An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Genomic DNA Extraction
2.2. Oligos and crRNA Preparation
2.3. Verification of LbuCas13a Activity
2.4. PCR-Cas13a Assay
2.5. Sensitivity and Specificity of the PCR-Cas13a Fluorescence Detection
2.6. Q-PCR Assay
2.7. Statistical Analysis
3. Results
3.1. Optimization of the CRISPR-Cas13a Reaction
3.2. Establishment of the PCR-Cas13a Detection System
3.3. Evaluation of Sensitivity and Specificity of PCR-Cas13a on H. pylori
3.4. PCR-Cas13a Diagnostic Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dooley, C.; Cohen, H.; Fitzgibbons, P.; Bauer, M.; Appleman, M.; Perez-Perez, G.; Blaser, M.J. Prevalence of Helicobacter pylori infection and histologic gastritis in asymptomatic persons. N. Engl. J. Med. 1989, 321, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.; Wolf, Y.I.; Yakunin, A.F.; et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151, 2551–2561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.; Meijer, A. Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol 2020, 128, 104412. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Li, Z.; Li, R.; Tan, P.; Zhang, R.; Li, J. mNGS in clinical microbiology laboratories: On the road to maturity. Crit. Rev. Microbiol. 2019, 45, 668–685. [Google Scholar] [CrossRef] [PubMed]
- Qasem, A.; Shaw, A.M.; Elkamel, E.; Naser, S.A. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr. Issues Mol. Biol. 2021, 43, 728–748. [Google Scholar] [CrossRef]
- Maiti, B.; Anupama, K.P.; Rai, P.; Karunasagar, I.; Karunasagar, I. Isothermal amplification-based assays for rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2: Opportunities and recent developments. Rev. Med. Virol. 2022, 32, e2274. [Google Scholar] [CrossRef]
- Hou, T.; Zeng, W.; Yang, M.; Chen, W.; Ren, L.; Ai, J.; Wu, J.; Liao, Y.; Gou, X.; Li, Y.; et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19. PLoS Pathog. 2020, 16, e1008705. [Google Scholar] [CrossRef] [PubMed]
- Fozouni, P.; Son, S.; Diaz de Leon Derby, M.; Knott, G.J.; Gray, C.N.; D’Ambrosio, M.V.; Zhao, C.; Switz, N.A.; Kumar, G.R.; Stephens, S.I.; et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333.e9. [Google Scholar] [CrossRef]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gootenberg, J.; Abudayyeh, O.; Lee, J.; Essletzbichler, P.; Dy, A.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.; Freije, C.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abudayyeh, O.; Gootenberg, J.; Konermann, S.; Joung, J.; Slaymaker, I.; Cox, D.; Shmakov, S.; Makarova, K.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gootenberg, J.S.; Abudayyeh, O.O.; Kellner, M.J.; Joung, J.; Collins, J.J.; Zhang, F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science 2018, 360, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.; Park, M.; Alfson, K.J.; Tamhankar, M.; Carrion, R.; Patterson, J.L.; Griffiths, A.; He, Q.; Yildiz, A.; Mathies, R.; et al. Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sens. 2019, 4, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Myhrvold, C.; Freije, C.A.; Gootenberg, J.S.; Abudayyeh, O.O.; Metsky, H.C.; Durbin, A.F.; Kellner, M.J.; Tan, A.L.; Paul, L.M.; Parham, L.A.; et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Y.; Zhou, X.; Huang, R.; Xing, D. High-Fidelity and Rapid Quantification of miRNA Combining crRNA Programmability and CRISPR/Cas13a trans-Cleavage Activity. Anal. Chem. 2019, 91, 5278–5285. [Google Scholar] [CrossRef]
- Sha, Y.; Huang, R.; Huang, M.; Yue, H.; Shan, Y.; Hu, J.; Xing, D. Cascade CRISPR/cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity. Chem. Commun. 2021, 57, 247–250. [Google Scholar] [CrossRef]
