Telerehabilitation for Stroke: A Personalized Multi-Domain Approach in a Pilot Study
Abstract
:1. Introduction
1.1. Rationale for the Study
1.2. Objectives
2. Materials and Methods
2.1. Study Design and Setting
2.1.1. Participants
2.1.2. Intervention
2.1.3. Outcome Assessment
Change in Motor Function
- The Fugl-Meyer assessment—upper extremity (FMA-UE) is a stroke-specific scale assessing the motor functioning with scores. There are 3 values for each of the 5 domains: 0 (severe impairment), 1 (moderate impairment), 2 (preserved function). The 5 domains assessed include motor function (upper-limb maximum score = 66; lower-limb maximum score = 34), sensory function (maximum score = 24), balance (maximum score = 14), joint range of motion (maximum score = 44), and joint pain (maximum score = 44), for an overall maximum score of 226 points [28].
- The nine-hole pegboard test (NHPT) measures dexterity and fine motor coordination by evaluating the timing of peg insertion and removal speed [29].
Change in Linguistic Function
- The Aachener aphasia test (AAT) is an impairment-centered aphasia test battery known for its good construct validity and test–retest reliability, focused on five subscales: token test, repetition, naming, writing, and comprehension [30].
Change in Cognitive Function
- The Montreal cognitive assessment (MoCA) screens cognitive function across various domains, including visuospatial/executive skills, naming, memory, attention, comprehension, abstraction, delayed recall, and orientation. The total possible score is 30, corresponding to a good performance [31].
Change in Independence (Activities of Daily Living, ADLs)
- The Barthel index (BI) assesses 10 ADLs and mobility, with scores ranging from 0 (dependent) to 10 (independent) [32].
Change in HRQoL Levels
- The Short Form 36 (SF-36) questionnaire consists of 36 questions that are divided into physical functioning, role limitations due to physical health problems, bodily pain, general health perceptions, vitality, social functioning, role limitations due to emotional problems, and mental health categories. It is scored from 0 to 100, with higher scores indicating a better HRQoL [33].
Change in Behavior (Depression)
- The Beck depression inventory (BDI) is a self-reported questionnaire designed to assess the presence and severity of depressive symptoms in individuals. The total score ranges from 0 to 63, with scores > 10 indicative of depressive symptomatology [34].
2.2. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Effectiveness of Therapy across the Entire Sample
3.3. Comparison of Different Types of Rehabilitation Performed
3.4. General Linear Regression Models
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Outcomes | M-TR (n = 23) | M + C-TR (n = 40) | M + C + S-TR (n = 11) | p-Value | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
NHPT | 0.01 | 0.05 | 0.09 | 0.12 | 0.13 | 0.18 | p = 0.004 * |
FMA-UE-Motor | 1.91 | 7.02 | 4.03 | 5.65 | 0.82 | 3.46 | p = 0.168 |
FMA-UE-Pain-ROM | 2.74 | 5.22 | 2.62 | 6.07 | 0.27 | 2.20 | p = 0.276 |
