Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Information
2.2. Machine Learning Algorithms
2.2.1. Data Processing
2.2.2. Algorithm Model
- Logistic Regression
- Random Forest
- Support Vector Machine
- eXtreme Gradient Boosting
2.3. Statistical Analysis
2.4. Prototype System Construction
3. Results
3.1. Statistical Results
3.2. Feature Screening Results
3.3. Model Performance
3.4. Interpretability of the Model
3.5. Implementation of CDSS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L.; et al. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef] [PubMed]
- Hankey, G.J. Secondary stroke prevention. Lancet Neurol. 2014, 13, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yang, T.; Zhang, J.; Wang, X.; Cui, X.; Chen, N.; Zhou, J.; Jiang, F.; Zhu, J.; Zou, J. Dynamic Prediction of Mechanical Thrombectomy Outcome for Acute Ischemic Stroke Patients Using Machine Learning. Brain Sci. 2022, 12, 938. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C. Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association. Circulation 2017, 136, e196, Erratum in Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Chtaou, N.; Rachdi, L.; El Midaoui, A.; Souirti, Z.; Wahlgren, N.; Belahsen, M.F. Intravenous thrombolysis with rt-PA in stroke: Experience of the moroccan stroke unit. Pan Afr. Med. J. 2016, 24, 207. [Google Scholar] [CrossRef]
- Leng, T.; Xiong, Z.G. Treatment for ischemic stroke: From thrombolysis to thrombectomy and remaining challenges. Brain Circ. 2019, 5, 8–11. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Zhang, D.; Gao, X.; Lu, L.; Liu, C.; Li, Q.; Miao, C.; Ma, H.; Li, Y. Clinical Prediction Model for Screening Acute Ischemic Stroke Patients with more than 10 Cerebral Microbleeds. Front. Neurol. 2022, 13, 833952. [Google Scholar] [CrossRef]
- Yaghi, S.; Eisenberger, A.; Willey, J.Z. Symptomatic intracerebral hemorrhage in acute ischemic stroke after thrombolysis with intravenous recombinant tissue plasminogen activator: A review of natural history and treatment. JAMA Neurol. 2014, 71, 1181–1185. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, C.; Stone, C.; Ding, Y.; Ji, X. Treatment of intracerebral hemorrhage: Current approaches and future directions. J. Neurol. Sci. 2020, 416, 117020. [Google Scholar] [CrossRef]
- Awe, A.M.; Heuvel, M.M.V.; Yuan, T.; Rendell, V.R.; Shen, M.; Kampani, A.; Liang, S.; Morgan, D.D.; Winslow, E.R.; Lubner, M.G. Machine learning principles applied to CT radiomics to predict mucinous pancreatic cysts. Abdom. Radiol. 2021, 47, 221–231. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, Z.; Luo, Y.; Yang, H.; Zhu, H.; Chen, S.; Pan, H. Development and Evaluation of a Machine Learning Prediction Model for Small-for-Gestational-Age Births in Women Exposed to Radiation before Pregnancy. J. Pers. Med. 2022, 12, 550. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Gong, X.; Zhang, W.; Zhou, Y.; Lou, M. Prediction of large vessel occlusion for ischaemic stroke by using the machine learning model random forests. Stroke Vasc. Neurol. 2021, 7, e001096. [Google Scholar] [CrossRef] [PubMed]
- Van Os, H.J.A.; Ramos, L.A.; Hilbert, A.; van Leeuwen, M.; Van Walderveen, M.A.A.; Kruyt, N.D.; Dippel, D.W.J.; Steyerberg, E.W.; Van Der Schaaf, I.C.; Lingsma, H.F.; et al. Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms. Front. Neurol. 2018, 9, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Riondino, S.; Nanni, U.; Roselli, M.; Guadagni, F. Risk Assessment for Venous Thromboembolism in Chemotherapy-Treated Ambulatory Cancer Patients. Med. Decis. Mak. 2016, 37, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, H.; Shojaeilangari, S.; Allahverdi, A.; Rothbauer, M.; Ertl, P.; Naderi-Manesh, H. A combined microfluidic deep learning approach for lung cancer cell high throughput screening toward automatic cancer screening applications. Sci. Rep. 2021, 11, 9804. [Google Scholar] [CrossRef]
- Choi, J.-M.; Seo, S.-Y.; Kim, P.-J.; Kim, Y.-S.; Lee, S.-H.; Sohn, J.-H.; Kim, D.-K.; Lee, J.-J.; Kim, C. Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning. J. Pers. Med. 2021, 11, 863. [Google Scholar] [CrossRef]