- Tian, T.; Shu, B.; Jiang, Y.; Ye, M.; Liu, L.; Guo, Z.; Han, Z.; Wang, Z.; Zhou, X. An Ultralocalized Cas13a Assay Enables Universal and Nucleic Acid Amplification-Free Single-Molecule RNA Diagnostics. ACS Nano 2021, 15, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Tian, T.; Sun, J.; Hu, M.; Wang, X.; Xiong, E.; Cheng, M.; Bao, Y.; Lin, W.; Jiang, J.; et al. Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Anal. Chem. 2020, 92, 4029–4037. [Google Scholar] [CrossRef]
- Zhou, T.; Huang, M.; Lin, J.; Huang, R.; Xing, D. High-Fidelity CRISPR/Cas13a-Cleavage-Triggered Rolling Circle Amplified DNAzyme for Visual Profiling of MicroRNA. Anal Chem. 2021, 93, 2038–2044. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Qiu, Z.; Jiang, Y.; Zhu, D.; Zhou, X. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosens. Bioelectron. 2022, 196, 113701. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhou, X.; Shan, Y.; Yue, H.; Huang, R.; Hu, J.; Xing, D. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nat. Commun. 2020, 11, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakiuchi, T.; Okuda, M.; Hashiguchi, K.; Imamura, I.; Nakayama, A.; Matsuo, M. Evaluation of a Novel Stool Antigen Rapid Test Kit for Detection of Helicobacter pylori Infection. J. Clin. Microbiol. 2019, 57, e01825-18. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, D.; Eishi, Y.; Ohkusa, T.; Ishige, I.; Suzuki, T.; Minami, J.; Yamada, T.; Takizawa, T.; Koike, M. Gastric mucosal density of Helicobacter pylori estimated by real-time PCR compared with results of urea breath test and histological grading. J. Med. Microbiol. 2002, 51, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, B.; Warren, J. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984, 323, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Hooi, J.; Lai, W.; Ng, W.; Suen, M.; Underwood, F.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.; Wong, V.; Wu, J.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, J.; Kuntz, K.; Ezzati, M.; Goldie, S. Exploring the cost-effectiveness of Helicobacter pylori screening to prevent gastric cancer in China in anticipation of clinical trial results. Int. J. Cancer 2009, 124, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndip, R.; MacKay, W.; Farthing, M.; Weaver, L. Culturing Helicobacter pylori from clinical specimens: Review of microbiologic methods. J. Pediatric Gastroenterol. Nutr. 2003, 36, 616–622. [Google Scholar] [CrossRef]
- MacOni, G.; Vago, L.; Galletta, G.; Imbesi, V.; Sangaletti, O.; Parente, F.; Cucino, C.; Bonetto, S.; Bianchi Porro, G. therapeutics. Is routine histological evaluation an accurate test for Helicobacter pylori infection? Aliment. Pharmacol. Ther. 1999, 13, 327–331. [Google Scholar] [CrossRef]
- Tseng, C.A.; Wang, W.M.; Wu, D.C. Comparison of the clinical feasibility of three rapid urease tests in the diagnosis of Helicobacter pylori infection. Dig. Dis. Sci. 2005, 50, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.; Stoller, M. Nonsurgical management of infection-related renal calculi. Urol. Clin. N. Am. 1999, 26, 765–778, viii. [Google Scholar] [CrossRef] [PubMed]
- Herbrink, P.; van Doorn, L.J. Serological methods for diagnosis of Helicobacter pylori infection and monitoring of eradication therapy. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Hirschl, A.; Rotter, M. Serological tests for monitoring Helicobacter pylori eradication treatment. J. Gastroenterol. 1996, 31, 33–36. [Google Scholar] [PubMed]
