Impact of Spino-Pelvic Parameters on the Prediction of Lumbar and Thoraco-Lumbar Segment Angles in the Supine Position
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parameters
2.2. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leucht, P.; Fischer, K.; Muhr, G.; Mueller, E.J. Epidemiology of traumatic spine fractures. Injury 2009, 40, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Maier, B.; Ploss, C.; Marzi, I. Verletzungen der thorakolumbalen Wirbelsäule. Der Orthop. 2010, 39, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Roussouly, P.; Gollogly, S.; Berthonnaud, E.; Dimnet, J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 2005, 30, 346–353. [Google Scholar] [CrossRef]
- Le Huec, J.-C.; Aunoble, S.; Philippe, L.; Nicolas, P. Pelvic parameters: Origin and significance. Eur. Spine J. 2011, 20, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laouissat, F.; Sebaaly, A.; Gehrchen, M.; Roussouly, P. Classification of normal sagittal spine alignment: Refounding the Roussouly classification. Eur. Spine J. 2018, 27, 2002–2011. [Google Scholar] [CrossRef]
- Stagnara, P.; DE Mauroy, J.C.; Dran, G.; Gonon, G.P.; Costanzo, G.; Dimnet, J.; Pasquet, A. Reciprocal angulation of vertebral bodies in a sagittal plane: Approach to references for the evaluation of kyphosis and lordosis. Spine 1982, 7, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Duval-Beaupere, G.; Schmidt, C.; Cosson, P. A Barycentremetric study of the sagittal shape of spine and pelvis: The conditions required for an economic standing position. Ann. Biomed. Eng. 1992, 20, 451–462. [Google Scholar] [CrossRef]
- Legaye, J.; Duval-Beaupère, C.; Hecquet, J.; Marty, C. Pelvic incidence: A fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur. Spine J. 1998, 7, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, K.; Okamoto, M.; Hatsushikano, S.; Shimoda, H.; Ono, M.; Watanabe, K. Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur. Spine J. 2016, 25, 3675–3686. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Xu, F.; Wang, W.; Zou, D.; Sun, Z.; Li, W. Age-based normal sagittal alignment in Chinese asymptomatic adults: Establishment of the relationships between pelvic incidence and other parameters. Eur. Spine J. 2020, 29, 396–404. [Google Scholar] [CrossRef]
- Meyerding, H. Spondylolisthesis. Surg. Gynecol. Obs. 1932, 54, 371–377. [Google Scholar]
- Legaye, J. Influence of age and sagittal balance of the spine on the value of the pelvic incidence. Eur. Spine J. 2014, 23, 1394. [Google Scholar] [CrossRef]
- Asai, Y.; Tsutsui, S.; Oka, H.; Yoshimura, N.; Hashizume, H.; Yamada, H.; Akune, T.; Muraki, S.; Matsudaira, K.; Kawaguchi, H.; et al. Sagittal spino-pelvic alignment in adults: The Wakayama Spine Study. PLoS ONE 2017, 12, e0178697. [Google Scholar] [CrossRef] [Green Version]
- Boulay, C.; Tardieu, C.; Hecquet, J.; Benaim, C.; Mouilleseaux, B.; Marty, C.; Prat-Pradal, D.; Legaye, J.; Duval-Beaupère, G.; Pélissier, J. Sagittal alignment of spine and pelvis regulated by pelvic incidence: Standard values and prediction of lordosis. Eur. Spine J. 2006, 15, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-A.; Kwak, D.-S.; Cho, H.-J.; Min, D.-U. Changes of spinopelvic parameters in different positions. Arch. Orthop. Trauma Surg. 2017, 137, 1223–1232. [Google Scholar] [CrossRef]