FMA-UE Sensitivity | 0.59 | 3.51 | 0.26 | 2.81 | -0.18 | 2.27 | p = 0.444 |
FMA-UE-Balance | 1.14 | 1.32 | −0.09 | 2.18 | 0.82 | 1.17 | p = 0.059 |
BI | 2.70 | 5.28 | 5.56 | 9.99 | 2.36 | 5.77 | p = 0.764 |
MoCA | 1.67 | 2.58 | 1.62 | 3.19 | −0.16 | 2.50 | p = 0.289 |
BDI | −0.82 | 7.24 | −0.08 | 6.12 | −0.27 | 6.40 | p = 0.838 |
SF-36-PF | −4.06 | 11.84 | 5.61 | 12.27 | 9.50 | 14.59 | p = 0.032 * |
SF-36-RP | 3.50 | 18.23 | 2.89 | 19.79 | 0.00 | 28.92 | p = 0.837 |
SF-36-RE | 0.01 | 0.05 | 0.09 | 0.12 | 0.13 | 0.18 | p = 0.777 |
SF-36-VT | 1.91 | 7.02 | 4.03 | 5.65 | 0.82 | 3.46 | p = 0.561 |
SF-36-MH | 2.74 | 5.22 | 2.62 | 6.07 | 0.27 | 2.20 | p = 0.723 |
SF-36-SF | 0.59 | 3.51 | 0.26 | 2.81 | −0.18 | 2.27 | p = 0.238 |
SF-36-BP | 1.14 | 1.32 | −0.09 | 2.18 | 0.82 | 1.17 | p = 0.575 |
SF-36-GH | 2.70 | 5.28 | 5.56 | 9.99 | 2.36 | 5.77 | p = 0.509 |
Regression Model | β ± SE | Pseudo-R2 | p-Valueres |
---|---|---|---|
SF-36-GH—Post Treatment | 0.56 | p = 0.764 | |
Intercept | −18.42 ± 11.72 | ||
BI | 0.26 ± 0.09 | ||
SF-36-GH—Baseline | 0.89 ± 0.13 |
References
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Thayabaranathan, T.; Kim, J.; Cadilhac, D.A.; Thrift, A.G.; Donnan, G.A.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.; Norrving, B.; et al. Global stroke statistics 2022. Int. J. Stroke 2022, 17, 946–956. [Google Scholar] [CrossRef]
- Kiper, P.; Szczudlik, A.; Agostini, M.; Opara, J.; Nowobilski, R.; Ventura, L.; Tonin, P.; Turolla, A. Virtual Reality for Upper Limb Rehabilitation in Subacute and Chronic Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2018, 99, 834–842.e4. [Google Scholar] [CrossRef]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Cason, J. Telerehabilitation: An Adjunct Service Delivery Model for Early Intervention Services. Int. J. Telerehabilit. 2011, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Salvalaggio, S.; Cacciante, L.; Maistrello, L.; Turolla, A. Clinical Predictors for Upper Limb Recovery after Stroke Rehabilitation: Retrospective Cohort Study. Healthcare 2023, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Weder, B.J.; Wiest, R.; Seitz, R.J. Editorial: Principles Underlying Post-Stroke Recovery of Upper Extremity Sensorimotor Function—A Neuroimaging Perspective. Front. Neurol. 2015, 6, 267. [Google Scholar] [CrossRef] [PubMed]
- REhabilitation and Recovery of peopLE with Aphasia after StrokE (RELEASE) Collaborators. Dosage, Intensity, and Frequency of Language Therapy for Aphasia: A Systematic Review-Based, Individual Participant Data Network Meta-Analysis. Stroke 2022, 53, 956–967. [Google Scholar] [CrossRef]
- Hybbinette, H.; Schalling, E.; Plantin, J.; Nygren-Deboussard, C.; Schutz, M.; Ostberg, P.; Lindberg, P.G. Recovery of Apraxia of Speech and Aphasia in Patients With Hand Motor Impairment After Stroke. Front. Neurol. 2021, 12, 634065. [Google Scholar] [CrossRef]
- Ginex, V.; Veronelli, L.; Vanacore, N.; Lacorte, E.; Monti, A.; Corbo, M. Motor recovery in post-stroke patients with aphasia: The role of specific linguistic abilities. Top. Stroke Rehabil. 2017, 24, 428–434. [Google Scholar] [CrossRef]
