borella, F.; Bertero, L.; Di Giovanni, F.; Witel, G.; Orlando, G.; Ricci, A.A.; Pittaro, A.; Castellano, I.; Cassoni, P. COVID-19 and Breast Cancer: Analysis of Surgical Management of a Large Referral Center during the 2020–2021 Pandemic Period. Curr. Oncol. 2023, 30, 4767–4778. [Google Scholar] [CrossRef]
- Eriksson, L.; Bergh, J.; Humphreys, K.; Wärnberg, F.; Törnberg, S.; Czene, K. Time from breast cancer diagnosis to therapeutic surgery and breast cancer prognosis: A population-based cohort study. Int. J. Cancer 2018, 143, 1093–1104. [Google Scholar] [CrossRef]
- Akrami, M.; Hosseinpour, H.; Ghoddusi Johari, M.; Shariat, M.; Zangouri, V.; Tahmasebi, S.; Keumarsi, Z.; Hosseinpour, A.; Talei, A. Occurrence of residual disease in specimens of re-excision surgery in patients with positive margins of primary quadrantectomy. Breast J. 2021, 27, 797–803. [Google Scholar] [CrossRef]
- Serra, M.; Li, A.Q.; Cataliotti, L.; Cianchetti, E.; Corsi, F.; De Vita, R.; Fabiocchi, L.; Fortunato, L.; Friedman, D.; Klinger, M.; et al. Aesthetic results following breast cancer surgery: A prospective study on 6515 cases from ten Italian Senonetwork breast centers. Eur. J. Surg. Oncol. 2020, 46 Pt A, 1861–1866. [Google Scholar] [CrossRef]
Breast Unit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diagnosis | Total | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Minimum Standard | Range |
Breast cancers (invasive or intraductal) with a definitive pre-operative diagnosis (C5 or B5) (N) (%) | 280/280 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 25 (100%) | ≥80% | 100% |
Invasive cancer cases with histological type N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with grading N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with hormone receptors N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with staging and pathological dimensions N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with state HER2 receptors N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with state Ki67 value N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with reported peritumoral vascular invasion N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Invasive cancer cases with reported minimum distance from the free margin N (%) | 200/200 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | 25 (100%) | ≥90% | 100% |
Intraductal cancer cases with histological type N (%) | 80/80 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | ≥90% | 100% |
Intraductal cancer cases with grading N (%) | 73/80 (91%) | 10 (100%) | 8 (80%) | 10 (100%) | 10 (100%) | 8 (80%) | 10 (100%) | 7 (70%) | 10 (100%) | ≥90% | 70–100% |
Intraductal cancer cases with pathological dimensions N (%) | 67/80 (83%) | 10 (100%) | 4 (60%) | 10 (100%) | 10 (100%) | 5 (50%) | 10 (100%) | 8 (80%) | 10 (100%) | ≥90% | 50–80% |
Intraductal cancer cases with reported minimum distance from the free margin N (%) | 49/80 (61%) | 9 (90%) | 0 (0%) | 10 (100%) | 10 (100%) | 5 (50%) | 0 (0%) | 5 (50%) | 10 (100%) | ≥90% | 0–100% |
Intraductal cancer cases with reported comedonic necrosis N (%) | 80/80 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | ≥90% | 100% |
Invasive cancer cases with preoperative magnetic resonance imaging N (%) | 92/200 (46%) | 8 (32%) | 10 (40%) | 15 (60%) | 8 (36%) | 20 (80%) | 3 (12%) | 16 (64%) | 13 (52%) | ≥5% | 12–80% |
X-ray of the piece in 2 perpendicular projections N (%) | 134/173 (77%) | 22 (100%) | 21 (100%) | 22 (50%) | 21 (100%) | 23 (70%) | 0 (0%) | 21 (100%) | 22 (100%) | ≥90% | 0–100% |