- Romero-Vargas, S.; Zárate-Kalfópulos, B.; Otero-Cámara, E.; Rosales-Olivarez, L.; Alpízar-Aguirre, A.; Morales-Hernández, E.; Reyes-Sánchez, A. The impact of body mass index and central obesity on the spino-pelvic parameters: A correlation study. Eur. Spine J. 2013, 22, 878–882. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Xu, L.; Zhu, F.; Jiang, L.; Wang, Z.; Liu, Z.; Qian, B.P.; Qiu, Y. Sagittal alignment of spine and pelvis in asymptomatic adults: Norms in Chinese populations. Spine 2014, 39, E1–E6. [Google Scholar] [CrossRef]
- Khan, J.M.; Basques, B.A.; Kunze, K.N.; Grewal, G.; Hong, Y.S.; Pardo, C.; Louie, P.K.; Colman, M.; An, H.S. Does obesity impact lumbar sagittal alignment and clinical outcomes after a posterior lumbar spine fusion? Eur. Spine J. 2020, 29, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X. Comparison of four methods for handing missing data in longitudinal data analysis through a simulation study. Open J. Stat. 2014, 4, 933. [Google Scholar] [CrossRef] [Green Version]
- Janssen, M.M.; Drevelle, X.; Humbert, L.; Skalli, W.; Castelein, R.M. Differences in male and female spino-pelvic alignment in asymptomatic young adults: A three-dimensional analysis using upright low-dose digital biplanar X-rays. Spine 2009, 34, E826–E832. [Google Scholar] [CrossRef]
- Vialle, R.; Levassor, N.; Rillardon, L.; Templier, A.; Skalli, W.; Guigui, P. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J. Bone Joint Surg. Am. 2005, 87, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Farì, G.; Santagati, D.; Pignatelli, G.; Scacco, V.; Renna, D.; Cascarano, G.; Vendola, F.; Bianchi, F.P.; Fiore, P.; Ranieri, M.; et al. Collagen peptides, in association with vitamin C, Sodium Hyaluronate, Manganese and Copper, as Part of the Rehabilitation Project in the Treatment of Chronic Low Back Pain. Endocr. Metab. Immune Disord. Drug. Targets 2022, 22, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Farì, G.; Maccagnano, G.; Riondino, A.; Covelli, I.; Bianchi, F.P.; Tafuri, S.; Piazzolla, A.; Moretti, B. Teenagers’ perceptions of their scoliotic curves. an observational study of comparison between sports people and non- sports people. Muscles Ligaments Tendons J. 2019, 9, 225–235. [Google Scholar] [CrossRef]
Younger than 40 Years (N = 143) | 40 Years and Older (N = 144) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± Sd | 0.95 CI (LL UL) | Min | Max | Mean ± Sd | 0.95 CI (LL UL) | Min | Max | p Value | ||
monosegmental | Th8/9 | −4.3 ± 4.3 | (−5.0 −3.5) | −24 | 3 | −5.0 ± 4.2 | (−5.6 −4.3) | −15 | 4 | 0.164 |
Th9/10 | −2.8 ± 4.2 | (−3.5 −2.1) | −18 | 6 | −3.0 ± 3.9 | (−3.7 −2.4) | −13 | 8 | 0.607 | |
Th10/11 | −4.5 ± 3.8 | (−5.1 −3.9) | −16 | 5 | −4.2 ± 4.0 | (−4.9 −3.6) | −17 | 7 | 0.510 | |
Th11/12 | −5.3 ± 4.0 | (−5.9 −4.6) | −17 | 5 | −5.4 ± 4.7 | (−6.1 −4.6) | −16 | 6 | 0.842 | |
Th12/L1 | −4.4 ± 4.5 | (−5.1 −3.6) | −16 | 12 | −3.4 ± 4.6 | (−4.1 −2.6) | −13 | 11 | 0.058 | |
L1/L2 | −1.3 ± 4.9 | (−2.1 −0.5) | −16 | 13 | −0.3 ± 5.2 | (−1.2 0.5) | −11 | 13 | 0.102 | |
L2/3 | 4.1 ± 5.1 | (3.2 4.9) | −6 | 21 | 5.0 ± 4.9 | (4.2 5.8) | −8 | 19 | 0.120 | |
L3/4 | 10.3 ± 5.5 | (9.4 11.2) | −4 | 26 | 10.4 ± 5.6 | (9.5 11.4) | −2 | 27 | 0.877 | |
L4/L5 | 22.4 ± 6.7 | (21.3 23.5) | 6 | 45 | 21.8 ± 6.2 | (20.8 22.8) | 6 | 38 | 0.389 | |
L5/S1 | 23.9 ± 6.0 | (22.9 24.9) | 6 | 50 | 23.7 ± 6.9 | (22.6 24.9) | 0 | 49 | 0.814 | |
bisegmental | Th10 | −6.0 ± 4.8 | (−6.8 −5.2) | −21 | 5 | −6.1 ± 4.9 | (−6.9 −5.3) | −17 | 7 | 0.866 |
Th11 | −6.7 ± 4.7 | (−7.5 −6.0) | −23 | 6 | −6.6 ± 5.4 | (−7.5 −5.7) | −22 | 5 | 0.856 | |