- Levin, M.F.; Demers, M. Motor learning in neurological rehabilitation. Disabil. Rehabil. 2021, 43, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, F.; Lin, S.; Yu, L.; Lin, R. Effects of Virtual Reality Rehabilitation Training on Cognitive Function and Activities of Daily Living of Patients With Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2022, 103, 1422–1435. [Google Scholar] [CrossRef] [PubMed]
- Parisi, A.; Bellinzona, F.; Di Lernia, D.; Repetto, C.; De Gaspari, S.; Brizzi, G.; Riva, G.; Tuena, C. Efficacy of Multisensory Technology in Post-Stroke Cognitive Rehabilitation: A Systematic Review. J. Clin. Med. 2022, 11, 6324. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Latella, D.; Maresca, G.; Sciarrone, F.; Manuli, A.; Naro, A.; De Luca, R.; Calabro, R.S. Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. J. Neurosci. Nurs. 2019, 51, 101–105. [Google Scholar] [CrossRef]
- Janssen, H.; Ada, L.; Bernhardt, J.; McElduff, P.; Pollack, M.; Nilsson, M.; Spratt, N.J. An enriched environment increases activity in stroke patients undergoing rehabilitation in a mixed rehabilitation unit: A pilot non-randomized controlled trial. Disabil. Rehabil. 2014, 36, 255–262. [Google Scholar] [CrossRef]
- Ellis, F.; Kennedy, N.C.; Hancock, N.J.; Pomeroy, V.M. Neurophysiological changes accompanying reduction in upper limb motor impairments in response to exercise-based virtual rehabilitation after stroke: Systematic review. Physiotherapy 2021, 113, 141–152. [Google Scholar] [CrossRef]
- Gelineau, A.; Perrochon, A.; Daviet, J.C.; Mandigout, S. Compliance with Upper Limb Home-Based Exergaming Interventions for Stroke Patients: A Narrative Review. J. Rehabil. Med. 2022, 54, jrm00325. [Google Scholar] [CrossRef]
- Hao, J.; Pu, Y.; Chen, Z.; Siu, K.C. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 2023, 32, 106960. [Google Scholar] [CrossRef]
- Sun, W.-J.; Song, Y.-Y.; Wang, C.; Jiang, Y.; Cui, W.-Y.; Liu, W.-J.; Liu, Y.; Al-Yateem, N. Telerehabilitation for Family Caregivers of Stroke Survivors: A Systematic Review and Meta-Analysis. J. Nurs. Manag. 2023, 2023, 3450312. [Google Scholar] [CrossRef]
- Stephenson, A.; Howes, S.; Murphy, P.J.; Deutsch, J.E.; Stokes, M.; Pedlow, K.; McDonough, S.M. Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PLoS ONE 2022, 17, e0265828. [Google Scholar] [CrossRef]
- Agostini, M.; Moja, L.; Banzi, R.; Pistotti, V.; Tonin, P.; Venneri, A.; Turolla, A. Telerehabilitation and recovery of motor function: A systematic review and meta-analysis. J. Telemed. Telecare 2015, 21, 202–213. [Google Scholar] [CrossRef]
- Sharififar, S.; Ghasemi, H.; Geis, C.; Azari, H.; Adkins, L.; Speight, B.; Vincent, H.K. Telerehabilitation service impact on physical function and adherence compared to face-to-face rehabilitation in patients with stroke: A systematic review and meta-analysis. PM&R 2023. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Ulasavets, U.; Opare-Sem, O.K.; Ovbiagele, B. Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature. J. Stroke Cerebrovasc. Dis. 2018, 27, 2306–2318. [Google Scholar] [CrossRef]