- Ramis, I.B.; de Moraes, E.P.; Fernandes, M.S.; Mendoza-Sassi, R.; Rodrigues, O.; Juliano, C.R.; Scaini, C.J.; da Silva, P.E. Evaluation of diagnostic methods for the detection of Helicobacter pylori in gastric biopsy specimens of dyspeptic patients. Braz. J. Microbiol. 2012, 43, 903–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Chen, B.; Pan, H.; Wang, D.; Liu, M.; Yang, Y.; Zou, M.; Yang, J.; Xiao, K.; Zhao, R.; et al. Detection of Microbial 16S rRNA Gene in the Serum of Patients With Gastric Cancer. Front. Oncol. 2019, 9, 608. [Google Scholar] [CrossRef] [PubMed]
- Kisa, O.; Albay, A.; Mas, M.R.; Celasun, B.; Doganci, L. The evaluation of diagnostic methods for the detection of Helicobacter pylori in gastric biopsy specimens. Diagn. Microbiol. Infect. Dis. 2002, 43, 251–255. [Google Scholar] [CrossRef]
- Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J. Gastroenterol. 2019, 25, 4629–4660. [Google Scholar] [CrossRef]
- Redondo, J.; Keller, P.; Zbinden, R.; Wagner, K. A novel RT-PCR for the detection of Helicobacter pylori and identification of clarithromycin resistance mediated by mutations in the 23S rRNA gene. Diagn. Microbiol. Infect. Dis. 2018, 90, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schabereiter-Gurtner, C.; Hirschl, A.; Dragosics, B.; Hufnagl, P.; Puz, S.; Kovách, Z.; Rotter, M.; Makristathis, A. Novel real-time PCR assay for detection of Helicobacter pylori infection and simultaneous clarithromycin susceptibility testing of stool and biopsy specimens. J. Clin. Microbiol. 2004, 42, 4512–4518. [Google Scholar] [CrossRef]
- Lottspeich, C.; Schwarzer, A.; Panthel, K.; Koletzko, S.; Rüssmann, H. Evaluation of the novel Helicobacter pylori ClariRes real-time PCR assay for detection and clarithromycin susceptibility testing of H. pylori in stool specimens from symptomatic children. J. Clin. Microbiol. 2007, 45, 1718–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vécsei, A.; Innerhofer, A.; Binder, C.; Gizci, H.; Hammer, K.; Bruckdorfer, A.; Riedl, S.; Gadner, H.; Hirschl, A.; Makristathis, A. Stool polymerase chain reaction for Helicobacter pylori detection and clarithromycin susceptibility testing in children. Clin. Gastroenterol. Hepatol. 2010, 8, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Scaletsky, I.; Aranda, K.; Garcia, G.; Gonçalves, M.; Cardoso, S.; Iriya, K.; Silva, N. Application of real-time PCR stool assay for Helicobacter pylori detection and clarithromycin susceptibility testing in Brazilian children. Helicobacter 2011, 16, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Somoza, R.A.; Wang, L.; Welter, J.F.; Li, Y.; Caplan, A.I.; Liu, C.C. Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor. Angew. Chem. Int. Ed. Engl. 2019, 58, 17399–17405. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, S.X.; Wang, F.; Zeng, M.S. Room Temperature Detection of Plasma Epstein-Barr Virus DNA with CRISPR-Cas13. Clin. Chem. 2019, 65, 591–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminski, M.; Alcantar, M.; Lape, I.; Greensmith, R.; Huske, A.; Valeri, J.; Marty, F.; Klämbt, V.; Azzi, J.; Akalin, E.; et al. A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat. Biomed. Eng. 2020, 4, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.W.; Zhou, X.; Xu, T.; Yang, M.; Chen, Y.; He, G.Q.; Pan, N.; Cai, Y.; Li, Y.; Wang, X.; et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis. Emerg. Microbes Infect. 2019, 8, 1361–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Zhou, X.; Wang, H.; Xing, D. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection. Anal. Chem. 2018, 90, 2193–2200. [Google Scholar] [CrossRef]