Th12 | −6.7 ± 5.4 | (−7.6 −5.8) | −21 | 11 | −6.2 ± 5.7 | (−7.2 −5.3) | −19 | 11 | 0.489 | |
L1 | −2.3 ± 6.0 | (−3.3 −1.4) | −16 | 16 | −1.2 ± 6.3 | (−2.2 −0.1) | −14 | 18 | 0.101 | |
L2 | 4.1 ± 7.0 | (2.9 5.2) | −10 | 27 | 6.0 ± 7.0 | (4.8 7.1) | −10 | 27 | 0.024 | |
L3 | 14.2 ± 7.8 | (12.9 15.5) | −9 | 41 | 15.6 ± 7.9 | (14.3 16.9) | 0 | 41 | 0.144 | |
L4 | 30.7 ± 9.1 | (29.2 32.2) | 11 | 52 | 30.9 ± 8.2 | (29.6 32.3) | 8 | 51 | 0.837 | |
PT | 8.8 ± 6.8 | (7.7 9.9) | −7 | 29 | 10.0 ± 6.0 | (9.0 11.0) | −4 | 26 | 0.116 | |
PI | 50.5 ± 11.0 | (48.7 52.3) | 27 | 86 | 52.7 ± 10.6 | (50.9 54.4) | 28 | 86 | 0.092 | |
SS | 41.9 ± 8.0 | (40.6 43.3) | 21 | 71 | 42.7 ± 7.7 | (41.5 44) | 18 | 73 | 0.390 |
EPA Used | ExpB | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted | Cranial | Caudal | R2 | Cranial | Caudal | Age | Sex | Body Size | PT | PI | SS | |
monosegmental | Th9/10 | Th8/9 | Th11/12 | 0.568 | 0.597 A | |||||||
Th10/11 | Th8/9 | Th11/12 | 0.645 | 0.334 A | 0.472 A | |||||||
Th10/11 | Th9/10 | Th12/L1 | 0.578 | 0.698 A | 0.345 A | |||||||
Th11/12 | Th9/10 | Th12/L1 | 0.626 | 0.419 A | 0.760 A | |||||||
Th11/12 | Th10/11 | L1/2 | 0.581 | 0.867 A | 0.232 A | |||||||
Th12/L1 | Th10/11 | L1/2 | 0.523 | 0.485 A | 0.613 A | |||||||
Th12/L1 | Th11/12 | L2/3 | 0.576 | 0.634 A | 0.229 A | −0.028 B | ||||||
L1/2 | Th11/12 | L2/3 | 0.295 | 0.404 A | 0.457 A | |||||||
L1/2 | Th12/L1 | L3/4 | 0.425 | 0.661 A | 0.181 A | |||||||
L2/3 | Th12/L1 | L3/4 | 0.712 | 0.245 A | 0.539 A | |||||||
L2/3 | L1/2 | L4/5 | 0.092 | 0.405 A | ||||||||
L3/4 | L1/2 | L4/5 | 0.867 | 0.215 A | 0.367 A | 0.050 B | ||||||
L3/4 | L2/3 | L5/S1 | 0.914 | 0.426 A | −0.295 A | −0.033 B | 2.718 A | −0.393 A | 0.332 A | |||
L4/5 | L2/3 | L5/S1 | 0.953 | −0.316 A | 4.745 A | −0.729 A | 0.588 A | |||||
bisegmental | Th10 | Th8 | Th12 | 0.696 | 0.492 A | 0.233 A | ||||||
Th11 | Th9 | L1 | 0.548 | 0.698 A | 0.436 A | |||||||
Th12 | Th10 | L2 | 0.413 | 0.867 A | 0.258 A | |||||||
L1 | Th11 | L3 | 0.294 | 0.320 A | 0.370 A | −0.029 A | ||||||
L2 | Th12 | L4 | 0.611 | 0.335 A | 0.236 A | 0.054 B | −0.075 A | 0.255 A | ||||
L3 | L1 | L4/S1 | 0.899 | −0.576 A | 5.005 A | −0.047 A | −0.648 A | 0.533 B | 0.414 B | |||
L4 | L2 | L5/S1 | 0.972 | −0.611 A | 6.135 A | −1.140 A | 0.933 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schenk, P.; Jacobi, A.; Graebsch, C.; Mendel, T.; Hofmann, G.O.; Ullrich, B.W. Impact of Spino-Pelvic Parameters on the Prediction of Lumbar and Thoraco-Lumbar Segment Angles in the Supine Position. J. Pers. Med. 2022, 12, 2081. https://doi.org/10.3390/jpm12122081
Schenk P, Jacobi A, Graebsch C, Mendel T, Hofmann GO, Ullrich BW. Impact of Spino-Pelvic Parameters on the Prediction of Lumbar and Thoraco-Lumbar Segment Angles in the Supine Position. Journal of Personalized Medicine. 2022; 12(12):2081. https://doi.org/10.3390/jpm12122081
Chicago/Turabian StyleSchenk, Philipp, Arija Jacobi, Carolin Graebsch, Thomas Mendel, Gunther Olaf Hofmann, and Bernhard Wilhelm Ullrich. 2022. "Impact of Spino-Pelvic Parameters on the Prediction of Lumbar and Thoraco-Lumbar Segment Angles in the Supine Position" Journal of Personalized Medicine 12, no. 12: 2081. https://doi.org/10.3390/jpm12122081
APA StyleSchenk, P., Jacobi, A., Graebsch, C., Mendel, T., Hofmann, G. O., & Ullrich, B. W. (2022). Impact of Spino-Pelvic Parameters on the Prediction of Lumbar and Thoraco-Lumbar Segment Angles in the Supine Position. Journal of Personalized Medicine, 12(12), 2081. https://doi.org/10.3390/jpm12122081