- Cacciante, L.; Pieta, C.D.; Rutkowski, S.; Cieslik, B.; Szczepanska-Gieracha, J.; Agostini, M.; Kiper, P. Cognitive telerehabilitation in neurological patients: Systematic review and meta-analysis. Neurol. Sci. 2022, 43, 847–862. [Google Scholar] [CrossRef]
- Ora, H.P.; Kirmess, M.; Brady, M.C.; Partee, I.; Hognestad, R.B.; Johannessen, B.B.; Thommessen, B.; Becker, F. The effect of augmented speech-language therapy delivered by telerehabilitation on poststroke aphasia-a pilot randomized controlled trial. Clin. Rehabil. 2020, 34, 369–381. [Google Scholar] [CrossRef]
- Cacciante, L.; Kiper, P.; Garzon, M.; Baldan, F.; Federico, S.; Turolla, A.; Agostini, M. Telerehabilitation for people with aphasia: A systematic review and meta-analysis. J. Commun. Disord. 2021, 92, 106111. [Google Scholar] [CrossRef]
- Paik, S.M.; Cramer, S.C. Predicting motor gains with home-based telerehabilitation after stroke. J. Telemed. Telecare 2021, 29, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult norms for the Box and Block Test of manual dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; Fau-Poeck, K.; Fau-Willmes, K. The Aachen Aphasia Test. Prog. Aphasiol. 1984, 42, 291–303. [Google Scholar]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Mahoney, F.; Fau-Barthel, D.W.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Ware, J.E., Jr. SF-36 Health Survey. In The Use of Psychological Testing for Treatment Planning and Outcomes Assessment, 2nd ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1999; pp. 1227–1246. [Google Scholar]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.J.; Barnett, A.G. An Introduction to Generalized Linear Models, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the performance of prediction models: A framework for traditional and novel measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Stinear, C.; Essers, B.; Munoz-Novoa, M.; Branscheidt, M.; Cabanas-Valdes, R.; Lakicevic, S.; Lampropoulou, S.; Luft, A.R.; Marque, P.; et al. Motor rehabilitation after stroke: European Stroke Organisation (ESO) consensus-based definition and guiding framework. Eur. Stroke J. 2023, 8, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, F.; Yan, Z.; Cheng, S.; Liu, X.; Li, H.; Li, Z. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine 2018, 97, e13387. [Google Scholar] [CrossRef]
- Laver, K.E.; Adey-Wakeling, Z.; Crotty, M.; Lannin, N.A.; George, S.; Sherrington, C. Telerehabilitation services for stroke. Cochrane Database Syst. Rev. 2020, 1, CD010255. [Google Scholar] [CrossRef]
Characteristic | Patients (n = 74) |
---|---|
Sex, n (%) | |
Female | 24 (32%) |
Male | 50 (68%) |
Age, mean (SD) | 61 (±12) |
Education, mean (SD) | 10 (±3) |
Lesioned hemisphere n (%) | |
right | 32 (43%) |
left | 42 (57%) |
Time from stroke, mo., mean (SD) | 4.9 (±3.4) |
No. of sessions, mean (SD) | 19 (±6) |
Type of TR treatment, n (%) | |
M-TR | 23 (31%) |