- Weng, Z.-A.; Huang, X.-X.; Deng, D.; Yang, Z.-G.; Li, S.-Y.; Zang, J.-K.; Li, Y.-F.; Liu, Y.-F.; Wu, Y.-S.; Zhang, T.-Y.; et al. A New Nomogram for Predicting the Risk of Intracranial Hemorrhage in Acute Ischemic Stroke Patients after Intravenous Thrombolysis. Front. Neurol. 2022, 13, 774654. [Google Scholar] [CrossRef]
- Miao, L.; Peng, M.; Wang, T.; Chen, G.; Yin, X.; Wu, G. Prediction of hemorrhagic transformation in acute stroke based on MRI radiomics and machine learning. Magn. Reson. Imaging 2022, 13, 18–21, 75. [Google Scholar]
- Liu, Z.; Huang, X.; Peng, M.; Wang, T.; Xie, H.; Ren, J.; Yin, X. Construction of a nomogram model for the risk of hemorrhagic transformation after mechanical thrombectomy in acute stroke. Magn. Reson. Imaging 2022, 13, 15–19. [Google Scholar]
- Song, J.; Jin, C.; Cheng, X. The association between cigarette smoking and health care service utilization among middle-aged and elderly adults in China. Front. Public Health 2022, 10, 952357. [Google Scholar] [CrossRef]
- Hsueh, C.-Y.; Gong, H.; Cong, N.; Sun, J.; Lau, H.-C.; Guo, Y.; Huang, Q.; Yuan, X.; Zhang, M.; Tao, L.; et al. Throat Microbial Community Structure and Functional Changes in Postsurgery Laryngeal Carcinoma Patients. Appl. Environ. Microbiol. 2020, 86, e01849-20. [Google Scholar] [CrossRef] [PubMed]
- Stekhoven, D.J.; Bühlmann, P. MissForest—Non-Parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Yang, Y.; Zhou, Y.; Guo, F.; Mao, X. Construction of MRI radiomics prediction model for the identification of benign and malignant breast lesions: Based on random forest, support vector machine, and logistic regression classifier. J. Mol. Imaging 2021, 44, 764–770. [Google Scholar]
- Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceedings of the 2016 IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24–24 October 2016; pp. 18–20. [Google Scholar] [CrossRef]
- Scikit-Learn: Machine Learning in Python. 2022. Available online: http://scikit-learn.org/stable/ (accessed on 8 August 2022).
- Li, R.; Li, P. Machine Learning in Action, 1st ed.; People Post Press: Beijing, China, 2013; pp. 73–88, 163–166. [Google Scholar]
- Jackins, V.; Vimal, S.; Kaliappan, M.; Lee, M.Y. AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. J. Supercomput. 2020, 77, 5198–5219. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hou, K.; Cai, L. Research of random forest algorithm based on resampling strategy in breast tumor classification. Mod. Comput. 2019, 34, 32–35+58. [Google Scholar]
- Li, S.; Zhang, P.; Yue, D.; Wang, Q. Wind turbine fault prediction based on support vector machine. Comput. Simul. 2022, 39, 84–88+180. [Google Scholar]
- Han, W.; Han, S.; Wei, Y.; Zhou, J.; Zhang, Z.; Wang, J.; Zhao, S. Application of support vector machine in the diagnosis and treatment of digestive system diseases. J. Gastroenterol. Hepatol. 2022, 31, 454–458+180. [Google Scholar]
- Zhan, Y. Research on Constructing AD Ultra-Early Classification Model Based on Support Vector Machine Fusion of Multimodal Information. Master’s Thesis, Shandong University, Jinan, China, 2020. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Teng, Y. Frequency stability control method of AC and DC power grid based on multi-layer support vector machine. Proc. CSEE 2019, 39, 4104–4118. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X. Research on orthopedic auxiliary classification and prediction model based on XGBoost algorithm. Neural Comput. Appl. 2019, 32, 1971–1979. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Chen, A.; Jin, X.; Che, H. Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the XGBoost Model. Healthcare 2020, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zuo, H.; Liao, B.; Sun, R. Coronary Heart Disease Prediction and Characteristic Analysis Model Integrating XGBoost and SHAP. Comput. Appl. Res. 2022, 39, 1796–1804. [Google Scholar] [CrossRef]
- Liao, B.; Wang, Z.; Li, M.; Sun, R. Prediction and Feature Analysis Method of Football Player’s Worth Based on XGBoost and SHAP Models [J/OL]. Computer Science: 1–13 [2022-08-16]. Available online: http://kns.cnki.net/kcms/detail/50.1075.tp.20220411.2010.002.html (accessed on 24 August 2022).