Breast Unit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Waiting Period and Treatment | Total | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Minimum Standard | Range |
Start of treatment within 30 days since therapeutic indication N (%) | 209/280 (74%) | 33 (94%) | 33 (94%) | 24 (68%) | 35 (100%) | 18 (52%) | 31 (88%) | 14 (40%) | 21 (60%) | ≥75% | 40–100% |
Start of treatment within 42 days since the first diagnostic examination N (%) | 173/280 (62%) | 33 (94%) | 33 (94%) | 8 (23%) | 35 (100%) | 14 (40%) | 15 (43%) | 14 (40%) | 21 (60%) | ≥75% | 23–100% |
Start of treatment within 60 days since the mammography N (%) | 125/280 (44%) | 11 (31%) | 28 (80%) | 8 (23%) | 21 (60%) | 14 (40%) | 14 (40%) | 10 (28%) | 19 (54%) | ≥75% | 23–80% |
Invasive cancer single-surgery (excluding any reconstructive interventions) N (%) | 157/173 (91%) | 20 (91%) | 21 (95%) | 22 (100%) | 18 (90%) | 19 (100%) | 20 (100%) | 19 (100%) | 18 (90%) | ≥80% | 90–100% |
Non-invasive cancer single-surgery (excluding any reconstructive interventions) N (%) | 65/70 (93%) | 5 (62%) | 9 (100%) | 10 (100%) | 7 (77%) | 9 (100%) | 9 (100%) | 8 (100%) | 8 (100%) | ≥80% | 62–100% |
At least 10 lymph nodes in the axillary dissection N (%) | 11/13 (84%) | 2 (100%) | 1 (100%) | 2 (100%) | 2 (66%) | NA | NA | 3 (100%) | 1 (50%) | ≥80% | 50–100% |
Examination of sentinel lymph node(s) in only pN0 N (%) | 178/187 (95%) | 23 (100%) | 24 (100%) | 23 (100%) | 21 (91%) | 22 (88%) | 25 (100%) | 20 (91%) | 20 (87%) | ≥80% | 87–100% |
Absence of axillary dissection in non-invasive cancer N (%) | 80/80 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | 10 (100%) | ≥90% | 100% |
Presence of a maximum 3 lymph nodes in SN biopsy N (%) | 171/178 (95%) | 21 (91%) | 24 (100%) | 20 (87%) | 21 (100%) | 22 (100%) | 23 (92%) | 20 (100%) | 20 (100%) | ≥80% | 87–100% |
Conservative surgery for invasive carcinoma ≤ 3 cm N (%) | 161/170 (95%) | 19 (100%) | 20 (100%) | 21 (100%) | 20 (91%) | 20 (91%) | 23 (100%) | 20 (100%) | 18 (78%) | ≥70% | 78–100% |
Conservative surgery for in situ carcinoma ≤ 2 cm N (%) | 64/64 (100%) | 8 (100%) | 7 (100%) | 7 (100%) | 6 (100%) | 7 (100%) | 10 (100%) | 10 (100%) | 9 (100%) | ≥80% | 100% |
Conservative post-surgery radiotherapy N (%) | 224/234 (96%) | 28 (100%) | 25 (89%) | 25 (92%) | 28 (100%) | 26 (90%) | 32 (100%) | 30 (100%) | 30 (94%) | ≥80% | 89–100% |
Post mastectomy radiotherapy in pN2a cases N (%) | 4/4 (100%) | 1 (100%) | NA | 1 (100%) | NA | NA | NA | 1 (100%) | 1 (100%) | ≥80% | 100% |
Radiotherapy within 12 weeks from surgery if adjuvant CT is not requested N (%) | 141/160 (88%) | 19 (100%) | 20 (100%) | 18 (100%) | 15 (83%) | 16 (80%) | 18 (90%) | 18 (90%) | 17 (89%) | ≥80% | 80–100% |
Adjuvant hormone therapy if it is an endocrine-sensitive invasive cancer N (%) | 175/180 (97%) | 21 (91%) | 24 (100%) | 22 (100%) | 20 (95%) | 22 (100%) | 22 (100%) | 22 (96%) | 22 (100%) | ≥80% | 91–100% |
Adjuvant chemotherapy if it is a hormone receptor negative invasive cancer N (%) | 20/21 (95%) | 2 (100%) | 1 (100%) | 3 (100%) | 4 (100%) | 3 (100%) | 3 (100%) | 2 (100%) | 3 (75%) | ≥80% | 75–100% |
Trastuzumab in cases treated with chemotherapy in invasive cancer N+ or HER2+ (N neg and T > 1 cm) N (%) | 16/16 (100%) | 3 (100%) | 2 (100%) | 2 (100%) | 1 (100%) | NA | 2 (100%) | 3 (100%) | 3 (100%) | ≥80% | 100% |
Breast unit | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Aesthetic and Functional Quality Indicators | Total | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Minimum Standard | Range |