M + C-TR | 40 (54%) |
M + C + SLT-TR | 11 (15%) |
Characteristic | M-TR n = 23 | M + C-TR n = 40 | M + C + SLT-TR n = 11 | p-Value |
---|---|---|---|---|
Sex, n (%) | p = 0.003 * | |||
Female | 14 (61%) | 8 (20%) | 2 (18%) | |
Male | 9 (39%) | 32 (80%) | 9 (82%) | |
Age, mean (SD) | 64 (±11) | 57 (±12) | 67 (±10) | p = 0.024 * |
Education, mean (SD) | 10 (±3) | 11 (±4) | 10 (±3) | p = 0.7 |
Lesioned Hemisphere, n (%) | p = 0.4 | |||
right | 8 (35%) | 20 (50%) | 4 (36%) | |
left | 15 (65%) | 20 (50%) | 7 (64%) | |
Time from stroke, mo., mean (SD) | 7.0 (±3.3) | 3.7 (±2.9) | 3.8 (±2.3) | p < 0.001 * |
No. of sessions, mean (SD) | 16 (±6) | 21 (±3) | 19 (±10) | p = 0.005 * |
Outcomes | T0 | T1 | p-Value | ||
---|---|---|---|---|---|
Mean | (SD) | Mean | (SD) | ||
NHPT | 0.29 | 0.20 | 0.36 | 0.24 | p < 0.001 * |
FMA-UE-Motor | 48.69 | 16.02 | 52.13 | 14.83 | p < 0.001 * |
FMA-UE-Pain-ROM | 40.53 | 7.42 | 42.82 | 5.34 | p < 0.001 * |
FMA-UE-Sensitivity | 20.12 | 5.75 | 20.31 | 5.23 | p = 0.074 |
FMA-Balance | 11.54 | 2.58 | 12.06 | 2.07 | p = 0.002 * |
BI | 82.40 | 25.07 | 86.58 | 21.35 | p < 0.001 * |
MoCA | 22.19 | 5.28 | 23.44 | 4.48 | p < 0.001 * |
BDI | 8.22 | 7.36 | 7.77 | 7.06 | p = 0.229 |
SF-36-PF | 54.96 | 24.21 | 58.36 | 24.68 | p = 0.029 * |
SF-36-RP | 58.60 | 27.06 | 61.29 | 28.41 | p = 0.353 |
SF-36-RE | 69.90 | 31.68 | 73.24 | 31.58 | p = 0.191 |
SF-36-VT | 56.35 | 22.12 | 55.29 | 22.35 | p = 0.506 |
SF-36-MH | 59.22 | 22.89 | 60.33 | 23.07 | p = 0.411 |
SF-36-SF | 52.21 | 22.05 | 50.45 | 20.19 | p = 0.316 |
SF-36-BP | 32.40 | 20.28 | 31.82 | 20.48 | p = 0.574 |
SF-36-GH | 67.48 | 10.00 | 58.18 | 23.49 | p = 0.136 |
Outcomes | M-TR (n = 23) | M + C-TR (n = 40) | M + C + SLT-TR (n = 11) | ||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T0 | T1 | ||||
Mean (SD) | Mean (SD) | p-Value | Mean (SD) | Mean (SD) | p-Value | Mean (SD) | Mean (SD) | p-Value | |
NHPT | 0.31 (0.20) | 0.32 (0.20) | p = 0.266 | 0.28 (0.22) | 0.37 (0.27) | p < 0.001 * | 0.30 (0.16) | 0.40 (0.24) | p = 0.004 * |
FMA-UE-Motor | 41.30 (16.80) | 44.91 (14.48) | p = 0.021 * | 49.40 (15.19) | 53.31 (15.09) | p < 0.001 * | 61.55 (6.68) | 62.36 (4.48) | p = 0.589 |
FMA-UE-Pain-ROM | 36.57 (7.12) | 39.30 (5.56) | p = 0.022 * | 41.35 (7.20) | 43.97 (4.44) | p = 0.005 * | 45.82 (4.35) | 46.09 (4.11) | p = 1 |
FMA-UE Sensitivity | 18.22 (6.62) | 18.55 (5.30) | p = 0.293 | 20.25 (5.58) | 20.41 (5.49) | p = 0.083 | 23.64 (1.21) | 23.45 (1.81) | p = 1 |
FMA-Balance | 10.65 (2.29) | 11.82 (2.42) | p < 0.001 * | 12.21 (2.76) | 12.19 (1.89) | p = 0.681 | 11.36 (2.16) | 12.18 (1.94) | p = 0.058 |
BI | 80.04 (19.26) | 82.74 (18.48) | p = 0.021 * | 80.31 (30.11) | 85.87 (24.91) | p < 0.001 * | 94.73 (8.16) | 97.09 (3.91) | p = 0.147 |
MoCA | 21.50 (6.72) | 23.17 (4.92) | p = 0.008 * | 21.81 (4.67) | 23.22 (4.25) | p = 0.005 * | 24.81 (3.89) | 24.64 (4.60) | p = 0.799 |
BDI | 11.67 (7.93) | 10.39 (7.66) | p = 0.337 | 7.56 (7.23) | 7.43 (6.95) | p = 0.638 | 4.91 (4.70) | 4.64 (5.22) | p = 0.404 |