- Interpretable Machine Learning: SHapley Additive exPlanations. Available online: https://christophm.github.io/interpretable-ml-book/shap.html (accessed on 14 August 2022).
- Chang, J.Y.; Lee, J.S.; Kim, B.J.; Kim, J.-T.; Lee, J.; Cha, J.K.; Kim, D.-H.; Cho, Y.-J.; Hong, K.-S.; Lee, S.J.; et al. Influence of Hemoglobin Concentration on Stroke Recurrence and Composite Vascular Events. Stroke 2020, 51, 1309–1312. [Google Scholar] [CrossRef]
- Yin, X.; Luo, G.; Kang, L.; Zhang, Y. Effects of atrial fibrillation on hemorrhagic transformation after thrombolysis in acute ischemic stroke. China Clin. Neurosci. 2019, 27, 22–28. [Google Scholar]
- Huang, Y.; Ma, Q.; Song, H.; Wu, J. The effect of blood glucose on the outcome of acute ischemic stroke after intravenous thrombolysis. J. Cap. Med. Univ. 2017, 38, 53–58. [Google Scholar]
- Chen, Y.; Sha, D.; Zhang, J. Treatment of hemorrhagic transformation in patients with ischemic stroke. Int. J. Cerebrovasc. Dis. 2017, 25, 268–274. [Google Scholar]
- Song, Z.; Tang, Z.; Liu, H.; Guo, D.; Cai, J.; Zhou, Z. A clinical-radiomics nomogram may provide a personalized 90-day functional outcome assessment for spontaneous intracerebral hemorrhage. Eur. Radiol. 2021, 31, 4949–4959. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Y.; Xia, Y.; Zhang, W.; Fang, K.; Zhou, X.; Yu, X.; Cheng, X.; Li, G.; Wang, X.; et al. Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model. Adv. Neurol. Disord. 2020, 13, 1756286420902358. [Google Scholar] [CrossRef] [Green Version]
- Antoniadi, A.M.; Galvin, M.; Heverin, M.; Wei, L.; Hardiman, O.; Mooney, C. A Clinical Decision Support System for the Prediction of Quality of Life in ALS. J. Pers Med. 2022, 12, 435. [Google Scholar] [CrossRef]
Variables | Train (n = 332) | Internal (n = 83) | p |
---|---|---|---|
Demographic | |||
gender, n (%) | 1 | ||
Male | 206 (62.0) | 51 (61.4) | |
Female | 126 (38.0) | 32 (38.6) | |
Age, years, mean ± SD | 67.39 ± 12.44 | 66.18 ± 13.53 | 0.438 |
Past medical history | |||
Atrial fibrillation, n (%) | 0.465 | ||
No-atrial-fibrillation | 253 (76.2) | 67 (80.7) | |
Atrial-fibrillation | 79 (23.8) | 16 (19.3) | |
Clinical manifestation | |||
Onset time, hours, mean ± SD | 5.41 ± 2.81 | 5.43 ± 2.56 | 0.948 |
Laboratory examination | |||
Hemoglobin, g/L, mean ± SD | 78.84 ± 63.21 | 75.49 ± 65.83 | 0.669 |
Monocytes, 109/L, mean ± SD | 0.55 ± 0.25 | 0.71 ± 1.21 | 0.028 |
Fast blood sugar, mean ± SD | 7.83 ± 3.59 | 8.05 ± 3.14 | 0.606 |
INR, mean ± SD | 1.03 ± 0.15 | 1.00 ± 0.12 | 0.152 |