Absence of retracting or diastasated scar N (%) | 228/280 (81%) | 32 (92%) | 31 (88%) | 31 (88%) | 30 (86%) | 20 (60%) | 23 (65%) | 32 (92%) | 29 (82%) | ≥80% | 60–92% |
Absence of skin discoloration N (%) | 258/280 (92%) | 33 (94%) | 33 (94%) | 31 (88%) | 28 (80%) | 33 (94%) | 34 (97%) | 35 (100%) | 31 (88%) | ≥80% | 31–91% |
Patients with nipple–areola complex asymmetry (conservative surgery) N (%) | 127/243 (52%) | 15 (50%) | 13 (43%) | 16 (50%) | 20 (66%) | 14 (43%) | 18 (60%) | 14 (48%) | 17 (56%) | Not available | 43–66% |
Skin-sparing or nipple-sparing mastectomy | 23/37 (59%) | 2/5 (40%) | 4/5 (80%) | 2/3 (66%) | 2/5 (40%) | 1/3 (33%) | 5/5 (100%) | 2/6 (33%) | 4/5 (80%) | ≥50% | 33–100% |
Mastectomy with immediate reconstruction N (%) | 13/23 (56%) | 2 (100%) | 3 (75%) | 0 (0%) | 2 (100%) | 0 (0%) | 4 (0%) | 1 (50%) | 1 (20%) | ≥50% | 0–100% |
Immediate reconstruction without direct contact with the prothesis and flap N (%) | 11/13 (84%) | 2 (100%) | 2 (66%) | NA | 2 (100%) | NA | 3 (75%) | 1 (100%) | 1 (100%) | ≥95% | 66–100% |
Use of acellular dermal matrix in the case of mastectomy and reconstruction N (%) | 9/23 (39%) | 0 (0%) | 4 (100%) | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (50%) | 2 (50%) | ≥95% | 69–100% |
Oncoplastic surgery discussed at the multidisciplinary meeting N (%) | 280/280 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | 35 (100%) | ≥90% | 100% |
Oncoplastic surgery discussed with pre and post photos N (%) | 51/280 (18%) | 0 (0%) | 0 (0%) | 0 (0%) | 8 (22%) | 15 (42%) | 10 (28%) | 0 (0%) | 18 (51%) | ≥90% | 0–42% |
Percentage of lost implantation at 6 months from the immediate reconstruction N (%) | 3/23 (13%) | 0 (0%) | 1 (25%) | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (25%) | ≤9% | 0–50% |
Axillary dissection with homolateral axillary lymphedema N (%) | 2/13 (15%) | 0 (0%) | 0 (0%) | 1 (50%) | 0 (0%) | NA | NA | 1 (33%) | 0 (100%) | ≤20% | 0–50% |
Sentinel lymph node biopsy with homolateral axillary lymphedema N (%) | 2/187 (1%) | 0 (0%) | 0 (0%) | 2 (9%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ≤5% | 0–9% |
Operated cases with articular limitations on the homolateral shoulder ≥ 10% compared to the controlateral shoulder N (%) | 13/280 (5%) | 2 (6%) | 6 (17%) | 2 (6%) | 1 (3%) | 0 (0%) | 0 (0%) | 2 (6%) | 0 (0%) | ≤10% | 87–100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baù, M.G.; Borella, F.; Mano, M.P.; Giordano, L.; Carosso, M.; Surace, A.; Mondino, A.; Gallio, N.; Benedetto, C. Adherence to Quality Indicators for Breast Cancer Management in a Multidisciplinary Training Program. J. Pers. Med. 2023, 13, 1693. https://doi.org/10.3390/jpm13121693
Baù MG, Borella F, Mano MP, Giordano L, Carosso M, Surace A, Mondino A, Gallio N, Benedetto C. Adherence to Quality Indicators for Breast Cancer Management in a Multidisciplinary Training Program. Journal of Personalized Medicine. 2023; 13(12):1693. https://doi.org/10.3390/jpm13121693
Chicago/Turabian StyleBaù, Maria Grazia, Fulvio Borella, Maria Piera Mano, Livia Giordano, Marco Carosso, Alessandra Surace, Aurelia Mondino, Niccolò Gallio, and Chiara Benedetto. 2023. "Adherence to Quality Indicators for Breast Cancer Management in a Multidisciplinary Training Program" Journal of Personalized Medicine 13, no. 12: 1693. https://doi.org/10.3390/jpm13121693
APA StyleBaù, M. G., Borella, F., Mano, M. P., Giordano, L., Carosso, M., Surace, A., Mondino, A., Gallio, N., & Benedetto, C. (2023). Adherence to Quality Indicators for Breast Cancer Management in a Multidisciplinary Training Program. Journal of Personalized Medicine, 13(12), 1693. https://doi.org/10.3390/jpm13121693