- Qiu, E.; Jin, S.; Xiao, Z.; Chen, Q.; Wang, Q.; Liu, H.; Xie, C.; Chen, C.; Li, Z.; Han, S. CRISPR-based detection of Helicobacter pylori in stool samples. Helicobacter 2021, 26, e12828. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, L.; Dong, Y.; Peng, L.; Liu, G.; Man, S.; Ma, L. CRISPR-Cas13a based bacterial detection platform: Sensing pathogen Staphylococcus aureus in food samples. Anal. Chim. Acta. 2020, 1127, 225–233. [Google Scholar] [CrossRef]
- Chandrasekaran, S.S.; Agrawal, S.; Fanton, A.; Jangid, A.R.; Charrez, B.; Escajeda, A.M.; Son, S.; McIntosh, R.; Tran, H.; Bhuiya, A.; et al. Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat. Biomed. Eng. 2022, 6, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Munawar, M.A. Critical insight into recombinase polymerase amplification technology. Expert Rev. Mol. Diagn. 2022, 22, 725–737. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wang, J.P.; Osato, M.; Lachman, L.B. Real-time quantitative PCR for detection of Helicobacter pylori. J. Clin. Microbiol. 2002, 40, 3720–3728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tram, K.; Kanda, P.; Salena, B.J.; Huan, S.; Li, Y. Translating bacterial detection by DNAzymes into a litmus test. Angew. Chem. Int. Ed. Engl. 2014, 53, 12799–12802. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Kellner, M.J.; Zhang, F. Nucleic Acid Detection of Plant Genes Using CRISPR-Cas13. CRISPR J. 2019, 2, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruch, R.; Baaske, J.; Chatelle, C.; Meirich, M.; Madlener, S.; Weber, W.; Dincer, C.; Urban, G.A. CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv. Mater. 2019, 31, e1905311. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence (5′-3′) |
---|---|
PCR-Cas13a | |
T7-F1 | TAATACGACTCACTATAGGGGAGTACGGTCGCAAGATTA |
R1 | CGGATTCTCTCAATGTCAAG |
crRNA-1 | GACCACCCCAAAAAUGAAGGGGACUAAAACUCUCAAUGUCAAGCCUAGGUAAGG |
crRNA-2 | GACCACCCCAAAAAUGAAGGGGACUAAAACGCCUAGGUAAGGUUCUUCGU |
crRNA-3 | GACCACCCCAAAAAUGAAGGGGACUAAAACCAAGCCUAGGUAAGGUUCUUCGUG |
RNA reporter | FAM-UUUUUU-BHQ1 |
q-PCR [25] | |
F2 | CTCATTGCGAAGGCGACCT |
R2 | TCTAATCCTGTTTGCTCCCCA |
Probe | FAM-ATTACTGACGCTGATTGCGCGAAAGC-TAMRA |
Clinical Diagnosis | Total | Performance Characteristics | |||||||
---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Sensitivity | Specificity | PPV * | NPV * | k | |||
PCR-Cas13a | Positive | 48 | 0 | 48 | 98.0% | 100% | 0.967 | ||
Negative | 1 | 22 | 23 | 100% | 95.7% | ||||
Total | 49 | 22 | 71 | ||||||
q-PCR | Positive | 46 | 0 | 46 | 93.9% | 100% | 0.905 | ||
Negative | 3 | 22 | 25 | 100% | 88.0% | ||||
Total | 49 | 22 | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, L.; Liu, X.; Wu, K.; Zhu, X.; Ma, L.; Su, J. An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori. J. Pers. Med. 2022, 12, 2082. https://doi.org/10.3390/jpm12122082
Wang Y, Liu L, Liu X, Wu K, Zhu X, Ma L, Su J. An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori. Journal of Personalized Medicine. 2022; 12(12):2082. https://doi.org/10.3390/jpm12122082
Chicago/Turabian StyleWang, Yaxuan, Liyang Liu, Xiaochuan Liu, Kai Wu, Xiaoyan Zhu, Liyan Ma, and Jianrong Su. 2022. "An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori" Journal of Personalized Medicine 12, no. 12: 2082. https://doi.org/10.3390/jpm12122082
APA StyleWang, Y., Liu, L., Liu, X., Wu, K., Zhu, X., Ma, L., & Su, J. (2022). An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori. Journal of Personalized Medicine, 12(12), 2082. https://doi.org/10.3390/jpm12122082