SF-36-PF | 58.50 (16.29) | 54.44 (17.17) | p = 0.262 | 51.15 (27.31) | 56.29 (29.00) | p = 0.009 * | 63.80 (21.34) | 73.30 (9.44) | p = 0.093 |
SF-36-RP | 64.06 (20.12) | 67.56 (15.07) | p = 0.635 | 51.40 (28.35) | 54.03 (32.04) | p = 0.362 | 77.60 (22.66) | 77.60 (24.20) | p = 0.916 |
SF-36-RE | 71.39 (21.89) | 76.89 (16.19) | p = 0.330 | 65.88 (36.38) | 68.42 (38.11) | p = 0.456 | 83.30 (23.57) | 85.00 (21.42) | p = 1 |
SF-36-VT | 53.94 (10.26) | 52.89 (11.70) | p = 0.507 | 54.75 (27.34) | 53.29 (27.59) | p = 0.601 | 67.10 (7.32) | 67.20 (5.83) | p = 1 |
SF-36-MH | 57.39 (11.83) | 58.89 (10.53) | p = 0.979 | 58.53 (28.49) | 59.18 (29.34) | p = 0.475 | 65.30 (8.31) | 67.30 (5.68) | p = 0.475 |
SF-36-SF | 50.56 (13.05) | 54.44 (12.47) | p = 0.497 | 52.50 (27.06) | 47.89 (24.51) | p = 0.044 * | 54.00 (10.75) | 53.00 (10.59) | p = 0.850 |
SF-36-BP | 38.78 (14.77) | 39.17 (15.75) | p = 0.697 | 30.15 (21.95) | 27.87 (21.47) | p = 0.412 | 29.9 (21.21) | 33.6 (22.11) | p = 0.462 |
SF-36-GH | 64.22 (10.40) | 58.67 (11.80) | p = 0.111 | 69.09 (10.16) | 55.68 (29.40) | p = 0.794 | 68.00 (8.00) | 66.80 (7.79) | p = 0.587 |
Regression Model | β ± SE | Pseudo-R2 | p-Valueres |
---|---|---|---|
FMA-UE-Motor—Post-Treatment | 0.90 | p = 0.224 | |
Intercept | −7.51 ± 6.3 | ||
FMA-UE-Motor—Baseline | 0.79 ± 0.06 | ||
MoCA | 0.44 ± 0.17 | ||
BI | 0.22 ± 0.07 | ||
SF-36-GH—Baseline | −0.16 ± 0.06 |
Regression Model | β ± SE | Pseudo-R2 | p-Valueres |
---|---|---|---|
SF-36-GH—Post-Treatment | 0.59 | p = 0.620 | |
Intercept | −18.42 ± 14.53 | ||
BI | 0.25 ± 0.11 | ||
SF-36-GH—Baseline | 0.91 ± 0.13 | ||
Time from stroke, mo. | −0.62 ± 0.42 | ||
BDI | 0.31 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Federico, S.; Cacciante, L.; De Icco, R.; Gatti, R.; Jonsdottir, J.; Pagliari, C.; Franceschini, M.; Goffredo, M.; Cioeta, M.; Calabrò, R.S.; et al. Telerehabilitation for Stroke: A Personalized Multi-Domain Approach in a Pilot Study. J. Pers. Med. 2023, 13, 1692. https://doi.org/10.3390/jpm13121692
Federico S, Cacciante L, De Icco R, Gatti R, Jonsdottir J, Pagliari C, Franceschini M, Goffredo M, Cioeta M, Calabrò RS, et al. Telerehabilitation for Stroke: A Personalized Multi-Domain Approach in a Pilot Study. Journal of Personalized Medicine. 2023; 13(12):1692. https://doi.org/10.3390/jpm13121692
Chicago/Turabian StyleFederico, Sara, Luisa Cacciante, Roberto De Icco, Roberto Gatti, Johanna Jonsdottir, Chiara Pagliari, Marco Franceschini, Michela Goffredo, Matteo Cioeta, Rocco Salvatore Calabrò, and et al. 2023. "Telerehabilitation for Stroke: A Personalized Multi-Domain Approach in a Pilot Study" Journal of Personalized Medicine 13, no. 12: 1692. https://doi.org/10.3390/jpm13121692
APA StyleFederico, S., Cacciante, L., De Icco, R., Gatti, R., Jonsdottir, J., Pagliari, C., Franceschini, M., Goffredo, M., Cioeta, M., Calabrò, R. S., Maistrello, L., Turolla, A., Kiper, P., & on behalf of RIN_TR_Group. (2023). Telerehabilitation for Stroke: A Personalized Multi-Domain Approach in a Pilot Study. Journal of Personalized Medicine, 13(12), 1692. https://doi.org/10.3390/jpm13121692