Classifier | LR | RF | SVM | XGB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training Cohort | Internal Validation Cohort | Validation Cohort | Training Cohort | Internal Validation Cohort | Validation Cohort | Training Cohort | Internal Validation Cohort | Validation Cohort | Training Cohort | Internal Validation Cohort | Validation Cohort | |
ACC | 0.8976 | 0.8675 | 0.8333 | 0.9277 | 0.8554 | 0.8333 | 0.9187 | 0.8434 | 0.8137 | 0.9458 | 0.8554 | 0.8431 |
AUC | 0.9689 | 0.8931 | 0.9080 | 0.9830 | 0.9177 | 0.8943 | 0.9660 | 0.8913 | 0.8932 | 0.9931 | 0.9454 | 0.9142 |
SEN | 0.9150 | 0.7838 | 0.8000 | 0.9739 | 0.8108 | 0.8667 | 0.9346 | 0.7568 | 0.7778 | 0.9608 | 0.7568 | 0. 8222 |
SPE | 0.8827 | 0.9348 | 0.8596 | 0.8883 | 0.8913 | 0.8070 | 0.9050 | 0.9130 | 0.8421 | 0.9330 | 0.9348 | 0.8596 |
PPV | 0.8696 | 0.9062 | 0.8182 | 0.8817 | 0.8571 | 0.7800 | 0.8938 | 0.8750 | 0.7955 | 0.9245 | 0.9032 | 0.8222 |
NPV | 0.9240 | 0.8431 | 0.8448 | 0.9755 | 0.8542 | 0.8846 | 0.9419 | 0.8235 | 0.8276 | 0.9653 | 0.8269 | 0.8596 |
F1 | 0.8917 | 0.8406 | 0.8090 | 0.9255 | 0.8333 | 0.8211 | 0.9137 | 0.8116 | 0.7865 | 0.9423 | 0.8235 | 0.8222 |
Delong Test | ||||||||
---|---|---|---|---|---|---|---|---|
Classifier | LR | RF | SVM | XGB | ||||
z | p | z | p | z | p | z | p | |
LR | 0.0000 | 1.0000 | 2.3144 | 0.0206 | −0.6490 | 0.5164 | 3.7309 | 0.0002 |
RF | −2.3144 | 0.0506 | 0.0000 | 1.0000 | −2.2130 | 0.0269 | 2.0787 | 0.0376 |
SVM | 0.6490 | 0.5164 | 2.2130 | 0.0269 | 0.0000 | 1.0000 | 3.4741 | 0.0005 |
XGB | −3.7309 | 0.0002 | −2.0787 | 0.0376 | −3.4741 | 0.0005 | 0.0000 | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Song, H.; Ren, H.; Wang, X.; Xie, Z.; Wen, H.; Li, Y. Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation. J. Pers. Med. 2022, 12, 2052. https://doi.org/10.3390/jpm12122052
Cui S, Song H, Ren H, Wang X, Xie Z, Wen H, Li Y. Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation. Journal of Personalized Medicine. 2022; 12(12):2052. https://doi.org/10.3390/jpm12122052
Chicago/Turabian StyleCui, Shaoguo, Haojie Song, Huanhuan Ren, Xi Wang, Zheng Xie, Hao Wen, and Yongmei Li. 2022. "Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation" Journal of Personalized Medicine 12, no. 12: 2052. https://doi.org/10.3390/jpm12122052
APA StyleCui, S., Song, H., Ren, H., Wang, X., Xie, Z., Wen, H., & Li, Y. (2022). Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation. Journal of Personalized Medicine, 12(12), 2052. https://doi.org/10.3390/jpm12122052